

FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

VARIACIÓN DE LOS PARÁMETROS DE RESISTENCIA AL CORTE CON DIFERENTES GRADOS DE SATURACIÓN EN SUELOS COHESIVOS EN SIETE DISTRITOS DE LA REGIÓN LAMBAYEQUE – PERÚ

PRESENTADA POR

GUIDO RENZO ALARCÓN PEJERREY
JHOAN WILFREDO TERÁN COTRINA

ASESOR

ERNESTO ANTONIO VILLAR GALLARDO JUAN MANUEL OBLITAS SANTA MARÍA

TESIS

PARA OPTAR EL TÍTULO PROFESIONAL DE INGENIERO CIVIL

LIMA – PERÚ

2019

Reconocimiento - Compartir igual CC BY-SA

El autor permite a otros transformar (traducir, adaptar o compilar) esta obra incluso para propósitos comerciales, siempre que se reconozca la autoría y licencien las nuevas obras bajo idénticos términos.

http://creativecommons.org/licenses/by-sa/4.0/

ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

VARIACIÓN DE LOS PARÁMETROS DE RESISTENCIA AL CORTE CON DIFERENTES GRADOS DE SATURACIÓN EN SUELOS COHESIVOS EN SIETE DISTRITOS DE LA REGIÓN LAMBAYEQUE – PERÚ

TESIS

PARA OPTAR EL TÍTULO PROFESIONAL DE INGENIERO CIVIL

PRESENTADA POR

ALARCÓN PEJERREY GUIDO RENZO TERÁN COTRINA JHOAN WILFREDO

LIMA, PERÚ

DEDICATORIA

Primero, a Dios y a la Virgen que me han guiado durante todo este arduo camino de sacrificio y superación, que me ha traído hasta este momento.

Segundo, a mis amados padres Guido y Rocío que me acompañaron en este proceso lleno de retos, y confiaron en mí durante todo este tiempo.

Tercero, a mis abuelos Ángel e Ida, Lucila y Santos que todos los días me motivan, aconsejan y apoyan en lo que hago.

Cuarto, a mí amada hermana Romina por siempre apoyarme en todos mis retos que me propongo y ser mi soporte.

Quinto, a mí querida Zuly que estuvo siempre dándome los ánimos y motivación para cumplir con entusiasmo mi meta.

Guido Alarcón

DEDICATORIA

A Dios que me da la vida y el conocimiento para cumplir cada meta trazada.

A mis padres Wilfredo y Marleni que me apoyaron en cada paso de mi vida y me demuestran todo su amor incondicional.

A mis hermanos Omar y Nando por acompañarme en esta etapa de mi vida de inicio a fin, por sus consejos y su motivación.

A mí amada Karen por su apoyo, consejos, comprensión en todo momento demostrándome que todo se puede conseguir con esfuerzo y dedicación.

Jhoan Terán

INDICE

RESUM	IEN.		XV
ABSTR	ACT		XVI
INTROE	ouc	CION	XVII
CAPITU	JLO	I. PLANTEAMIENTO DEL PROBLEMA	1
1.1.	Si	tuación problemática	1
1.2.	De	efinición del problema	5
1.3.	Fo	ormulación del problema	6
1.3	.1.	Problema general	6
1.3	.2.	Problemas específicos	6
1.4.	Ol	ojetivos	6
1.4	.1.	Objetivo general	6
1.4	.2.	Objetivos específicos	7
1.5.	lm	portancia de la investigación	7
1.5	.1.	Importancia teórica	7
1.5	.2.	Importancia práctica	7
1.6.	Vi	abilidad de la investigación	8
1.6	.1.	Viabilidad técnica	8
1.6	.2.	Viabilidad económica	8
1.6	.3.	Viabilidad social	8
1.6	.4.	Viabilidad tecnológica	8
1.7.	Hi	pótesis	9
1.7	.1.	Hipótesis general	9
1.7	.2.	Hipótesis especifica	9
CAPITU	JLO	II. MARCO TEÓRICO	10
2.1.	Ar	ntecedentes de la investigación	10

2.1.1.	A nivel internacional	10
2.1.2.	A nivel nacional	13
2.2. E	Bases teóricas	17
2.2.1.	Contenido de humedad	17
2.2.2.	Análisis mecánico de suelo	17
2.2.3.	Límites de Atterberg	19
2.2.4.	Clasificación de suelos	23
2.2.5.	Suelos cohesivos	26
2.2.6.	Ensayo para la determinación del contenido de sales solub	les
2.2.7.	Peso específico relativo	26
2.2.8.	Peso volumétrico de un suelo cohesivo	27
2.2.9.	Parámetros de resistencia al corte	28
2.2.10). Relaciones volumétricas y gravimétricas en los suelos	37
2.3.	Definición de términos básicos	40
CAPITULO	O III. METODOLOGIA	43
3.1.	Tipo de investigación	43
3.2. N	Nivel de la investigación	43
3.3.	Diseño de la investigación	43
3.4. N	Método de investigación	44
3.5.	Operacionalización de variables	44
3.6. F	Población y muestra	45
3.6.1.	Población	45
3.6.2.	Muestra	45
3.7.	Técnicas e instrumentos de recolección de datos	45
3.7.1.	Técnicas de recolección de datos	45
3.7.2.	Instrumentos de recolección de datos	46

	3.7.3.	Desarrollo metodológico de la investigación	46
	3.8. Mé	etodo de saturación de las muestras	47
C	APITULO I	V. DESARROLLO	48
	4.1. Ca	so de investigación	48
	4.1.1.	Ubicación del área de estudio	48
	4.1.2.	Ubicación geográfica	50
	4.2. An	álisis de estudio de suelos	59
	4.2.1.	Excavación de calicatas	59
	4.2.2.	Trabajo de campo	59
	4.2.3.	Muestreo y registro de excavaciones	63
	4.3. Pro	ocedimiento de trabajo	73
	4.3.1.	Ensayo de contenido de humedad	73
	4.3.2.	Ensayo de granulometría	75
	4.3.3.	Ensayo de límite líquido, límite plástico e índice de plastico 78	cidad
	4.3.4.	Sistema Unificado de Clasificación de Suelos (SUCS)	82
	4.3.5.	Ensayo de contenido de sales solubles	85
	4.3.6.	Ensayo de peso específico relativo de los sólidos	88
	4.3.7.	Ensayo de peso específico volumétrico	91
	4.3.8.	Ensayo de corte directo	93
C	APITULO V	V. RESULTADOS	97
	5.1. En	sayos para las características físicas de los suelos	97
	5.1.1.	Contenido de humedad	97
	5.1.2.	Granulometría	98
	5.1.3.	Límite líquido, límite plástico e índice de plasticidad	. 100
	5.1.4.	Clasificación del suelo (SUCS)	. 102
	5 1 5	Contenido de sales solubles totales	104

5.1.6	Peso específico relativo de sólidos 105
5.1.7	Peso volumétrico de un suelo cohesivo
5.2.	Ensayo de corte directo para determinar la cohesión 108
5.2.1	. Variación de la cohesión en el Distrito de Pimentel 108
5.2.2	Variación de la cohesión en el distrito de Lambayeque 110
5.2.3	Variación de la cohesión en el distrito de La Victoria 111
5.2.4	Variación de la cohesión en el distrito de Ciudad Eten 113
5.2.5	Variación de la cohesión en el distrito de Monsefú 114
5.2.6	. Variación de la cohesión en el distrito de Picsi 116
5.2.7	Variación de la cohesión en el distrito de Pueblo Nuevo. 117
5.3.	Ensayo de corte directo para determinar el ángulo de fricción.
	119
5.3.1	Variación del ángulo de fricción en el distrito de Pimentel.119
5.3.2	Variación del ángulo de fricción en el distrito de Lambayeque.121
5.3.3	Variación del ángulo de fricción en el distrito de La Victoria.122
5.3.4	 Variación del ángulo de fricción en el distrito de Ciudad Eten. 124
5.3.5	Variación del ángulo de fricción en el distrito de Monsefú.125
5.3.6	Variación del ángulo de fricción en el distrito de Picsi 127
5.3.7	. Variación del ángulo de fricción en el Distrito de Pueblo
Nuevo.	128
CAPITUL	.O VI. DISCUSIÓN 130
6.1.	Contrastación de hipótesis
6.2.	Comparación con otras investigaciones
CONCLU	SIONES 133

RECOMENDACIONES	140
FUENTES DE INFORMACIÓN	141
ANEXOS	144

ÍNDICE DE TABLAS

Tabla 1. Tabla de operacionalización de variables	44
Tabla 2.Tabla de coordenadas – Pimentel	51
Tabla 3. Tabla de coordenadas – Lambayeque.	52
Tabla 4. Tabla de coordenadas - La Victoria	54
Tabla 5. Tabla de coordenadas – Ciudad Eten	55
Tabla 6. Tabla de coordenadas – Monsefú	56
Tabla 7. Tabla de coordenadas – Picsi	57
Tabla 8. Tabla de coordenadas – Pueblo Nuevo	58
Tabla 9. Resumen de calicatas	59
Tabla 10. Resumen de muestras.	64
Tabla 11. Profundidad de calicata 01	65
Tabla 12. Profundidad de calicata 02	66
Tabla 13. Profundidad de calicata 03	67
Tabla 14. Profundidad de calicata 04	68
Tabla 15. Profundidad de calicata 05	69
Tabla 16. Profundidad de calicata 06	70
Tabla 17. Profundidad de calicata 07.	71
Tabla 18. Tamices recomendados por norma	
Tabla 19. Análisis suelo fino o suelo grueso	83
Tabla 20. Análisis rango de finos	84
Tabla 21. Resumen del ensayo de contenido de humedad, por estratos	
las 7 calicatas de los 7 distritos de la región Lambayeque- Perú	97
Tabla 22. Granulometría por tamizado calicata 1, distrito Pimentel- estra	atc
1	99
Tabla 23. Resumen del ensayo de límite líquido, límite plástico e índice	
plasticidad, por estratos de las 7 calicatas de los 7 distritos de la regi	ón
Lambayeque- Perú 1	01
Tabla 24. Granulometría por tamizado por la malla N°4 y N°200, lím	iite
líquido e índice de plasticidad de la calicata 1-distrito Pimentel- estrato	
Tabla 25. Resumen de la clasificación de suelos por estratos de las	
calicatas de los 7 distritos de la región Lambayeque- Perú	
tantatas ut its i uistritos ut la regiuli Lailibayetut- Feiu I	\mathbf{U}

Tabla 26. Resumen del ensayo de contenido de sales, por estratos de las
7 calicatas de los 7 distritos de la región Lambayeque- Perú 104
Tabla 27. Resumen del ensayo de peso específico, por estratos de las 7
calicatas de los 7 distritos de la región Lambayeque- Perú 105
Tabla 28. Resumen del ensayo de peso volumétrico de un suelo cohesivo
de las muestras inalteradas de las 7 calicatas
Tabla 29. Variación de la cohesión a diferentes grados de saturación, de la
calicata 1- distrito Pimentel
Tabla 30. Resumen de la cohesión a diferentes tiempos de saturación de
la calicata 2- Distrito Lambayeque110
Tabla 31. Variación de la cohesión a diferentes grados de saturación, de la
calicata 3- distrito La Victoria111
Tabla 32. Variación de la cohesión a diferentes grados de saturación, de la
calicata 4- distrito Ciudad Eten
Tabla 33. Variación de la cohesión a diferentes grados de saturación, de la
calicata 5- distrito Monsefú
Tabla 34. Variación de la cohesión a diferentes grados de saturación, de la
calicata 6- distrito Picsi
Tabla 35. Variación de la cohesión a diferentes grados de saturación, de la
calicata 7- distrito Pueblo Nuevo
Tabla 36. Variación de la cohesión a diferentes grados de saturación, de la
calicata 1- Distrito Pimentel
Tabla 37. Variación de la cohesión a diferentes grados de saturación, de la
calicata 2- distrito Lambayeque
Tabla 38. Variación de la cohesión a diferentes grados de saturación, de la
calicata 3- distrito La Victoria
Tabla 39. Variación de la cohesión a diferentes grados de saturación, de la
calicata 4- distrito Ciudad Eten
Tabla 40. Variación de la cohesión a diferentes grados de saturación, de la
calicata 5- distrito Monsefú
Tabla 41. Variación de la cohesión a diferentes grados de saturación, de la
calicata 6- distrito Picsi
Tabla 42. Variación de la cohesión a diferentes grados de saturación, de la
calicata 7- Distrito Pueblo Nuevo

INDICE DE FIGURAS

Figura 1. Regiones críticas afectadas por El Niño Costero	2
Figura 2. Población damnificada y afectada por Niño Costero 2017	3
Figura 3. Viviendas destruidas y afectadas por Niño Costero 2017	3
Figura 4. Tormenta sobre todo el distrito de Chiclayo 2017	4
Figura 5. Consecuencias de la lluvia en el distrito de Chiclayo	4
Figura 6. Tamaños estándar de tamices	18
Figura 7. Curva de distribución de tamaño de partícula	19
Figura 8. Límites de Atterberg	20
Figura 9. Curva de flujo para determinación de límite líquido	21
Figura 10. Curva de flujo para determinación de límite líquido	22
Figura 11. Símbolos de grupo (SUCS).	24
Figura 12. Tipología de suelos (SUCS).	24
Figura 13. Carta de plasticidad.	25
Figura 14. Criterio de rotura de suelos	30
Figura 15. Envolvente de falla de Mohr.	31
Figura 16. Criterio de rotura de Mohr-Coulomb para suelos puram	ente
granulares y/o friccionales	32
granulares y/o friccionales	
	ente
Figura 17. Criterio de rotura de Mohr-Coulomb para suelos puram	ente 32
Figura 17. Criterio de rotura de Mohr-Coulomb para suelos puram cohesivos y semi – cohesivos	ente 32 34
Figura 17. Criterio de rotura de Mohr-Coulomb para suelos puram cohesivos y semi – cohesivos	ente 32 34 35
Figura 17. Criterio de rotura de Mohr-Coulomb para suelos puram cohesivos y semi – cohesivos	ente 32 34 35
Figura 17. Criterio de rotura de Mohr-Coulomb para suelos puram cohesivos y semi – cohesivos	32 34 35 36
Figura 17. Criterio de rotura de Mohr-Coulomb para suelos puram cohesivos y semi – cohesivos	32 34 35 36 37
Figura 17. Criterio de rotura de Mohr-Coulomb para suelos puram cohesivos y semi – cohesivos. Figura 18. Diagrama de un arreglo de prueba de corte directo. Figura 19. Caja de corte directo - Laboratorio USMP-FN. Figura 20. Máquina de corte directo - Laboratorio USMP-FN. Figura 21. Representación de los estados del suelo. Figura 22. Procedimiento de recolección de datos.	32 34 35 36 37 46
Figura 17. Criterio de rotura de Mohr-Coulomb para suelos puram cohesivos y semi – cohesivos. Figura 18. Diagrama de un arreglo de prueba de corte directo. Figura 19. Caja de corte directo - Laboratorio USMP-FN. Figura 20. Máquina de corte directo - Laboratorio USMP-FN. Figura 21. Representación de los estados del suelo. Figura 22. Procedimiento de recolección de datos. Figura 23. Ubicación de las zonas de estudio.	32 34 35 36 37 46
Figura 17. Criterio de rotura de Mohr-Coulomb para suelos puram cohesivos y semi – cohesivos. Figura 18. Diagrama de un arreglo de prueba de corte directo. Figura 19. Caja de corte directo - Laboratorio USMP-FN. Figura 20. Máquina de corte directo - Laboratorio USMP-FN. Figura 21. Representación de los estados del suelo. Figura 22. Procedimiento de recolección de datos. Figura 23. Ubicación de las zonas de estudio. Figura 24. Ubicación calicata distrito Pimentel.	32 34 35 36 46 49 51
Figura 17. Criterio de rotura de Mohr-Coulomb para suelos puram cohesivos y semi – cohesivos	32 34 35 36 37 46 51 52
Figura 17. Criterio de rotura de Mohr-Coulomb para suelos puram cohesivos y semi – cohesivos Figura 18. Diagrama de un arreglo de prueba de corte directo Figura 19. Caja de corte directo - Laboratorio USMP-FN Figura 20. Máquina de corte directo - Laboratorio USMP-FN Figura 21. Representación de los estados del suelo Figura 22. Procedimiento de recolección de datos Figura 23. Ubicación de las zonas de estudio. Figura 24. Ubicación calicata distrito Pimentel Figura 25. Ubicación calicata distrito Lambayeque Figura 26. Ubicación calicata distrito La Victoria	nente 32 34 35 36 46 49 51 52
Figura 17. Criterio de rotura de Mohr-Coulomb para suelos puram cohesivos y semi – cohesivos	nente 32 34 35 36 46 49 51 52 53

Figura 31. Calicata 01 - Pimentel	60
Figura 32. Calicata 02 - Lambayeque	60
Figura 33. Calicata 03 – La Victoria.	61
Figura 34. Calicata 04 – Ciudad Eten.	61
Figura 35. Calicata 05 – Monsefú.	62
Figura 36. Calicata 06 – Picsi.	62
Figura 37. Calicata 07 – Pueblo Nuevo.	63
Figura 38. Muestras y materiales – contenido de humedad	72
Figura 39. Muestras y materiales – contenido de humedad	72
Figura 40. Muestras y materiales – contenido de humedad	73
Figura 41. Muestras y materiales – Granulometría	75
Figura 42. Materiales para el ensayo de límite líquido y limite plástico	79
Figura 43. Muestras para ensayo de límite líquido y limite plástico	85
Figura 44. Muestras y materiales para ensayo de límite líquido y lin	nite
plástico.	86
Figura 45. Muestras y materiales para ensayo de peso específico relati	VO.
	88
Figura 46. Muestras y materiales para ensayo de peso específ	
volumétrico	91
Figura 47. Muestras y materiales para ensayo de corte directo	94
Figura 48. Granulometría por tamizado calicata 1, distrito Pimentel- estr	ato
1	99
Figura 49. Número de golpes vs % de humedad del material calicata	ι 1,
distrito Pimentel- estrato 1	
Figura 50. Carta de plasticidad para la clasificación de suelos de la calic	ata
1- Distrito Pimentel	02
Figura 51. Variación de la cohesión a diferentes grados de saturacion	
Distrito Pimentel	
Figura 52. Variación del porcentaje de la cohesión en diferentes tiemp	
de saturación- distrito Pimentel 1	109
Figura 53. Variación de la cohesión a diferentes grados de saturacion	
distrito Lambayeque	110
	110 oos

Figura 55. Variación de la cohesión a diferentes grados de saturación-
distrito La Victoria
Figura 56. Variación del porcentaje de la cohesión en diferentes tiempos
de saturación- distrito La Victoria
Figura 57. Variación de la cohesión a diferentes grados de saturación-
distrito Ciudad Eten
Figura 58. Variación del porcentaje de la cohesión en diferentes tiempos
de saturación- distrito Ciudad Eten
Figura 59. Variación de la cohesión a diferentes grados de saturación-
distrito Monsefú
Figura 60. Variación del porcentaje de la cohesión en diferentes tiempos
de saturación- distrito Monsefú
Figura 61. Variación de la cohesión a diferentes grados de saturación-
distrito Picsi
Figura 62. Variación del porcentaje de la cohesión en diferentes tiempos
de saturación- distrito Picsi
Figura 63. Variación de la cohesión a diferentes grados de saturación-
distrito Pueblo Nuevo
Figura 64. Variación del porcentaje de la cohesión en diferentes tiempos
de saturación- distrito Pueblo Nuevo
Figura 65. Variación de la cohesión a diferentes grados de saturación-
Distrito Pimentel
Figura 66. Variación del porcentaje de la cohesión en diferentes tiempos
de saturación- distrito Pimentel
Figura 67. Variación de la cohesión a diferentes grados de saturación-
Distrito Lambayeque
Distrito Lambayeque

Figura 72. Variación del porcentaje de la cohesión en diferentes tiempos
de saturación- distrito Ciudad Eten
Figura 73. Variación de la cohesión a diferentes grados de saturación-
distrito Monsefú
Figura 74. Variación del porcentaje de la cohesión en diferentes tiempos
de saturación- distrito Monsefú
Figura 75. Variación de la cohesión a diferentes grados de saturación-
distrito Picsi
Figura 76. Variación del porcentaje de la cohesión en diferentes tiempos
de saturación- Distrito Picsi
Figura 77. Variación de la cohesión a diferentes grados de saturación-
Distrito Pueblo Nuevo
Figura 78. Variación del porcentaje de la cohesión en diferentes tiempos
de saturación- distrito Pueblo Nuevo
Figura 79. Hipótesis específica 1
Figura 80. Hipótesis específica 2
Figura 81 Hinótesis específica 3

RESUMEN

La presente investigación pretende dar a conocer la variación de los parámetros de resistencia al corte en suelos cohesivos en siete distritos de la Región Lambayeque al variar su grado de saturación. Se promueve el estudio de la variación de los parámetros de corte en suelos cohesivos en estados parcialmente saturados y totalmente saturados. La metodología empleada tiene un enfoque cuantitativo con diseño cuasiexperimental y se realizó la selección de muestras con base en estudios efectuados por el Instituto Nacional de Defensa Civil (INDECI) y en las Normas Técnicas Peruanas (NTP) existentes. Con ese fin, se extrajeron siete muestras inalteradas, una por distrito, para ser ensayadas en la máquina de corte directo a distintos tiempos de saturación.

El análisis realizado presenta las variaciones del ángulo de fricción y cohesión, y los determinados tiempos para que los suelos sumergidos se saturen. Los resultados demuestran hasta dónde puede llegar la variación de los parámetros mencionados; sin embargo, no son absolutos por falta de ensayos especializados. La disminución más significativa de los parámetros de resistencia al corte se percibió en los menores intervalos de tiempo de saturación, desde su estado natural hasta las 15 horas, al aumentarse un 22 % en el grado de saturación del suelo se redujo hasta un 32.77% en la cohesión y 41.28% en el ángulo de fricción.

En esta tesis la variable más significativa para que el estudio se realice adecuadamente fue la humedad del estado natural del suelo. Por ello, las muestras fueron almacenadas con sumo cuidado.

Palabras clave: resistencia al corte, parámetros de corte, suelos cohesivos, saturación.

ABSTRACT

The present investigation intends to make known the variation of the parameters of resistance to the cut in cohesive soils in seven districts of the Region Lambayeque when varying its degree of saturation. The study of the variation of the cut parameters in cohesive soils in specific saturated and fully saturated states is promoted. The methodology used has a quantitative approach with a quasi-experimental design and samples were selected based on studies carried out by the National Institute of Civil Defense (INDECI) and the existing Peruvian Technical Standards (NTP). To that end, seven unaltered samples were extracted, one per district, to be tested on the direct cutting machine at different saturation times.

The analysis carried out presents the variations of the angle of friction and cohesion, and the specific times for submerged soils to saturate. The results show how far the variation of the mentioned parameters can go; however, they are not absolute due to lack of specialized tests. The most significant decrease of the parameters of resistance to the cut was perceived in the smaller intervals of saturation time, from its natural state until 15 hours, when increasing by 22% in the degree of saturation of the soil it was reduced to 32.77% in cohesion and 41.28% in the friction angle.

In this thesis, the most significant variable for the study was specifically the humidity of the natural state of the soil. Therefore, the samples were stored with great care.

Keywords: cut resistance, cutting parameters, cohesive soils, saturation.

INTRODUCCION

Las zonas de estudios son los distritos de La Victoria, Monsefú, Pimentel, Ciudad Eten, Picsi, Pueblo Nuevo y Lambayeque pertenecientes a la Región Lambayeque, los cuales se caracterizan por su estado sub tropical, con fuertes vientos y sin lluvias. No obstante, debido a los eventos climáticos Fenómeno El Niño y El Niño Costero a lo largo de varios años, ocurren cambios en el comportamiento de los suelos, principalmente en suelos cohesivos, en vista de que estos aumentan su volumen al ver un incremento en el grado de saturación.

En la actualidad, los diseños de edificaciones se basan en un análisis de un suelo seco (0% de agua en su interior) o su extremo que sería un suelo saturado (100% de agua en su interior); por lo cual, las edificaciones presentan problemas en la resistencia a la cortante cuando el suelo está parcialmente saturado. El estudio final garantiza la comparación del comportamiento de suelos cohesivos de los distritos mencionados ante un cambio en sus grados de saturación de su estado natural hacia un estado parcialmente saturado – saturado.

En la mecánica de suelos clásica indica que los parámetros que representan la resistencia al cortante son la cohesión y el ángulo de fricción interna. La cohesión es la adherencia entre las partículas, a causa de las películas de agua y las fuerzas moleculares actuantes en el suelo. El ángulo de fricción interna es la resistencia al desplazamiento, originado por la fricción de la densidad del suelo y las superficies de contacto de las partículas. Aunque son propiedades distintas, guardan relación en un aspecto: la variación en el grado de saturación en su interior modifica su comportamiento. Al aumentar el agua en el interior del suelo, se observa una modificación en las superficies de contacto pudiendo llegar a separar las partículas del suelo. El tipo de suelo es de suma importancia para ver el comportamiento ante un cambio en el grado de saturación.

El objetivo del estudio consiste en determinar la variación de los parámetros de resistencia al corte con diferentes grados de saturación en suelos cohesivos de siete distritos de la Región Lambayeque (Perú); por ello, se establecen las características físicas de los suelos estudiados para corroborar su clasificación como suelo cohesivo, se determina la influencia del grado de saturación en las muestras inalteradas (una por cada distrito) en los parámetros de corte, y se realizan comparaciones del comportamiento de los parámetros de corte en los siete distritos señalados en el mismo tipo de suelo (suelos cohesivos).

La investigación aporta un beneficio técnico, pues servirá como referencia para diversos estudios de mecánica de suelos al dar una perspectiva más específica del comportamiento de los suelos cohesivos, en los distritos mencionados, desde un estado parcialmente saturado a saturado. Con este fin se evitarán problemas de resistencia al corte en las edificaciones al sufrir un cambio en el grado de saturación del suelo.

La tesis se desarrolla en los siguientes seis capítulos:

En el capítulo I se plantea la situación problemática, el problema general y específicos, los objetivos que busca la investigación, la importancia y la viabilidad de esta. En el capítulo II se expone el marco teórico, en su línea de antecedentes de investigación, a nivel internacional y nacional, en su línea de bases teóricas, en relación con los parámetros de resistencia al corte, y en su línea de definición de términos básicos. En el capítulo III se describe el enfoque, tipo de investigación, y la metodología con que se evaluó la variación de los parámetros de resistencia al corte. En el capítulo IV se describe el procedimiento que se ha utilizado junto con los cálculos realizados. En el capítulo V se detalla los resultados de la investigación. Se determina la variación de los parámetros de corte al variar su grado de saturación. En el capítulo VI se discute los resultados contrastando la metodología e hipótesis, en comparación con los antecedentes de investigación, y se plantean las conclusiones y recomendaciones derivadas de la discusión.1

CAPITULO I. PLANTEAMIENTO DEL PROBLEMA

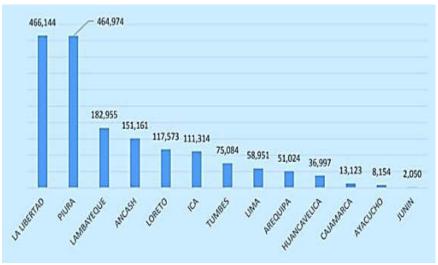
1.1. Situación problemática

El suelo al encontrarse en la naturaleza, se ve afectado por agentes externos, los cuales se pueden presentar en forma de lluvia, como lagos o ríos, evaporación que ocurre entre el día y la noche debido al agua que ingresa entre sus partículas. Esto genera una variación en su humedad y en su saturación, dando como resultado que tenga un comportamiento distinto generando problemas para la ingeniería en cimentaciones y edificaciones.

Por las constantes lluvias que han venido ocurriendo durante los últimos años, muchas de magnitudes extraordinarias y fuertes, han originado que el suelo en donde se ha edificado se vea afectado y por ende su comportamiento ocasionando: deslizamientos, derrumbes, pérdidas parciales de las viviendas y sobre todo muerte de los habitantes.

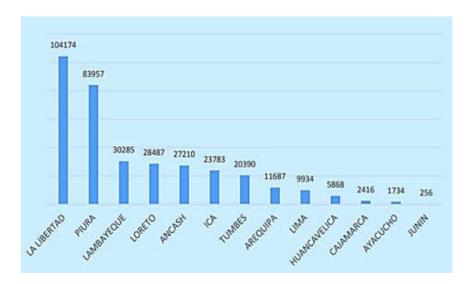
De esta manera en el año 2017, diversos medios de comunicación a lo largo de todo el país informan sobre grandes catástrofes que ocurrieron debido a las lluvias y que ha venido afectando especialmente a toda la costa peruana, la cual no estaba preparada para tal magnitud y ha producido tantos problemas a toda la población.

Estos problemas son debido al Fenómeno de El Niño y Niño Costero que producen múltiples lluvias que azotan a nuestro país. Así tenemos, según el SENAMHI (Servicio Nacional de Meteorología e Hidrología del Perú) en la Figura 1, en el 2017 los grandes problemas por las lluvias que se produjeron en la costa de nuestro país, donde la zona roja viene a ser las regiones más afectadas.


Figura 1. Regiones críticas afectadas por El Niño Costero.

Fuente: SENAMHI

El llamado Niño Costero al desarrollarse en la costa del Perú, causó graves daños, siendo declarado 13 regiones en emergencia (8 de la zona costera), de donde sobresalen 3 con mayor índice de daños.


La región Lambayeque es una de estas 3 regiones que sobresalen en emergencia por las lluvias, que han ocasionado un gran número de pérdidas tanto material como humana.

En la Figura 2, podemos observar que vienen siendo muchas las poblaciones afectadas por este fenómeno en el Perú. Específicamente, nos vamos a centrar en la región Lambayeque de donde 182,955 personas han sufrido de manera diferente: perdiendo total o parcialmente su vivienda, sufrido heridas de gravedad por el colapso de sus viviendas generando gastos imprevistos para reparar las consecuencias que deja este fenómeno.

Figura 2. Población damnificada y afectada por Niño Costero 2017 **Fuente:** SD Aplicaciones Estadísticas/DIPPE/INDECI

En la figura 3, nos centraremos en las viviendas afectadas y destruidas que ha provocado este fenómeno subiendo la cifra a 30,285 en la región Lambayeque, encabezando el tercer puesto de viviendas afectadas según el estudio realizado por INDECI.

Figura 3. Viviendas destruidas y afectadas por Niño Costero 2017 **Fuente:** SD Aplicaciones Estadísticas/DIPPE/INDECI

En la Región Lambayeque este fenómeno tuvo grandes consecuencias como podemos observar en la Figura 4 y Figura 5, donde causo temor y pánico a la población que no estaba preparada para este evento.

Figura 4. Tormenta sobre todo el distrito de Chiclayo 2017 **Fuente:** Fuente propia.

Figura 5. Consecuencias de la lluvia en el distrito de Chiclayo. **Fuente:** RPP

Para tratar de minimizar estas pérdidas tanto completas y parciales en edificaciones, que por ende causan daños a los habitantes se debe conocer el tipo de suelo en el que se realizará la edificación, debido a que existen diferentes tipos de suelo, especialmente cuando se encuentra en la zona con suelos cohesivos, los cuales son proclives a sufrir daños en su resistencia al corte al ver un aumento de agua en su interior, ya que el suelo tiende a hincharse y pierde estabilidad.

Estos acontecimientos no tienen que pasar inadvertidos, se deben tomar en cuenta, para tener los cuidados respectivos al momento de realizar una edificación en suelos que pierden inestabilidad al estar expuesto a lluvias intensas y largas.

Es aquí, donde surge el problema, al no ver el comportamiento del suelo a medida que cierta cantidad de agua va llenando los espacios que existen entre sus partículas, cuando este suelo se va saturando, al momento de hacer un estudio geotécnico. Es por ello, que se debe analizar la resistencia del suelo a medida que va alcanzando diferentes grados de saturación, observando los cambios en las presiones de los poros, debido a que posteriormente puede causar una falla inevitable al corte.

Existen diferentes ensayos para determinar la resistencia del suelo, y estos giran en torno a la resistencia al cortante. En las diferentes normativas para realizar los ensayos solamente hablan de llevar a cabo estos en suelos saturados y suelos secos, que generalmente son dos situaciones que no encontramos en la realidad en campo, al encontrar suelos parcialmente saturados; los parámetros de resistencia al corte (cohesión y el ángulo de fricción interna) se dejan a criterio al realizar los ensayos.

En esta investigación se planteó analizar el comportamiento del suelo a medida que este se va saturando en diferentes tiempos, analizando la cohesión y el ángulo de fricción, para lograr determinar de forma correcta la resistencia al suelo, trabajando con un suelo desde su condición natural-parcialmente saturado-saturado.

1.2. Definición del problema

Dar a conocer la inadecuada práctica que se tiene al llevar a cabo un estudio de mecánica de suelos al solo considerar dos extremos en estos estudios, al llevar a cabo los ensayos de laboratorio, evaluando que el suelo solamente estará totalmente saturados o seco, cuando al estar en campo, estos suelos en realidad se encuentran parcialmente saturadas.

1.3. Formulación del problema

1.3.1. Problema general

 ¿Cuál es la variación de los parámetros de resistencia al corte con diferentes grados de saturación en suelos cohesivos en siete distritos de la Región Lambayeque - Perú?

1.3.2. Problemas específicos

- ¿Cómo influye la verificación de las características físicas para determinar la variación de los parámetros de resistencia al corte con diferentes grados de saturación en suelos cohesivos en siete distritos de la Región Lambayeque - Perú?
- ¿De qué manera influye los diferentes grados de saturación para determinar la variación de los parámetros de resistencia al corte en suelos cohesivos en siete distritos de la Región Lambayeque - Perú?
- ¿De qué manera contribuye la interpretación de los resultados obtenidos en la variación de los parámetros de resistencia al corte con diferentes grados de saturación en suelos cohesivos en siete distritos de la Región Lambayeque - Perú?

1.4. Objetivos

1.4.1. Objetivo general

 Determinar la variación de los parámetros de resistencia al corte con diferentes grados de saturación en suelos cohesivos en siete distritos de la Región Lambayeque - Perú con el fin de obtener los resultados de los parámetros mencionados en condiciones parcialmente saturados y saturados.

1.4.2. Objetivos específicos

- Determinar las características físicas para la variación de los parámetros de resistencia al corte con diferentes grados de saturación en suelos cohesivos en siete distritos de la Región Lambayeque - Perú.
- Determinar mediante el ensayo de corte directo la variación de la cohesión con diferentes grados de saturación en suelos cohesivos en siete distritos de la Región Lambayeque - Perú.
- Determinar mediante el ensayo de corte directo la variación del ángulo de fricción con diferentes grados de saturación en suelos cohesivos en siete distritos de la Región Lambayeque – Perú.

1.5. Importancia de la investigación

1.5.1. Importancia teórica

La tesis aportará otro enfoque al elaborar el estudio de mecánica de suelos, ya que se harán ensayos cuando estos suelos se encuentren parcialmente saturados. Mediante el ensayo de corte directo que se realice se podrá conocer cómo el ángulo de fricción y la cohesión varían, al estar sujetos a diferentes grados de saturación para así determinar su comportamiento y prever las fallas posibles cuando estos cambien su volumen al interactuar con el agua. Al estar en campo estos tienden a comportarse de maneras diferentes, dado que se encuentran parcialmente saturados, más no totalmente saturados o secos como se consideran al diseñar las edificaciones.

1.5.2. Importancia práctica

Este estudio aportara información a la población de los sectores estudiados sobre el comportamiento que tienen los suelos cohesivos de su localidad, al encontrarse estos parcialmente saturados.

Beneficiará a las personas que en un futuro construirán sus viviendas en las zonas destinadas en la investigación, como referencia al momento de

realizar el respectivo estudio de mecánica de suelos, para así con esta información se puedan evitar principalmente perdidas económicas, materiales y humanas en las futuras edificaciones.

1.6. Viabilidad de la investigación

1.6.1. Viabilidad técnica

Se contó con el apoyo del Laboratorio de Mecánica de Suelos de la Universidad de San Martin de Porres – Filial Norte, donde se realizaron los diversos ensayos que se requieren para la presente estudio.

1.6.2. Viabilidad económica

Los gastos de la investigación fueron asumidos por los propios ejecutores de la tesis.

1.6.3. Viabilidad social

Al concluir todos los ensayos, se obtendrá porcentajes de variación del ensayo de corte directo a diferentes grados de saturación, que servirá como referencia para diversos estudios de mecánica de suelos.

1.6.4. Viabilidad tecnológica

Dar un aporte a la NTP E 050 para el cálculo de los parámetros de resistencia al corte, ya que con esta investigación se podría dar a conocer una manera de disminuir costos en la cimentación, pues los parámetros geotécnicos mejorarían.

1.7. Hipótesis

1.7.1. Hipótesis general

 Los parámetros de resistencia al corte disminuyen al aumentar los grados de saturación del suelo en siete distritos de la región Lambayeque – Perú.

1.7.2. Hipótesis especifica

- La comprobación de las características físicas de los suelos influye positivamente al clasificarlos como cohesivos para determinar la variación de los parámetros de resistencia al corte con diferentes grados de saturación en siete distritos de la región Lambayeque-Perú.
- El aumento del grado de saturación influye en la disminución de la cohesión en suelos cohesivos en 7 distritos de la región Lambayeque-Perú.
- El aumento del grado de saturación influye en la disminución del ángulo de fricción en suelos cohesivos en 7 distritos de la región Lambayeque-Perú.

CAPITULO II. MARCO TEÓRICO

2.1. Antecedentes de la investigación

En la tesis se tomaron en cuenta diferentes artículos e investigaciones tanto nacionales como internacionales.

2.1.1. A nivel internacional

Betancur, Builes y Millán (2013), en su investigación realizada en la ciudad de Pereira – Colombia, específicamente en una zona que fue cubierta por ceniza volcánica, en donde se ha originado un suelo complejo para estudiar. Es así que buscan entender el comportamiento que este suelo tendrá en condiciones naturales, además de sus propiedades. Mediante ensayos realizados en el laboratorio con la máquina de corte directo, analizaron la reacción de la variación constate que tendrá la saturación en el suelo.

Extrajeron muestras a una profundidad de 0.5 m – 3.0 m, almacenándolas de manera adecuada, para que estas conserven sus propiedades. Se realizaron estudios de las características físicas del suelo llegando a clasificar mediante la Carta de Plasticidad, como un suelo MH. Se establecieron diferentes tiempos de saturación. Al realizar el ensayo en la máquina de corte directo se consideraron 3 muestras por cada tiempo establecido anteriormente.

Obtuvieron que, al aumentar el grado de saturación, aumenta la cohesión y disminuye el ángulo de fricción. Así tenemos, que las muestras ensayadas que pasan de un grado de saturación del 70% al 95%, hay un aumento de 43% en la cohesión. Esta valoración se da entre la muestra en estado natural y la muestra con mayor saturación (71% y 97% respectivamente)

Mientras que respecto al ángulo de fricción disminuye a 34%, entre los puntos de estado natural y de mayor grado de saturación (70% y 97%).

Llegando a la conclusión que, al manipular el grado de saturación, al realizar el estudio en arcillas alófanas, pueden surgir dos comportamientos diferentes, por lo cual se debe tener cuidado ya que podría llevar a errores al analizar la resistencia al corte del suelo.

Quijano (2013), en su trabajo analizó el comportamiento de un depósito de ceniza volcánica cuando se produce una variación del grado de saturación, debido a los cambios de humedad que se ve afectado en condiciones naturales.

Se realizó la extracción de muestras a una altura de 2.50 m, las cuales fueron debidamente almacenadas. En laboratorio, se clasificó el tipo de suelo encontrado mediante los ensayos de granulometría y límites de Atterberg. Tras el ensayo de límite líquido y límite plástico, se encontró que el suelo tiene gran capacidad de absorción de agua.

Para el ensayo de corte directo se establecieron los tiempos de saturación para tres muestras que fueron ensayadas.

Es así que, se llegó a la siguiente conclusión que al aumentar el grado de saturación en la muestra la cohesión y el ángulo de fricción disminuye.

Los primeros ensayos producidos durante las primeras dos horas, se observa que el ángulo de fricción disminuye entre un 17% a 30% y la cohesión disminuye entre un 20% y 27%, cuando el grado de saturación se encuentra entre el 89% al 95%. Cuando el grado de saturación llega al 100% el suelo perderá de un 10% hasta llegar a un 40% de su cohesión y ángulo de fricción. Resultados similares se encontraron para las demás muestras ensayadas en el laboratorio.

Dranichnikova (2013), en su artículo nos menciona lo preocupante que es que a lo largo de aproximadamente 50 años no hallan estudios profundizados en suelos parcialmente, las pocas investigaciones que se

encuentran hasta la fecha contribuyen para tratar de resolver este problema, así mismo nos da una explicación de cuál es el comportamiento que llega a tener un suelo parcialmente saturado, al sufrir una deformación volumétrica al modificar el grado de saturación, lo que conlleva a que estos sufran modificaciones en su resistencia y su deformación. Estos cambios de humedad pueden ser de origen natural (cambios climáticos) o artificiales (por actividad humana).

Existen una gran variedad debido a los cambios de humedad dando a conocer que para evitar accidentes como procesos de erosión y asentamientos que se debe conocer el comportamiento de estos suelos con el fin de evitar accidentes como inestabilidad de taludes, procesos de erosión y asentamientos.

Meza (2012), en su artículo da a conocer que un suelo sedimentario (constituido por suelos cohesivos y granulares), no siempre se encontrara compuesta de dos fases como se viene estudiando hasta el momento. El suelo al estar en la naturaleza se ve expuesto a condiciones como el clima, las constantes lluvias, evaporación, traspiración y condiciones de la topografía de la zona; tendrá un comportamiento diferente. Llegando a un punto en el que el suelo no se encuentre ni seco, ni totalmente saturado es decir no tendrá solamente dos fases sólida y gaseosa, sólida y liquida respectivamente; sino que se encontrara parcialmente saturado presentando 3 fases sólida, liquida y gaseosa. Generando un comportamiento en el suelo, especialmente en suelos cohesivos en los cuales se ve afectando el volumen (deformación), ocasionando problemas que están relacionados a la estabilidad de taludes y capacidad de soporte, formación de fisuras y grietas en estructuras; relacionado con la resistencia al corte del suelo.

Menciona que este estudio, surgió como respuesta a solucionar el problema de los suelos problemas, llamados expansivos o suelos activos, que están conformados por arcillas las cuales se ven afectadas por el cambio de volumen debido al contenido de humedad que varía.

Explica que la zona donde el suelo se encuentra parcialmente saturado, es una zona intermedia que se encuentra entre la franja capilar y la zona del suelo seco, allí los poros vacíos se encuentran ocupados por aire y agua.

Concluyendo que se debe abordar el estudio de suelos, desde el punto de los suelos parcialmente saturados, para entender el comportamiento que tendrán en la naturaleza.

Castillo(2010), alude la existencia de muchos suelos problemas tales como los expansivos; suelos con muy poca información de estudio al ser suelos con diferente saturación ocasionando que estos cambien su volumen y se deformen, afectando la capacidad soportante del suelo. Es así que analiza de qué manera los grados de saturación causan efecto sobre la cohesión aparente del suelo, para así establecer el factor de seguridad (FS) obtenido de cada ensayo realizado. Separando las muestras de suelo en plástico y no plástico para así realizar los diferentes ensayos de laboratorio. Es así como, los resultados dan a conocer que la resistencia del suelo está directamente afectada por los vacíos y el tipo de suelo. Respecto al suelo plástico al aumentar la saturación no necesariamente disminuye su resistencia al corte; el suelo no plástico se concluyó que es un limo colapsable por el hecho de realizar la prueba de comprensión inconfinada, en donde sus características físicas cambian de manera radical a alteraciones menores en su contenido de humedad. Del mismo modo, que ocurra una falla en el talud cuando este se encuentre completamente saturado, sino parcialmente.

2.1.2. A nivel nacional

Córdova y Montalván (2017), analizaron los diferentes tipos de suelo que se hallan en la zona de Barrio Centro en el distrito de Picota en la región San Martin. Profundizan en este análisis con el proposito de identificar y conocer el comportamiento del suelo de la zona, para brindar un aporte a los

pobladores de la zona, con este estudio ellos conozcan los lugares en el cual los terrenos no son adecuados para vivir.

Realizaron distintas calicatas, llegando a clasificar el tipo de suelo, mediante SUCS, encontrando de sesta manera 3 tipos diferentes de suelos, los cuales son: CL (arcilla de baja plasticidad), CL – ML (limo arcilloso de baja plasticidad) y OH (limo arcilloso orgánico).

Dividieron en 3 zonas el lugar estudiado basándose en la carga admisible que soporta cada uno teniendo en consideración su cohesión y ángulo de fricción. Encontrando en la zona 1 (q adm >=1.00 kg/cm2), con un peso unitario promedio de 1.821 tn/m3, con ángulo de fricción que cambia entre 19° y 27°, la cohesión con resultados entre 0.14 kg/cm2 y 0.20 kg/ cm2. En la zona 2 (0.80 kg /cm2 <= q adm < 1.00 kg/cm2), con peso unitario promedio de 1.767 tn /m3, con su ángulo de fricción entre 8° y 18°, la cohesión entre 0.18 kg/cm2 y 0.31 kg/cm2. Y por último en la zona 3 (q adm < 0.80 kg/cm2) con un peso unitario promedio de 1.810 tn/m3, el ángulo de fricción va entre 15° y 17°, la cohesión varía entre un 0.11 kg/cm2 y 0.12 kg/cm2.

Llegando a la conclusión que la zona 3, se debe considerar como una zona no urbanizable debido al bajo nivel admisible que este tiene. Mientras que la zona 1 y 2, como zonas urbanizables.

Quispe y Mamani (2017), llevaron a cabo una investigación en la zona de Alto Locumba en el departamento de Tacna, donde pretenden determinar la capacidad portante del suelo, con el fin de utilizar la cimentación correcta que se pueda adecuar al tipo de suelo que se halla en esta zona.

Llevaron a cabo 4 calicatas en dicho lugar, con una profundidad que iba de 3m y 2m, en donde no se encontró el nivel freático.

Posteriormente, realizaron diferentes ensayos tanto para determinar las características y con ello poder clasificar el tipo de suelo de la zona; así como diferentes ensayos para determinar el comportamiento que tendrá este tipo de suelo.

Es así como, se llegó a las siguientes conclusiones. Determinando las propiedades físicas del suelo, se clasifico al suelo del lugar como arcilla inorgánica de baja plasticidad (CL), Los ensayos realizados para hallar la cohesión y el ángulo de fricción a la muestra de suelo en estado natural con un contenido de humedad que va desde 6.33% a 7.51% da una cohesión de 6.51 a 7.49 kg/cm2 y un ángulo de fricción de 19.82° a 24.12°. Luego al saturar completamente la muestra se observa como ambos parámetros disminuyen tanto en la cohesión en 1.61 a 1.77 kg/cm2, como el ángulo de fricción de 16.85° a 22.11°

Ortiz (2017), en su estudio desarrollado en el distrito de Pilcomayo, en Huancayo, busca dar solución al problema que tienen las cimentaciones cuando se ven afectadas por el nivel freático, por ende, afectando la capacidad portante del terreno. Menciona que son pocos los estudios que dan respuesta a este tema, remarcando que la presencia de aguas subterráneas es un factor clave que se debe tomar siempre en cuenta al momento de realizar una edificación.

Se efectuaron 3 calicatas, se identificó el tipo de suelo según sus características físicas y se monitoreo la variación de la napa freática en 5 diferentes fechas tanto en presencia de lluvias, como de sequía para de esta manera determinar el descenso y ascenso del nivel freático de cada pozo realizado.

Llique y Guerrero (2014), analizaron como la humedad influye en el comportamiento que tienen los suelos arcillosos de alta y baja plasticidad. Realizaron distintos ensayos, para así llegar a clasificar mediante el Sistema Unificado de Clasificación de Suelos (SUCS).

Al realizar los ensayos se sumergieron por 96 horas y se registró el comportamiento volumétrico versus las lecturas de tiempo. Llegando a ver el comportamiento volumétrico (expansión) de los suelos arcillosos de alta plasticidad de pasar de 0.25% hasta 5.52% y de suelos de baja plasticidad

desde 0.68% hasta 5.02%. Obteniendo coeficientes que muestran las variables de humedad de compactación, indicando como el 98% de suelos arcillosos se expande y el otro 2% por otras variables.

Llegando a la conclusión de que estos coeficientes obtenidos establecen la relación causa efecto que han tenido los suelos arcillosos de alta plasticidad CH y baja plasticidad CL.

Villalobos (2014), en su investigación buscó determinar el comportamiento real de los suelos para determinar su capacidad portante, con el fin establecer correctos parámetros para realizar una edificación segura, con el objetivo de que sirva como referencia a futuros diseños de cimentaciones, en una zona que no ha realizado estudios de mecánica de suelos, en la cual se ve a futuro como una zona de crecimiento poblacional.

Ejecutó 4 calicatas en 3 sectores distintos del centro poblado Las Palmas, posterior a la extracción de muestras, desarrolló ensayos en laboratorio para establecer las características físicas del suelo de la zona mediante SUCS. Encontrando suelos finos como granulares.

Observó el comportamiento de estos suelos al aumentar la napa freática, dando un aporte futuro a construcciones que se realicen en la zona, para que tomen como referencia este estudio.

2.2. Bases teóricas

Respecto a las bases teóricas empezaremos definiendo las siguientes.

2.2.1. Contenido de humedad

El contenido de humedad es un valor en porcentaje que va en un rango de 0% a 100%, esto depende del agua que contenga en su interior el suelo. Se considera en términos matemáticos como la resta del peso de la muestra húmeda con una muestra seca, dada en porcentaje. (Mamani & Yataco, 2017)

Es un ensayo de gran importancia, debido a que analiza como la humedad tiene una relación con el comportamiento del suelo y las propiedades que este presenta. Es así que, para suelos cohesivos (finos) su consistencia que estos tienen tiene mucho que ver con la humedad que estos presentan. Una consideración importante es que, al momento de realizar el ensayo, el espécimen de suelo debe ser representativa a la muestra con la que se está trabajando. (Pontificia Universidad Católica del Perú, 2012).

Un punto importante al desarrollar este ensayo, es reanalizarlo lo más pronto posible, debido a que las muestras sacadas de campo, irán perdiendo sus propiedades con las que se hallaron en campo, llevando a futuros errores y no llegar a determinar un correcto ensayo.

2.2.2. Análisis mecánico de suelo

Un suelo presente minúsculas partículas que lo conforman, los cuales, por su gama de tamaños se pueden agrupar de diferentes maneras, a esto se le llama realizar un análisis mecánico. Por lo cual, existen dos métodos para poder determinar esta gama de tamaños. Empezando por dividir las partículas que se encuentran por debajo de las partículas con diámetro menores a 0.075 mm y las que se encuentran por encima de este valor. Para las partículas de tamaño menor se realiza un análisis de hidrómetro, en cambio para las partículas que tienen un tamaño mayor un análisis granulométrico por tamizado. (Das, 2013)

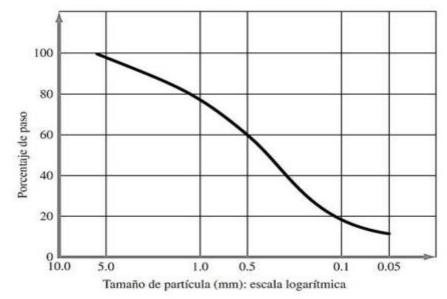
A. Análisis granulométrico por tamizado

Al considerar partículas mayores a 0.075 mm se realiza este análisis, en donde la herramienta a utilizar serán los tamices, los cuales tienen una característica de tener un marco rígido y una malla que presenta un espaciamiento uniforme, por ello llevan el nombre de aberturas por donde la muestra del suelo pasara (una muestra seca). (Guerra, 2018)

Al momento de llevar a cabo, el ensayo estos tamices se colocan en un orden de abertura decreciente, para que así la muestra quede retenida en cada uno de ellos. Cabe destacar que estos tamices, generalmente tienen un diámetro de 203 mm.

Los números estándar de los tamices, así como también las aberturas en mm de cada uno, se mencionan a continuación, en la Figura 6.

Tamiz núm.	Abertura (mm)	
4	4.750	
6	3.350	
8	2.360	
10	2.000	
16	1.180	
20	0.850	
30	0.600	
40	0.425	
50	0.300	
60	0.250	
80	0.180	
100	0.150	
140	0.106	
170	0.088	
200	0.075	
270	0.053	


Figura 6. Tamaños estándar de tamices

Fuente: Fundamentos de ingeniería geotécnica

En la ejecución del ensayo, la muestra se colocará en el juego de tamices, se dejará caer la muestra y se agitará todo el conjunto. Obtenemos que cantidad de muestra se retiene en cada tamiz y se expresara en

porcentaje. Los valores hallados se expresan en una gráfica semilogaritmica, en donde el valor del porcentaje que pasa se colocara en el eje de las ordenadas, mientras que el diámetro de los tamices se colocara en el eje de las abscisas. (Guerra, 2018)

Al momento de realizar los cálculos para la gráfica, en las ordenadas se colocará en escala aritmética, por el contrario, en las abscisas en escala semilogaritmica. En la figura 7, se aprecia un ejemplo de este modelo de gráfica.

Figura 7. Curva de distribución de tamaño de partícula. **Fuente:** Fundamentos de Ingeniería Geotécnica (2013)

2.2.3. Límites de Atterberg

Los suelos plásticos son proclives a cambiar su resistencia al esfuerzo cortante, es decir su consistencia, cuando el contenido de humedad varía. Debido a este cambio que sufren los suelos plásticos surgen 4 estados de consistencia: sólido, semisólido, líquido y plástico. Muchos investigadores a lo largo de la historia, han brindado diferentes aportes para definir las fronteras que han surgido entre estos estados, resaltando la investigación de Albert Mauritz Atterberg. Los límites de Atterberg, la propuesta dada por este investigador, fue realizada en 1911, gracias a estudios realizados en la rama de la Agronomía, detallando como gracias al contenido de humedad el cual

varía se pasa de una frontera a otra. Este ensayo permite identificar y clasificar un suelo. (Guerra, 2018)

Así que, tenemos en la Figura 8, los puntos de transición cuando varía el contenido de humedad en el suelo, encontrándose los 4 estados de consistencia.

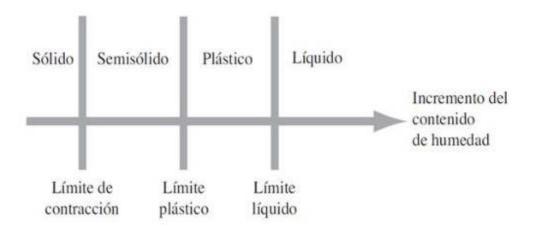
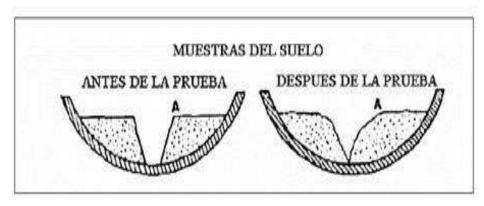


Figura 8. Límites de Atterberg.

Fuente: Fundamentos de Ingeniería Geotécnica (2013)

Este ensayo viene a complementar el conocimiento respecto a otros ensayos, como el ensayo granulométrico contribuyendo a identificar e indicar la calidad que el suelo pueda tener, sumando todo esto a la cantidad de fracción fina que se halla en cada tamiz, para conocimiento completo del suelo. (Jiménez & Justo, 1975)


Por el contenido de humedad presente entre estas fronteras, se define así el límite líquido y el límite plástico.

a) Limite líquido (LL)

Este ensayo se define como el contenido de humedad menos la muestra seca dada en porcentaje, en el cual el suelo se encuentra en el límite entre el estado líquido y el estado plástico. Utilizando la copa de Casagrande, el surco que se traza con ayuda de un ranurador separando en dos mitades la muestra colocada en este instrumento (muestra previamente saturada), se deja caer la copa un cierto número de veces establecidos por la norma,

cerrándose por los caídas hasta el número de veces establecido, a este cierre se designa como el contenido de humedad el cual se llevara una muestra sacada de este cierre al horno para posteriormente hallar el contenido de humedad en porcentaje. Esta prueba es normalmente utilizada junto a otros sistemas de clasificación de suelos para la caracterización de suelos finos. (Ministerio de Transportes y Comunicaciones, 2016)

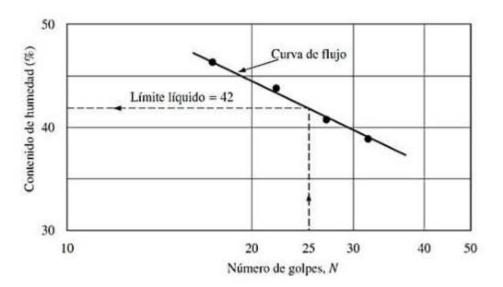

En la figura 9, se muestra la separación que se realiza con el ranurador, esta abertura de un tamaño de 13 mm (1/2")

Figura 9. Curva de flujo para determinación de límite líquido **Fuente:** Fundamentos de ingeniería geotécnica

De modo que, luego de obtener los diferentes valores se realiza una gráfica denominada curva de flujo, en donde en el eje de las abscisas se coloca el número de golpes N y en el eje de las ordenadas el contenido de humedad hallado por cada muestra. Los puntos hallados trazaremos una recta lo más cercano a estos puntos, en donde el contenido de humedad que corresponde al número de golpes de 25, nos da el límite líquido del suelo. (Das, 2013)

En la figura 10 se muestra la curva de flujo con los expuesto en el párrafo anterior, para con esto halla el limite liquido de este suelo.

Figura 10. Curva de flujo para determinación de límite líquido **Fuente:** Fundamentos de ingeniería geotécnica

b) Limite Plástico (LP)

"Se le conoce a la frontera entre el estado semisólido y el estado plástico, un contenido de humedad el cual es expresado en porcentaje. Generalmente se utiliza una pequeña cantidad de muestra sobrante del ensayo de límite líquido". (Crespo, 2004)

Es la humedad más baja, con la que una muestra se enrolla formando una pequeña barra de un aproximadamente unos 3.2 mm (1/8") de diámetro, el cual se enrolla en un vidrio esmerilado, hasta que este se desmorone cuando se llegue a dicho diámetro, para posteriormente ser llevado al horno y así hallar el contenido de humedad en porcentaje. (Ministerio de Transportes y Comunicaciones, 2016)

La manera de hallar el límite plástico se muestra a continuación según la NTP 339.129:

$$Limite\ Plástico = \frac{Peso\ de\ muestra\ con\ agua}{Peso\ de\ muestra\ seca}\ x\ 100$$

"Es preciso resaltar que el limite plástico, se considera el punto en el cual el suelo, por falta de humedad, va perdiendo su propiedad de cohesión." (Jiménez & Justo, 1975)

c) Índice de plasticidad (IP)

"Se le considera al contenido de humedad que tiene un comportamiento plástico, el cual se define en términos matemáticos como la resta entre el limite líquido y el limite plástico". (NTP 339.129, 2014).

Se tienen ciertas consideraciones al momento de hallar el índice de plasticidad las cuales son: (Ministerio de Transportes y Comunicaciones, 2016)

Al desarrollar el limite liquido o el limite plástico y estos no se puedan determinar, el IP se colocará la nomenclatura de NP (no plástico)

De la misma forma, cuando al hallar el limite plástico y este sea mayor o igual al límite líquido, el IP se considerará NP (no plástico)

2.2.4. Clasificación de suelos

En el año de 1942, A. Casagrande ideo un sistema el cual permite clasificar un suelo empleándolo inicialmente en aeropuertos. Debido al éxito del sistema, años más tarde la agencia federal de los Estados Unidos llamada Bureau of Reclamation, adopto este sistema para la ingeniería civil aplicándole ciertos cambios para que pueda ser utilizado en diversos proyectos. Eso dio como resultado el nacimiento de la clasificación SUCS, adoptado por la ASTM como un método normalizado para clasificar suelos. (Guerra, 2018)

Clasificación SUCS

La clasificación SUCS, presenta ciertos prefijos para identificar el tipo de suelo y un sufijo que está relacionada con sus propiedades, en la Figura 11 se muestra el esquema mencionado. (Bañón y Beviá, 2000)

TIPO DE SUELO	PREFIJO	SUBGRUPO	SUFIJO
Grava	G	Bien graduado	w
Arena	S	Pobremente graduado	P
Limo	М	Limoso	M
Arcilla	С	Arcilloso	С
Orgánico	0	Límite líquido alto (>50)	L
Turba	Pt	Límite líquido bajo (<50)	н

Figura 11. Símbolos de grupo (SUCS). **Fuente:** Manual de carreteras (2000, p.21)

De modo que, debido a estos símbolos, se pueden generar diferentes combinaciones para definir un tipo de suelo. En la figura 12, se da a conocer la tipología de suelos según SUCS.

SÍMBOLO	Características generales			
GW		Limpias	Bien graduadas	
GP	GRAVAS (>50% en tamiz #4 ASTM)	GRAVAS (Finos<5%)	Pobremente graduadas	
GM		(>50% en tamiz #4 ASTM)	Con finos	Componente limoso
GC	,	(Finos>12%)	Componente arcilloso	
SW		Limpias	Bien graduadas	
SP	ARENAS (<50% en tamiz #4 ASTM)	ARENAS	(Finos<5%)	Pobremente graduadas
SM		Con finos	Componente limoso	
SC		,	(Finos>12%)	Componente arcilloso
ML	LIMOS	Baja pla	asticidad (LL<50)	
MH	LIMOS	Alta plasticidad (LL>50)		
CL	ARCILLAS	Baja plasticidad (LL<50)		
СН	ARCILLAS	Alta plasticidad (LL>50)		
OL	SUELOS	Baja plasticidad (LL<50)		
ОН	ORGÁNICOS	Alta plasticidad (LL>50)		
Pt	TURBA	Suelos altamente orgánicos		

Figura 12. Tipología de suelos (SUCS). **Fuente:** Manual de carreteras (2000, p.21)

Según el Manual de Carreteras (2000), existen tres grandes categorías para agrupar los suelos, los cuales se indican a continuación:

➤ Suelos de grano grueso: en los que destacan la grava (G) y la arena, menos del 50% de la muestra pasa por el tamiz N° 200.

- Suelos de grano fino: destacando el limo (M) y la arcilla (C), en donde más del 50% de la muestra pasa por el tamiz N° 200.
- Suelos orgánicos: se encuentran los tipos de suelo orgánico (O) y turba
 (T), no adecuado para la cimentación

Tras diferentes estudios a suelos de grano fino, Casagrande logro situarlos en un diagrama denominado "La carta de plasticidad de Casagrande", la cual viene a ser la representación en una gráfica del límite líquido el cual se localiza en el eje de las abscisas y del índice de plasticidad ubicado en el eje de las ordenadas, de la relación de ambas, para determinar la plasticidad que tienen las muestras de suelo. (Guerra, 2018). En la figura 13 muestra la gráfica idea por Casagrande.

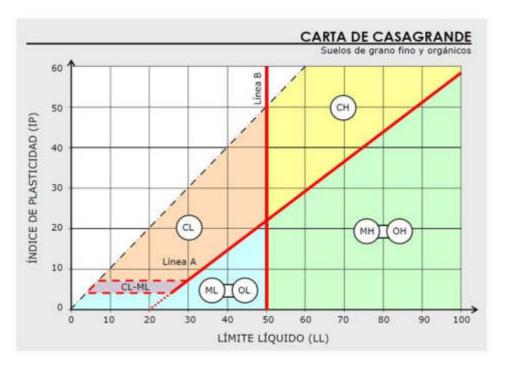


Figura 13. Carta de plasticidad.

Fuente: Manual de Carreteras (2000, p.22)

Aquí destacan dos líneas que servirán como limites, las cuales presentan las siguientes ecuaciones:

Línea A: IP = 0.73 * (LL - 20)

Línea B: LL = 50

2.2.5. Suelos cohesivos

Esta categoría de suelo se distingue por el tamaño más fino de las partículas que lo constituye, estas partículas siendo menor a 0.08 mm. La cohesión viene a ser la principal propiedad de este tipo de suelos y tiene un papel importante en la estabilidad de taludes. Dentro de estos existe una subdivisión en dos grupos limos y arcillas. Los limos constituidos por partículas de grano muy fino que se encuentran en el rango de 0.002 – 0.06 mm y las arcillas con partículas de tamaño microscópico menores a 0.002 mm. Lo que diferencia a estos dos grupos viene a ser sus propiedades plásticas, debido a que las arcillas al tener reducidos poros presentan baja permeabilidad, quiere decir que el fluido que atraviesa por él se queda cierta parte de agua y afecta la estructura interna de este suelo, haciendo que se vea modificado su volumen.

2.2.6. Ensayo para la determinación del contenido de sales solubles

"El presente ensayo consiste en determinar el contenido de sales de una muestra de suelo mezclada con agua destilada y su valor posterior a su evaporación". (NTP 339.152, 2015)

El ensayo es realizado para afrontar los problemas como el deterioro o destrucción que tienen las estructuras, especialmente las cimentaciones. Gracias a la agresividad que estos tienen con el concreto y el acero. En donde estas sustancias dañinas se encuentran bajo el suelo y en contacto con aguas subterráneas.

Esta prueba se desarrolla con una muestra de aproximadamente 100 g que pasa la malla N°10. (NTP 339.152, 2015)

2.2.7. Peso específico relativo

Es una propiedad que se debe determinar en todo tipo de suelo a estudiar, puesto que es un valor que se fundamental en los estudios de mecánica de suelos, sencillamente de calcular. Se denomina como la relación

entre el peso específico del suelo con peso especifica del agua a una temperatura dada (Gs). (Universidad Pontificia Católica del Perú, 2016)

Para su desarrollo se tienen las siguientes ecuaciones:

En donde:

Wfw = Peso del matraz lleno de agua

W_{fsw} = Peso del matraz con suelo y agua

Entonces, se tiene:

Wfsw - Wfw = Ws - Peso del agua desplazada por los sólidos

El peso del agua desplazada por los sólidos del suelo:

$$W_{so} = V_{s\gamma o} = \frac{W_s}{\gamma_s}$$

Por lo tanto con las ecuaciones mostradas anteriormente:

$$W_{fsw} - W_{s\gamma o} = W_s - \frac{W_s}{\gamma_s}$$

Se obtiene el peso específico relativo al despejar:

$$\gamma_s = \frac{W_s}{W_{syo} + W_s - W_{fsw}}$$

Está siendo una fórmula en la que todas las magnitudes son mensurales en laboratorio. (Badillo y Rodríguez, 2005)

2.2.8. Peso volumétrico de un suelo cohesivo

En el presente ensayo consiste en encontrar la relación entre el peso de la muestra y su volumen. Basándose en el principio de Arquímedes para hallar el volumen, en donde se sumerge una muestra y se encuentra un volumen desplazado. Teniendo en cuenta esta idea, se utilizara una muestra de suelo inalterada, que no tiene una forma regular o geométrica conocida, para hallar el volumen cuando se coloque en una probeta graduada.

El agua al tener un peso cuantificado conocido, debido a sus características físicas y al estado natural en el que se le encuentra; forma parte de las diferentes fases que puede tener un suelo, ya sea que esté vinculada a las fases sólida, liquida o gaseosa; dando con esto, una relación universal entre los pesos volumétricos que tiene un suelo, ya que el agua siempre es parte de ellos. Es con este concepto que se define el peso volumétrico de masa.

Esta prueba determina la densidad de masa y la densidad seca de una muestra inalterada, midiendo su masa en aire y su masa aparente cuando se encuentra esta muestra suspendida en el agua. La norma establece que es preferible utilizar una muestra en forma cilíndrica o cubica para realizar este ensayo, no obstante, hubo estudios en los que se llegaron de forma satisfactoria a los resultados, con muestras de otras formas. (NTP 339.139, 2014)

Se usó parafina para tapar, ante todo, los huecos que pueda tener la muestra a ensayar y así no quede aire atrapado cuando posteriormente se sumerja toda la muestra en parafina liquida.

2.2.9. Parámetros de resistencia al corte

Al realizar los diferentes estudios de Mecánica de Suelos en diferentes zonas, surgen diferentes problemas que los ingenieros deben resolver, es así resaltando uno de los problemas fundamentales en los que se enfocan a resolver es el determinar la resistencia al esfuerzo cortante. El cual, trae consigo una serie de problemas que se deben analizar a profundidad tales como: estabilidad de taludes; la capacidad de carga que tendrán que soportar las cimentaciones y pilotes; en estructuras de retención de tierras, una estimación de la presión lateral de tierra. La resistencia al corte está relacionada con diferentes variables las cuales son: la cohesión, la resistencia a la fricción, el contenido de humedad, incluyendo la presión que se genere por el agua en los espacios pequeños en la masa del suelo. (Das, 2010)

Efectuar un estudio para determinar la resistencia al cortante de un suelo, beneficia al momento de realizar diferentes tipos de edificación para así conocer su comportamiento que este tendrá. Es así que, el conocer la resistencia al corte llega a ser fundamental e indispensable para un análisis que esté relacionado con la estabilidad de una masa de suelo. (Berry y Reid, 1993)

A través del tiempo gracias a diferentes estudiosos en el tema, que han querido dar una respuesta a este problema, destacando el francés C.A. Coulomb, se ha logrado tener avances para la determinación de la resistencia al corte en los suelos. Así, tenemos a continuación:

2.2.9.1. Ecuación de falla de Mohr-Coulomb

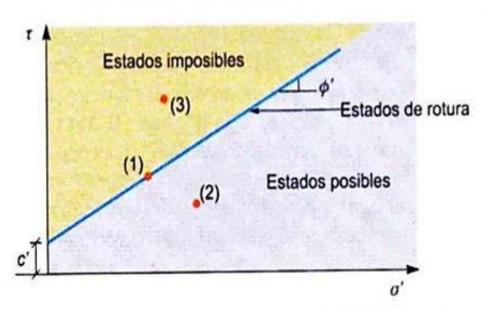
La ecuación propuesta por Coulomb en el año de 1976, fue una de las más difundidas para determina la manera en que dos tensiones actúan en cualquier plano del suelo, para tener un criterio de rotura de un suelo. De esta manera, tenemos como se relacionan y actúan las tensiones efectivas normales con las tensiones tangenciales. (Guerra, 2018)

Este criterio que desarrollo Coulomb para determinar la resistencia al esfuerzo cortante, viene dado por la siguiente nomenclatura:

$$\tau = c' + \sigma'. tg\emptyset'$$

Siendo,

C' = Constante llamada cohesión efectiva del suelo


 σ' = Tensión normal efectiva que actúa sobre el plano

Ø' = Constante ángulo de rozamiento interno efectivo

La ecuación propuesta anteriormente, en el espacio, representa una recta, representado en el eje de las ordenadas τ y de las abscisas σ' , está a

menudo tiene es llamada como: línea de resistencia intrínseca o envolvente de rotura del suelo. (Guerra, 2018)

En la Figura 14, se puede deducir algunos aspectos interesantes, de lo explicado anteriormente:

Figura 14. Criterio de rotura de suelos. **Fuente:** Ingeniería Geológica (2004, p.74)

De esta forma, tenemos según Gonzales (2004):

- (1): "Se representa como un estado de rotura".
- (2): "Estado posible, el cual tiene una combinación de los factores σ', τ ; que además se le incluye un factor de seguridad debido a que, para una determinada tensión efectiva normal, la tensión tangencial es inferior a la máxima movilizable".
- (3): "Representa un estado imposible, en tanto se sitúe por encima de la envolvente de rotura, lo que significa que se ha sobrepasado la combinación máxima (σ', τ) del criterio de rotura".

No obstante, en muchos casos la relación de las tensiones al momento de que se produce una rotura, no es de forma lineal, sino que más bien esta sigue una curva. (Guerra, 2018)

Por consiguiente, en la Figura 15 podemos observar lo mencionada en el párrafo anterior.

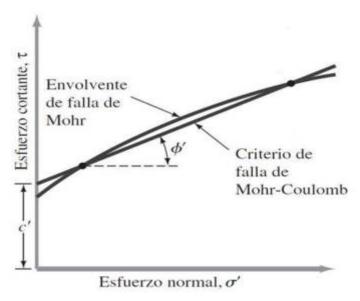
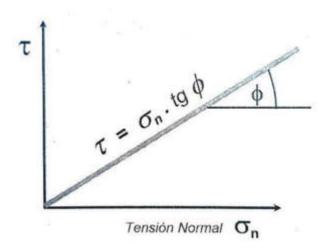
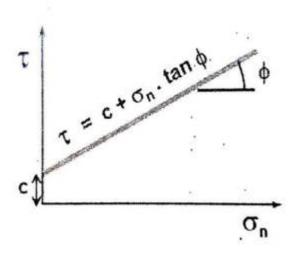


Figura 15. Envolvente de falla de Mohr.


Fuente: Fundamentos de Ingeniería Geotécnica (2013, p.230)

Es aquí cuando surge la ecuación de Mohr-Coulomb, en donde al tener una curva, está la podemos expresar de la siguiente manera:

$$\tau_f = f_{\sigma}$$


Sin embargo, se realiza una simplificación al momento de llevar a cabo los diferentes cálculos en esta ecuación, para de esta manera considerar la curva (línea de rotura) en una recta. De esta forma, se define la ecuación Mohr-Coulomb como un punto cualquiera en donde se produce la rotura, debido a las relaciones de las tensiones con el círculo de Mohr en ese punto. (Guerra, 2018)

Así para este criterio de Mohr-Coulomb, encontramos una variación de su ecuación cuando hablamos de suelos granulares y suelos cohesivos; en la Figura 16 y Figura 17, respectivamente.

Figura 16. Criterio de rotura de Mohr-Coulomb para suelos puramente granulares y/o friccionales.

Fuente: Conceptos básicos y aplicaciones (2018)

Figura 17. Criterio de rotura de Mohr-Coulomb para suelos puramente cohesivos y semi – cohesivos.

Fuente: Conceptos básicos y aplicaciones (2018)

De esta manera, para el criterio de rotura para suelos puramente cohesivos y semi-cohesivos obtenemos la siguiente ecuación: (Guerra 2018)

$$\tau = c + \sigma_n . tg\emptyset$$

 τ = Resistencia al corte, en kg/cm²

 \emptyset = Ángulo de rozamiento interno, constate

c = Cohesión, en kg/cm²

2.2.9.2. Cohesión y ángulo de fricción

A. Cohesión:

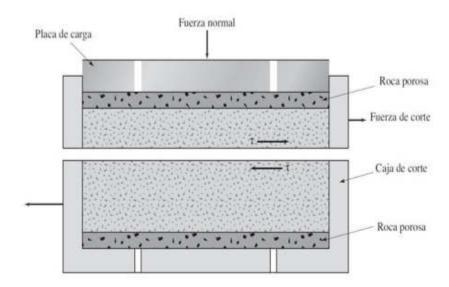
Es un componente de la ecuación de Mohr-Coulomb, que es dada por la letra c.

La cohesión se define como la adherencia producto de las fuerzas moleculares (fuerzas internas), que causan una atracción entre las partículas del suelo. (Crespo, 2004)

Podemos decir, que en un terreno que se encuentra saturado, la cohesión se encuentra entre las partículas de suelo que han formado (por el líquido) una membrana entre partículas cercanas a estas.

En mecánica de suelos, se emplea para representar en un suelo, la resistencia al cortante, el cual es producto de la adherencia entre las partículas. (Suarez, 2004)

B. Ángulo de fricción:


Se representa con el símbolo Ø, en la ecuación Mohr-Coulomb.

Se define como la representación matemática del coeficiente de rozamiento, que este viene a ser cuando dos cuerpos que están en contacto experimentan una oposición al deslizamiento, gracias a la intensidad de apoyo de estos. Muchos factores son los que intervienen como: tamaño de los granos, forma, distribución de los tamaños de grano y densidad. (Suarez, 2004)

2.2.9.3. Ensayo de corte directo

Arthur Casagrande, ideo un aparato que determina el esfuerzo de corte, llamado aparato de corte directo. Es gracias a este, que podemos hallar de manera rápida la cohesión y el ángulo de fricción. (Crespo, 2004)

En la Figura 18, se muestra un esquema del aparato de prueba de corte directo, con sus respectivas partes.

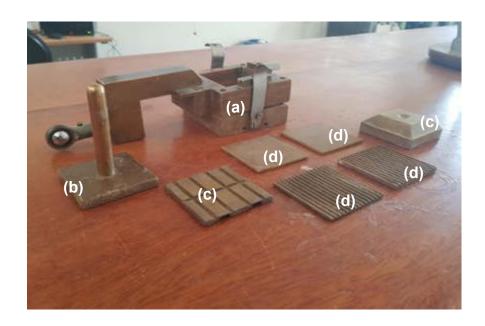


Figura 18. Diagrama de un arreglo de prueba de corte directo. **Fuente:** Fundamentos de Ingeniería Geotécnica (2013, p.233)

Este equipo consiste en una caja de metal rígida, la cual está divida en dos mitades, en donde se colocará la muestra, dependiendo del modelo de la máquina, la muestra podrá ser de forma cuadrada o de forma circular. El tamaño, generalmente utilizado para la muestra varía entre 20 a 25 cm² de sección transversal, con una altura de entre 25 a 30 mm. La máquina aplicará dos tipos de fuerzas: una fuerza normal, en la parte superior de la caja de corte y una fuerza cortante, que se aplica a una de las mitades de la caja de corte para que de esta manera se produzca una falla en la muestra. Para medir el desplazamiento de corte se hará a través de un indicador horizontal en la mitad superior de la caja. (M. Das, 2013)

Tendrá dos piedras porosas, que a las muestras saturadas les proporcionara un drenaje libre y al tener muestras secas se cambiaran estas por placas de confinamiento; contara con un pistón, que transmitirá las cargas verticales y una placa base acanalada.

En la Figura 19 se muestra: (a) caja de corte, (b) extractor de muestra, (c) placa de trasferencia de carga y (d) piedras porosas. Estos componen a la caja de corte directo

Figura 19. Caja de corte directo - Laboratorio USMP-FN. **Fuente:** Elaborado por los autores.

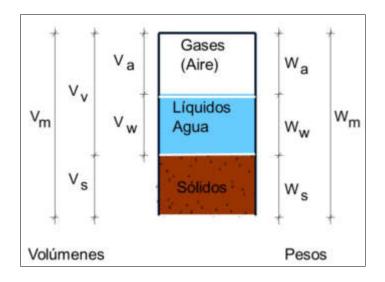
El ensayo para considerarse completo se deberá ensayar del mismo material, tres muestras que estarán sometidas a cargas verticales diferentes. (Gonzáles, 2004)

En la Figura 20, se muestra la máquina de corte directo del laboratorio de la USMP – Filial Norte, junto con todos sus implementos, esta máquina fue calibrada a inicios de año y se adjuntó esta calibración en el anexo 11.

Figura 20. Máquina de corte directo - Laboratorio USMP-FN. **Fuente:** Elaborado por los autores.

La manera en que se desarrolla este ensayo es cuando en el plano dos esfuerzos, una carga vertical P_v aplicada a la parte superior de la caja de corte directo y un esfuerzo cortante P_h que se aplicará de menara horizontal. Calculándose de la siguiente manera:(Universidad Católica del Perú, 2012)

$$\sigma_n = \frac{P_v}{A} \qquad \qquad \tau = \frac{P_h}{A}$$


El área nominal que viene a ser "A", se le considera a la muestra que se encuentra en la caja de corte. (Universidad Católica del Perú, 2012)

Para así satisfacer la siguiente ecuación:

$$\tau = c + \sigma_n . tg\emptyset$$

2.2.10. Relaciones volumétricas y gravimétricas en los suelos

Según Díaz (2018), el suelo en estado parcialmente saturado se encuentra en 3 estados (sólido, líquido y gaseoso). En la figura 21, se muestra un esquema típico de las fases del suelo.

Figura 21. Representación de los estados del suelo **Fuente**: Elaboración propia (2019)

Vm = Volumen total del suelo.

Vs = Volumen de la fase sólida del suelo.

Vv = Volumen de vacíos del suelo.

Vw = Volumen de la fase liquida del suelo.

Va = Volumen de la fase gaseosa del suelo.

Wm = Peso total del suelo.

Ws = Peso total de la fase sólida del suelo.

Ww = Peso total de la fase líquida del suelo.

Wa = Peso total de la fase gaseosa del suelo, en general se considera 0.

Huanca (1996), nos muestra las relaciones de pesos y volúmenes, relaciones fundamentales, correlación entre la relación de vacíos y porosidad,

fórmulas referentes a suelos parcialmente saturados y el peso específico seco y saturado. Esta información nos sirve para hallar el grado de saturación del suelo en la que se encuentra el suelo a diferentes tiempos de entrar en contacto con el agua.

2.2.9.1. Relaciones de pesos y volúmenes:

• Peso específico de la masa del suelo (Ym)

$$Ym = \frac{Wm}{Vm} = \frac{Ws + Ww}{Vm}$$

Peso específico de solidos (Ys)

$$Ys = \frac{Ws}{Vs}$$

• Peso específico relativo de las partículas sólidas (Gs)

$$Gs = \frac{Ys}{Yo} = \frac{Ws}{Vs \times Yo}$$

El valor del peso específico del agua (Yw) es semejante al peso específico del agua A 4°C (Yo), por ello son tomados iguales.

2.2.9.2. Relaciones fundamentales:

• Relación de vacíos (e)

$$e = \frac{Vv}{Vs}$$

Porosidad (n)

$$n\% = \frac{Vv}{Vm}(100)$$

Grado de saturación (S)

$$S\% = \frac{Vw}{Vv} (100)$$

• Grado de humedad (w%)

$$w\% = \frac{Ww}{Ws}(100)$$

2.2.9.3. Correlación entre la relación de vacíos y la porosidad:

$$n = \frac{e}{1 + e}$$

2.2.9.4. Fórmulas para suelos parcialmente saturados:

$$Ym = \frac{1 + w\%}{1 + e} x Ys = \frac{Gs + S x e}{1 + e} x Yo$$
$$S\% = \frac{w\% x Gs}{e}$$

2.2.9.5. Peso específico seco y saturado:

$$Yd = \frac{Ws}{Vm} \qquad Ysat = \frac{Ws + Ww}{Vm}$$

2.3. Definición de términos básicos

Asentamiento

Es el hundimiento que va sucediendo en una edificación o estructura de forma gradual. (Geotecnia, 2012)

Beaker

Instrumento utilizado en los laboratorios especialmente en química y suelos, de vidrio en forma cilíndrica que tiene en la parte superior de este un vertedero. (Geotecnia, 2012).

Calibrar

Consiste en una comparación mediante mediciones, para un patrón ya establecido con el fin de dar un valor de forma exacta al ajustar un instrumento a la escala precisa deseada. (Geotecnia, 2012).

Estudio de mecánica de suelos (EMS)

Se define como la agrupación de exploraciones, investigaciones, ensayos de laboratorio y posterior trabajo de gabinete; que tiene como objetivo principal dar un análisis del comportamiento de los suelos y su respuesta frente a diferentes problemas". (Norma Técnica E.050 Suelos y Cimentaciones, 2018).

Pozos o calicatas

Es una excavación de un terreno que permite observar directamente las capas que lo conforman y del cual se podrá sacar diferentes muestras para realizar diferentes ensayos en el laboratorio. (Norma Técnica E.050 Suelos y Cimentaciones, 2018).

Espátula

Es un instrumento manual, que puede ser de diferentes materiales tales como: acero, plástico o madera. Presenta una hoja ancha la cual en los ensayos de laboratorio permite expandir y mezclar materiales. (Geotecnia, 2012)

Estrato

Se le llama a la capa, que al estar en campo puede ser diferenciada visualmente de otras capas, independiente de la composición que cada uno de estos presentes. (Geotecnia, 2012)

Muestra alterada

Se define como una muestra cuya estructura interna se ha visto modificada por manipulación, durante el proceso de sacar muestras en campo y su posterior transporte al laboratorio. (Geotecnia, 2012)

Muestra inalterada

Es una muestra cuya estructura no se ha visto modificada por ningún tipo de manipulación, durante el proceso de sacar muestras en campo y su posterior transporte al laboratorio. (Geotecnia, 2012)

Probeta

Instrumento de forma cilíndrico, de forma esbelto el cual tiene un vertedero en un borde superior de este, y es usado en los laboratorios para diferentes ensayos, que tiene a su costado medidas en mililitros o centilitros.(Geotecnia, 2012)

Vernier

Consiste en un instrumento de medida que permite realizar mediciones precisas de divisiones más pequeñas de las que se ven en escala principal, para así obtener una cifra significativa más en una medición dada. (Geotecnia, 2012)

Nivel Freático

Se define como el nivel donde el agua subterránea tiene una presión de agua igual a la presión atmosférica. (Norma CE.020 Suelos y Taludes, 2015)

• Tamiz

Se le denomina así, al instrumento de forma cilíndrica que tiene una malla de cobre de acero inoxidable, que se utiliza en el laboratorio para separar por tamaños una muestra de suelo. (Geotecnia, 2012)

Poro

Es el espacio vacío entre las partículas sólidas de los materiales, que puede estar ocupado por aire y agua. (Geotecnia, 2012).

Humedad

Es el porcentaje de agua que tiene un suelo. (Ministerio de Transportes y Comunicaciones, 2016).

Picnómetro

Frasco de vidrio, el cual tiene una capacidad de aproximadamente 100 cm3, tiene un tapón que cuenta con un orificio por donde el agua y el aire pueden salir. (NTP 339.131, 2014).

CAPITULO III. METODOLOGIA

3.1. Tipo de investigación

Conforme a los métodos empleados en el desarrollo del presente estudio para así demostrar la hipótesis planteada, esta investigación se define con un enfoque cuantitativo, debido a que, con los ensayos realizados en el laboratorio, obtendremos valores numéricos tanto para saber las características físicas del suelo y poder clasificarlo, como en el ensayo de corte directo para encontrar el ángulo de fricción y cohesión. Posteriormente, de ser realizados se evaluaron a detalle, uno para saber el tipo de suelo encontrado y el otro para analizar como varían los parámetros de resistencia al corte cuando un suelo cohesivo se encuentra parcialmente saturado.

La investigación presentada es de tipo aplicada, ya que con la investigación podremos producir un cambio en la realidad del comportamiento de los suelos cohesivos en los siete distritos elegidos para este este estudio.

3.2. Nivel de la investigación

El nivel en que se encuentra la investigación es correlacional, ya que se manipulan las variables para medir sus efectos, que en el presente caso manipular la variable de los grados de saturación sobre los parámetros de resistencia al corte, para así determinar existe disminución de los parámetros al aumentar el grado de saturación.

3.3. Diseño de la investigación

El diseño que se utilizó es cuasi-experimental, debido a que se escogieron zonas de forma no aleatoria para la realización de calicatas, y se realizaron los diferentes ensayos especificados en la presente investigación, se manipula la variable independiente que son los grados de saturación para así obtener los resultados, analizarlos y dar una conclusión sobre lo encontrado.

3.4. Método de investigación

En el presente estudio el método que más se adapta es el de investigación científica, debido que, partiendo de la observación y posterior registro de los ensayos, se alcanzan conclusiones generales para dar una solución.

3.5. Operacionalización de variables

Se identificó con ayuda de la matriz de consistencia, las variables independientes y dependientes, en la siguiente tabla se indica lo mencionado anteriormente.

Tabla 1. Tabla de operacionalización de variables

VARIABLES	DIMENSIONES	INDICADORES	
Variable independiente:	DIMENSIONES		
Grados de saturación	Tiempos	0 horas	
		3 horas	
		8horas	
		15 horas	
		1 semana	
		1 mes	
Variable dependiente			
Características físicas y mecánicas de los suelos cohesivos	características mecánicas	parámetros de resistencia al corte	
	características físicas	contenido de humedad	
		análisis granulométrico Límite líquido, plástico e índice de plasticidad	
		Clasificación de suelos	
		Contenido de sales solubles	
		Peso específico relativo	
		Peso volumétrico	

Fuente: Elaborado por los autores.

3.6. Población y muestra

3.6.1. Población

Tiene como población a los suelos cohesivos de los 7 distritos de la región Lambayeque.

3.6.2. Muestra

Para la tesis se optó como muestra a las 7 calicatas de la región Lambayeque.

3.7. Técnicas e instrumentos de recolección de datos

3.7.1. Técnicas de recolección de datos

Las técnicas empleadas para la recolección de datos fueron de observación directa, experimental y análisis de contenido tanto en campo como en laboratorio. El proceso fue el siguiente:

- Se realizaron 7 calicatas en zonas con suelos cohesivos, de donde se extrajo dos tipos de muestra: alteradas e inalteradas, teniendo como referencia lo indicado en el mapa geológico de suelos de INDECI
- Se corroboro mediante ensayos de laboratorio, las características físicas del suelo, con ello se verificó lo expuesto por INDECI, de encontrar suelo cohesivo.
- Se tomaron datos en un orden preciso y coherente de los ensayos mecánicos para determinar el ángulo de fricción y la cohesión de cada suelo, en diferentes tiempos de saturación.
- Finalmente, se obtuvo un análisis del comportamiento del suelo al conocer como varían los parámetros de resistencia al corte, cuando este suelo sea sometido a diferentes grados de saturación.

3.7.2. Instrumentos de recolección de datos

Se elaboraron encuestas sobre el tema de investigación, a expertos en la rama de mecánica de suelos y/o conocedores del tema, en el Anexo 11 se muestra las encuestas realizadas a 7 ingenieros expertos en el tema.

Para la obtención de los resultados, se utilizaron formatos ya estandarizados, por el laboratorio de mecánica de suelos cuyos anexos se presentan a continuación:

- Anexo 02: Formato de contenido de humedad
- Anexo 03: Formato de análisis granulométrico
- Anexo 04: Formato de límite líquido, limite plástico e índice de plasticidad.
- Anexo 05: Formato de clasificación de suelos (SUCS)
- Anexo 06: Formato de contenido de sales solubles
- Anexo 07: Formato de peso específico relativo
- Anexo 08: Formato de peso volumétrico de un suelo cohesivo
- Anexo 09: Formato de corte directo

3.7.3. Desarrollo metodológico de la investigación

A continuación, se presenta el procedimiento que se llevó acabo para realizar el estudio:

Figura 22. Procedimiento de recolección de datos

Fuente: Elaboración propia (2019)

3.8. Método de saturación de las muestras

El procedimiento para determinar la variación de estos parámetros fue: en primer lugar, se realizó una calicata por cada distrito, se obtuvo muestras alteradas e inalteradas (estas se obtendrán al ver características cohesivas in situ) con el cuidado y manejo respectivo. En segundo lugar, se llevaron las muestras para ensayos en laboratorio y obtener sus características físicas para realizar la clasificación del suelo respectiva. En tercer lugar, las muestras inalteradas se tallaron con moldes de 6cm x 6cm aproximadamente, se obtuvieron 4 muestras para cada calicata y se aplicó las cargas de 0.5 kg, 1 kg y 2 kg para hacer el ensayo de corte directo en su condición natural, luego se obtuvieron 126 muestras, 3 por cada intervalo de tiempo (0 horas, 3 horas, 8 horas, 15 horas, 1 semana y 1 mes) y por siete calicatas, para saturarlas en el tiempo correspondiente repitiéndose el procedimiento de aplicación de cargas. Por último, se elaboraron cuadros comparativos para observar el nivel de afectación de los siete distritos en los parámetros de resistencia al corte al variar su grado de saturación.

La metodología que se escogió para la presente investigación escogida al variar la cantidad de agua en el interior de las muestras al realizar el ensayo de corte directo, es su inmersión en agua durante diferentes periodos de tiempo. Este al encontrarse a gran tiempo bajo el agua alcanzara un grado de saturación mayor, hasta lograr una saturación de 100%. Los tiempos elegidos para la saturación serán:

- 0 horas
- 3 horas
- 8 horas
- 15 horas
- 1 semana
- 1 mes

Conociendo los tiempos de saturación fue posible determinar el número de muestras y ensayos en el laboratorio necesarios para llevar a cabo la investigación. La cantidad teórica de muestras sería la siguiente: 06 Tiempos de saturación x 03 Moldes x 07 Muestras = 126 Ensayos.

CAPITULO IV. DESARROLLO

4.1. Caso de investigación

4.1.1. Ubicación del área de estudio

El estudio fue realizado en siete distritos de la Región Lambayeque, presentados a continuación:

- Pimentel
- Lambayeque
- La Victoria
- Ciudad Eten
- Monsefú
- Picsi
- Pueblo Nuevo

Lambayeque está ubicado al noroeste del país, conforma uno de los veinticuatro departamentos del territorio peruano. Es el segundo más pequeño, después de Tumbes.

LIMITES:

Limita al Norte con el departamento de Piura, por el Sur con el departamento de La Libertad, por el Este con el departamento de Cajamarca, y por el Oeste con el Océano Pacífico.

SUPERFICIE:

Cuenta con una superficie total de 14.231,30 km², integrado por las siguientes tres provincias: Lambayeque 9, 346.63 km², Ferreñafe 1,778.60 km² y Chiclayo 3,288.07 km².

RELIEVE:

El relieve de Lambayeque es algo accidentado, ligeramente llano, reducidas lomas, pampas prominentes, ríos, desiertos y bosques secos.

CLIMA:

El clima es subtropical y seco, caluroso en la estación de verano, y templado en las estaciones de invierno, primera y otoño. La temperatura promedio del año es de 23°C. Alcanza hasta 35°C de temperatura máxima y 15°C de temperatura mínima. Durante la mayoría del año, los vientos son uniformes, con dirección Este- Oeste.

HIDROGRAFÍA:

La hidrografía del departamento de Lambayeque lo conforman los ríos y el mar que desemboca en el Océano Pacífico. Durante todo el año, estas aguas tienen una descarga irregular; suelen ser excesivas en verano por las elevadas precipitaciones, y disminuyen en invierno.

El sistema hidrográfico del territorio de Lambayeque se compone por: el río Chancay- Lambayeque, río la leche, río Zaña, río Reque, río Canal Taymi.

A continuación, en la Figura 23, se muestra los lugares antes mencionados.

Figura 23. Ubicación de las zonas de estudio.

Fuente: Programa Google Earth Pro

4.1.2. Ubicación geográfica

Se ejecutaron siete calicatas para cada uno de los siete distritos de la Región Lambayeque, de los cuales se tomaron muestras alteradas e inalteradas para el posterior análisis en el laboratorio.

A continuación, se mostrará la ubicación de las calicatas, de los siete distritos, con sus respectivas coordenadas UTM.

Calicata 01

El distrito de Pimentel se ubica a 11 km de la ciudad de Chiclayo. Su territorio cuenta con una superficie de aproximadamente 55.94 km².

LIMITES:

Limita al Norte con distrito de San José y Chiclayo, por el Sur con el distrito de Santa Rosa, por el Este con el distrito de La Victoria y Monsefú, y por el Oeste, con el Océano Pacífico.

RELIEVE:

El territorio de Pimentel cuenta con pequeños cerros como el Molino, además de playas, leves ondulaciones y relieve llano.

TOPOGRAFÍA:

La topografía de Pimentel cuenta con una altitud de 5 metros aproximadamente a nivel del mar, y con un cambio máximo de 21 metros de altitud. En un radio de 16 kilómetros es principalmente plano con 191 metros. En un radio de 80 kilómetros tiene variaciones importantes de una altitud de 2.476 metros.

CLIMA:

Pimentel cuenta con un clima seco y templado, durante el año la temperatura se encuentra de 16°C a 29°C. Sus lluvias no son abundantes, el mes con mayor cantidad de lluvia es febrero y el mes con menor cantidad de lluvia es agosto.

Calicata realizada en el distrito de Pimentel (Figura 24)

Figura 24. Ubicación calicata distrito Pimentel.

Fuente: Programa Google Earth Pro.

Tabla 2. Tabla de coordenadas – Pimentel.

Pimentel			
Zona	Este	Norte	Altitud
17 M	622799	9249003	18 m.s.n.m

Fuente: Elaborado por los autores.

Calicata 02

El distrito de Lambayeque está ubicado al Sur de la provincia de Lambayeque, y es uno de los 12 distritos de dicha provincia. Su territorio tiene una superficie de 332,73 km².

LÍMITES:

Limita al Norte con distrito de Mochumí, al Sur con el distrito de Santa José, por el Este con la provincia de Ferreñafe, y por el Oeste con el Océano Pacífico.

CLIMA:

Tiene un clima templado con poca presencia de lluvias. La estación de verano alcanza una temperatura de 34°C, y el resto del año la temperatura varía entre 17°C y 25°C.

Calicata realizada en el distrito de Lambayeque (Figura 25)

Figura 25. Ubicación calicata distrito Lambayeque.

Fuente: Programa Google Earth Pro.

Tabla 3. Tabla de coordenadas – Lambayeque.

Lambayeque			
Zona Este		Norte	Altitud
17 M	621776	9259981	18 m.s.n.m

Fuente: Elaborado por los autores.

El distrito de la victoria se encuentra en el departamento de Lambayeque, y conforma uno de los 20 distritos de la ciudad de Chiclayo. Constituido por dos centros urbanos: La Victoria y Chosica del Norte. Así mismo, cinco pueblos jóvenes.

Su territorio tiene una superficie de 29,36 km².

LIMITES:

Limita al Norte con distrito de Pimentel, al Sur con el distrito de Monsefú, por el Este con el distrito de Chiclayo y Monsefú, y por el Oeste con el distrito de Santa Rosa.

Calicata realizada en el distrito de La Victoria (Figura 26)

Figura 26. Ubicación calicata distrito La Victoria. **Fuente:** Programa Google Earth Pro.

Tabla 4. Tabla de coordenadas - La Victoria.

La Victoria			
Zona	Este	Norte	Altitud
17 M	626845	9247236	23 m.s.n.m

Calicata 04

La ciudad de Eten está ubicada en el valle del río Reque, y frente a costas del mar peruano. Su superficie es de 84.78 km².

RELIEVE:

Posee un relieve plano, con leves ondulaciones debido a las lluvias y los fuertes vientos.

LIMITES:

Limita al Norte con distrito de Monsefú, al Sur con Puerto Eten y el distrito de Lagunas, por el Este con el distrito de Reque, y por el Oeste con el distrito de Puerto Eten y el Océano Pacífico.

Calicata realizada en el distrito de Ciudad Eten (Figura 27)

Figura 27. Ubicación calicata distrito Ciudad Eten.

Fuente: Programa Google Earth Pro.

Tabla 5. Tabla de coordenadas – Ciudad Eten.

Ciudad Eten			
Zona	Este	Norte	Altitud
17 M	625776	9236214	7 m.s.n.m

Calicata 05

El distrito de Monsefú está localizado al Sur Oeste de la ciudad de Chiclayo. Su superficie territorial abarca 44,94 km².

RELIEVE:

Tiene un relieve llano, debido a los canales con fines agrícolas. Posee elevadas erosiones por el aumento del río Reque, entre ellas: las colinas de Sorrocoto y las Lomas de Poncoy.

LIMITES:

Limita al Norte con el distrito de La Victoria, Chiclayo y Pomalca, al Sur con la ciudad de Eten y el distrito de Lagunas, por el Este con el distrito de Reque, y por el Oeste con los distritos de Pimentel, Santa Rosa, y el Océano Pacífico.

CLIMA:

Es semi-tropical, un parte de su territorio se encuentra en el valle del Río Reque, y otra sobre la orilla del mar.

RECURSOS NATURALES:

Su suelo posee terrenos de cultivo en los sectores de Larán, Callanca y Cúsupe. Su flora es abundante en tipos como: totora, sauce, caña brava.

Calicata realizada en el distrito de Monsefú (Figura 28)

Figura 28. Ubicación calicata distrito Monsefú. **Fuente:** Programa Google Earth Pro.

Tabla 6. Tabla de coordenadas – Monsefú.

Monsefú			
Zona	Este	Norte	Altitud
17 M	624543	9238879	9 m.s.n.m

• Calicata 06

El distrito de Picsi se encuentra ubicado al Noreste de la ciudad de Chiclayo, en la región de Lambayeque. Cuenta con tres centros poblados como: San Miguel, Capote y Picsi, y con trece centros rurales entre ellos: El Mango, Carvajal, Chaparral, Horcón I, entre otros.

SUPERFICIE:

Cuenta con una superficie de 56.92 Km 2.

LÍMITES:

Limita al Norte con el distrito de Pueblo Nuevo, provincia de Ferreñafe y el distrito Mesones Muro, al Sur con la provincia de Chiclayo, distritos de José Leonardo Ortiz y Pomalca, por el Este con el distrito de Tumán, y por el Oeste con la provincia de Lambayeque.

AGRICULTURA:

Sus suelos son ideales para la agricultura de la región. Los cultivos predominantes son los de arroz y caña de azúcar.

Calicata realizada en el distrito de Picsi (Figura 29)

Figura 29. Ubicación calicata distrito Picsi. **Fuente:** Programa Google Earth Pro.

Tabla 7. Tabla de coordenadas – Picsi

Picsi			
Zona	Este	Norte	Altitud
17 M	635938	9256813	41 m.s.n.m

El distrito de Pueblo Nuevo localizado en la provincia de Ferreñafe, como uno de los seis distritos que la conforman. Se encuentra en la costa de Lambayeque, en el valle Chancay.

SUPERFICIE:

Cuenta con una superficie de 28,88 Km 2.

LÍMITES:

Limita al norte con los distritos de Mochumí y Pitipo, al sur con los distritos de Picsi y Lambayeque, por el este con el distrito de Ferreñafe, y por el oeste con el distrito de Lambayeque.

Calicata realizada en el distrito de Pueblo Nuevo (Figura 30)

Figura 30. Ubicación calicata distrito Pueblo Nuevo.

Fuente: Programa Google Earth Pro

Tabla 8. Tabla de coordenadas – Pueblo Nuevo

Pueblo Nuevo			
Zona	Este	Norte	Altitud
17 M	632392	9265736	34 m.s.n.m

4.2. Análisis de estudio de suelos

4.2.1. Excavación de calicatas

Se realizaron las calicatas con el objetivo de obtener muestras tanto alteradas como inalteradas, para posteriormente desarrollar los diferentes ensayos en el laboratorio.

Las calicatas fueron desarrolladas de forma manual, con una profundidad máxima de 3.00 m, partiendo desde el nivel del terreno.

En la tabla 9, se resumen cada una de las calicatas hechas con su respectiva profundidad.

Tabla 9. Resumen de calicatas

Distrito	Calicata	Profundidad(m)
Pimentel	C-1	2.70
Lambayeque	C-2	2.60
La Victoria	C-3	2.70
Ciudad Eten	C-4	2.40
Monsefú	C-5	2.70
Picsi	C-6	2.60
Pueblo Nuevo	C-7	3.00

Fuente: Elaborado por los autores.

4.2.2. Trabajo de campo

Debido a que, en este estudio solamente se pretendía realizar los estudios en suelos cohesivos, se procedió a corroborar si las zonas brindadas por INDECI son correctos, al realizar las calicatas en las zonas en donde aseguran que se encuentra un suelo de este tipo, para posteriormente realizar los estudios de laboratorio para así hallar las características físicas de estos y poder hallar clasificarlos para conocer a qué tipo de suelo pertenece.

Para cada calicata producida, se detallaron los estratos de cada una, junto con la profundidad a la que se hallaban y también su ubicación con sus

respectivas coordenadas UTM. Así tenemos, a continuación, las siguientes calicatas:

Calicata 01:

Realizada en el distrito de Pimentel, a una profundidad de 2.70 m, donde se encontraron 4 estratos de donde se sacaron las muestras alteradas e inalteradas, fueron catalogadas por estrato y almacenadas para posteriormente ser ensayados en el laboratorio.

Figura 31. Calicata 01 - Pimentel. **Fuente:** Elaborado por los autores.

Calicata 02:

Desarrollada en el distrito de Pimentel, a una profundidad de 2.60 m, donde se encontraron 4 estratos de donde se sacaron las muestras alteradas e inalteradas, estas fueron catalogadas por estrato y almacenadas para después ser utilizadas en los ensayos.

Figura 32. Calicata 02 - Lambayeque. **Fuente:** Elaborado por los autores.

Calicata 03:

Ejecutada en el distrito de La Victoria, a una profundidad de 2.70 m, donde se encontraron 4 estratos de donde se sacaron las muestras alteradas e inalteradas, fueron catalogadas por estrato y almacenadas para de esta manera ser ensayadas en el laboratorio.

Figura 33. Calicata 03 – La Victoria. **Fuente:** Elaborado por los autores.

Calicata 04:

Se llevó a cabo en el distrito de Ciudad Eten, a una profundidad de 2.40 m, donde se encontraron 3 estratos de donde se sacaron las muestras alteradas e inalteradas, para ser catalogadas por estrato y almacenadas para luego ser utilizados en los ensayos de laboratorio.

Figura 34. Calicata 04 – Ciudad Eten. **Fuente:** Elaborado por los autores.

Calicata 05:

Realizada en el distrito de Monsefú, a una profundidad de 2.70 m, donde se encontraron 5 estratos de donde se sacaron las muestras alteradas e inalteradas, que fueron catalogadas por estrato y almacenadas para de esta manera ser ensayadas en el laboratorio.

Figura 35. Calicata 05 – Monsefú. **Fuente:** Elaborado por los autores.

Calicata 06:

Ejecutada en el distrito de La Victoria, a una profundidad de 2.70 m, donde se encontraron 4 estratos de donde se sacaron las muestras alteradas e inalteradas, fueron catalogadas por estrato y almacenadas para de esta forma realizar luego en los ensayos de laboratorio.

Figura 36. Calicata 06 – Picsi. **Fuente:** Elaborado por los autores.

Calicata 07:

Desarrollada en el distrito de Pueblo Nuevo, a una profundidad de 3.00 m, donde se encontraron 5 estratos de donde se sacaron las muestras alteradas e inalteradas, estas fueron catalogadas por estrato y almacenadas para luego ser ensayadas en el laboratorio.

Figura 37. Calicata 07 – Pueblo Nuevo. **Fuente:** Elaborado por los autores.

4.2.3. Muestreo y registro de excavaciones

Al estar en la zona de estudio, en primer lugar, se realizó una identificación de manera visual y manual de cada uno de los estratos de cada calicata hecha, para así poder tomar las muestras representativas de cada uno.

Posteriormente, de identificar cada uno los estratos, se procedió a medir las profundidades de cada uno de ellos, y sacar cada muestra, para ser catalogada y ordenada en bolsas ziploc (muestras alteradas) y rollo film (muestras inalteradas). Esto con el fin de que estas conserven sus propiedades para el momento de efectuar los ensayos de laboratorio.

En la tabla 10, se muestra el número de estratos de donde se sacaron las muestras, de la misma manera las profundidades que estos se encuentran en campo, de cada una de las calicatas realizadas. En la tabla 11, 12, 13, 14, 15, 16 y 17, se muestra las dimensiones de cada uno de los estratos hablados anteriormente, junto con sus profundidades.

Tabla 10. Resumen de muestras.

Calicata	Muestra	Profundidad(m)	
	M-1	0.10 m - 0.80 m	
	M-2	0.80 m - 1.50 m	
C-1	M-3	1.50 m - 2.20 m	
	M-4	2.20 m - 2.70 m	
	INALT.	2.40 m	
	M-1	0.20 m - 1.10 m	
	M-2	1.10 m - 1.80 m	
C-2	M-3	1.80 m - 2.20 m	
	M-4	2.20 m - 2.60 m	
	INALT.	2.3 m	
	M-1	0.10 m - 0.70 m	
	M-2	0.70 m - 1.50 m	
C-3	M-3	1.50 m - 1.80 m	
	M-4	1.80 m - 2.70 m	
	INALT.	2.20 m	
	M-1	0.15 m - 1.05 m	
C-4	M-2	1.05 m - 1.60 m	
0-4	M-3	1.60 m - 2.40 m	
	INALT.	1.90 m	
	M-1	0.40 m - 1.00 m	
	M-2	1.00 m - 1.40 m	
C-5	M-3	1.40 m - 1.70 m	
0-5	M-4	1.70 m - 2.40 m	
	M-5	2.40 m - 2.70 m	
	INALT.	2.50 m	
	M-1	0.13 m - 1.00 m	
	M-2	1.00 m - 1.30 m	
C-6	M-3	1.30 m - 2.40 m	
	M-4	2.40 m - 2.70 m	
	INALT.	2.60 m	
	M-1	0.10 m - 0.65 m	
	M-2	0.65 m - 1.35 m	
C-7	M-3	1.35 m - 2.05 m	
G-7	M-4	2.05 m - 2.27 m	
	M-5	2.27 m - 3.00	
	INALT.	2.37 m	

En la tabla 11 se observa la estratigrafía de la calicata en el distrito de Pimentel que tuvo una profundidad de 2.7 m. Presento 4 estratos, estos se encontraban a una profundidad de: M-1 de 0.10 m - 0.80 m, M-2 de 0.80 m - 1.50 m, M-3 de 1.50 m - 2.20 m y M-4 de 2.20 m - 2.70 mm

Tabla 11. Profundidad de calicata 01

	Profundidad (m)			Muestra
		De	Α	iviuestra
		0.00	0.10	S/M
		0.10	0.80	M-1
	1.0	0.80	1.50	M-2
Š				
	2.0	1.50	2.20	M-3
	2.7	2.20	2.70	M-4

En la tabla 12 se demuestra la estratigrafía de la calicata, del distrito de Lambayeque a una profundidad de 2.6 m. Presento 4 estratos, ubicados a una profundidad de: M-1 de 0.20 m - 1.10 m, M-2 de 1.10 m - 1.80 m, M-3 de 1.80 m - 2.20 m y M-4 de 2.20 m - 2.60 mm

Tabla 12. Profundidad de calicata 02

Profundidad (m)			
	De	Α	Muestra
	0.00	0.20	S/M
1.0	0.20	1.10	M-1
	1.10	1.80	M-2
2.0	1.80	2.20	M-3
2.6	2.20	2.60	M-4

• Calicata 03

En la tabla 13 se indica la estratigrafía de la calicata, la cual ejecutó en el distrito de La Victoria a una profundidad de 2.7 m. Presento 4 estratos, se encontraban a una profundidad de: M-1 de 0.20~m-0.70~m, M-2 de 0.70~m-1.50~m, M-3 de 1.50~m-1.80~m y M-4 de 1.80~m-2.70~mm

Tabla 13. Profundidad de calicata 03

Profundidad (m)			Musetre
	De	Α	Muestra
	0.00	0.10	S/M
	0.20	0.70	M-1
1.0	0.70	1.50	M-2
	1.50	1.80	M-3
2.0	1.80	2.70	M-4
2.7			

En la tabla 14 se expone la estratigrafía de la calicata, la que se realizó en el distrito Ciudad Eten a una profundidad de 2.4 m. Presento 3 estratos, aquellos se encontraban a una profundidad de: M-1 de 0.15 m - 1.05 m, M-2 de 1.05 m - 1.60 m y M-3 de 1.60 m - 2.40 m.

Tabla 14. Profundidad de calicata 04

Profundidad (m)			Muestra
	De	Α	iviuestra
	0.00	0.15	S/M
1.0	0.15	1.05	M-1
	1.05	1.60	M-2
2.0	1.60	2.40	M-3
2.4			

En la tabla 15 se presenta la estratigrafía de la calicata, la cual se efectuó en el distrito de Monsefú a una profundidad de 2.7 m. Presento 5 estratos, estas se encontraban a una profundidad de: M-1 de 0.40 m - 1.00 m, M-2 de 1.00 m - 1.40 m, M-3 de 1.40 m - 1.70 m, M-4 de 1.70 m - 2.40 mm y M-5 de 2.40 m - 2.70 mm

Tabla 15. Profundidad de calicata 05

Tabla 15. Profundidad de calicata 05			
Profundidad (m)			Muestra
	De	Α	
	0.00	0.40	S/M
1.0	0.40	1.00	M-1
	1.00	1.40	M-2
	1.40	1.70	M-3
2.0	1.70	2.40	M-4
2.7	2.40	2.70	M-5

En la tabla 16 se señala la estratigrafía de la calicata, la misma que fue ejecutada en el distrito de Picsi a una profundidad de $2.7\,$ m. Presento $4\,$ estratos que se encontraban a una profundidad de: M-1 de $0.13\,$ m $- 1.00\,$ m, M-2 de $1.00\,$ m $- 1.30\,$ m, M-3 de $1.30\,$ m $- 2.40\,$ m y M-4 de $2.40\,$ m $- 2.70\,$ mm.

Tabla 16. Profundidad de calicata 06

Tabla 16. Profundidad de calicata 06						
Profundidad (m)				Muestra		
		De	Α	maestra		
		0.00	0.13	S/M		
		0.13	1.00	M-1		
	1.0					
		1.00	1.30	M-2		
	2.0	1.30	2.40	M-3		
	2.7	2.40	2.70	M-4		

En la tabla 17 se expone la estratigrafía de la calicata, la que se llevó a cabo en el distrito de Pueblo Nuevo a una profundidad de 3.00 m. Presento 5 estratos que se encontraban a una profundidad de: M-1 de 0.10 m - 0.65 m, M-2 de 0.65 m - 1.35 m, M-3 de 1.35 m - 2.05 m, M-4 de 2.05 m - 2.27 mm y M-5 de 2.27 m - 3.00 mm

Tabla 17. Profundidad de calicata 07.

De A Mulestra 0.00 0.10 S/M 0.10 0.65 M-1 1.0 0.65 1.35 M-2 1.35 2.05 M-3 2.05 2.27 M-4 2.27 3.00 M-5	Tabla 17. Profundidad de calicata 07.						
De A 0.00 0.10 S/M 0.10 0.65 M-1 1.0 0.65 1.35 M-2 1.35 2.05 M-3 2.00 2.27 M-4	Profundidad (m)			Muestra			
0.10 0.65 M-1 1.0 0.65 1.35 M-2 1.35 2.05 M-3 2.05 2.27 M-4 2.27 3.00 M-5		_	De	Α			
1.0 1.0 0.65 1.35 M-2 1.35 2.05 M-3 2.05 2.27 M-4			0.00	0.10	S/M		
0.65 1.35 M-2 1.35 2.05 M-3 2.05 2.27 M-4 2.27 3.00 M-5			0.10	0.65	M-1		
2.05 2.05 2.27 M-4 2.27 3.00 M-5		1.0	0.65	1.35	M-2		
2.27 3.00 M-5		2.0	1.35	2.05	M-3		
			2.05	2.27	M-4		
1 3.00 I I I		3.00	2.27	3.00	M-5		

En la figura 38 y 39, se muestra la toma de medidas de las calicatas efectuadas, las cuales tuvieron unas dimensiones de 1 m x 1.5 m, tanto de largo y de ancho, con una profundidad que variaba dependiendo del terreno y el tipo de suelo que se observaba.

Figura 38. Muestras y materiales – contenido de humedad. **Fuente:** Elaborado por los autores.

Figura 39. Muestras y materiales – contenido de humedad. **Fuente:** Elaborado por los autores.

4.3. Procedimiento de trabajo

En la investigación se desarrollaron distintos ensayos para cumplir con los objetivos expuestos en el primer capítulo. Es así que tenemos:

4.3.1. Ensayo de contenido de humedad

Para realizar el ensayo y determinar el contenido de humedad, nos regimos por lo establecido en la NTP 339.127 / ASTM D 2216.

Los utensilios que fueron necesitaron para realizar este ensayo fueron: balanza, espátula, horno, guantes, bandeja y beakers, además de un plumón para catalogar las diferentes muestras y llevar un correcto control. En la figura 40, se muestra lo expuesto anteriormente.

Figura 40. Muestras y materiales – contenido de humedad.

Fuente: Elaborado por los autores.

Procedimiento:

La norma establece que la cantidad mínima representativa de la muestra total para realizar el ensayo debe ser mayor a 20g.

 Se procedió a realizar el cuarteo de las muestras extraídas de campo. Se contaron con pequeñas taras, las cuales fueron pesadas previo a colocar la muestra en ellas. Posteriormente, se colocaron entre 30g a 40g de muestra.

- 2. Se registró el nuevo peso de la tara (con la muestra), llevando un orden para de esta manera evitar confusiones y tener un mejor control.
- 3. Concluido el paso anterior, se colocaron las muestras en una bandeja y fueron llevadas al horno por 24 horas, con el fin de obtener un el peso seco, ya que la muestra perderá humedad al estar en el horno.
- Pasado este periodo de tiempo las muestras fueron sacadas, con sumo cuidado con ayuda de guantes del horno y se determinó el nuevo peso de estas.

Este proceso se repitió para cada una de las diferentes calicatas que se llevó a cabo en esta investigación.

Con la información extraída del ensayo se determinó el contenido de humedad, siguiendo lo establecido en la norma, mediante la siguiente formula, mostrada a continuación:

$$w = \frac{Peso \ de \ agua}{Peso \ de \ suelo \ seco \ al \ horno} \ x \ 100$$

$$w = \frac{M_{cws} - M_{cs}}{M_{cs} - M_c} x 100 = \frac{M_w}{M_s} x 100$$

En donde:

w Contenido de humedad, en porcentaje

 M_{CWS} Peso del contenedor más el suelo húmedo, en gramos

 M_{cs} Peso del contenedor más el suelo secado en horno

 M_c Peso del contenedor, en gramos

 $M_{\rm W}$ Peso del agua, en gramos

 M_s Peso de las partículas sólidas, en gramos

En el capítulo V de resultados, en el ítem ubicado en la página 97, se exponen los resultados obtenidos del respectivo ensayo. Para mayor detalle en el Anexo 02 (página 147) y Anexo 10 (página 429), se muestran fotografías del ensayo y el formato desarrollado con los datos obtenidos.

4.3.2. Ensayo de granulometría

Se siguió lo establecido en la NTP 339.128 / ASTM D 422, para realizar la clasificación por tamaños de los granos del suelo.

Los materiales que fueron utilizados en este ensayo son: tamices, balanza, taras, plumón, bandejas y piseta. En la figura 41 se observa lo comentado anteriormente.

Figura 41. Muestras y materiales – Granulometría.

Fuente: Elaborado por los autores.

Procedimiento:

La norma establece que se debe tomar aproximadamente unos 115g cuando se trata de suelos arenosos y 65g cuando se trate de arcillosos o limosos, de muestra representativa para realizar el ensayo. Se optó por tomar 200g para contar con un valor mayor de % retenido en cada malla, cabe resaltar que se contó con una cantidad considerable de muestra recolectada en campo que favoreció a este ensayo.

- 1. Previo al ensayo, toda la muestra se secó al aire libre, en un ambiente del laboratorio.
- 2. Concluido el paso anterior, se cuarteo la muestra total y se sacó aproximadamente 200g de esta la cual fue colocada en una tara.
- 3. Se lavó la muestra obtenida anteriormente con agua con el fin de que el líquido pueda llevarse las partículas de suelo más finas, este lavado se realizó colocando la muestra en un tamiz N°200 y mediante chorros de agua se lavó hasta que el agua que sale de este pase de un color turbio a uno cristalino, tratando de evitar frotar la muestra de suelo con el tamiz, se debe manipularla ligeramente.
- 4. Una vez verificado que el agua que sale es de color cristalino, la muestra se colocó en una tara, teniendo sumo cuidado de no dejar ningún resto de muestra en el tamiz con el que realizamos el lavado.
- 5. La tara con muestra se lleva al horno por 24 horas.
- Pasado el periodo de tiempo se saca la muestra del horno y se procede a realizar el tamizado.
- 7. Con la muestra sacada del horno, en una nueva tara se pesan 200g del total.
- 8. Para el tamizado se utilizaron los recomendados por la NTP 339.128, los cuales se mostrarán a continuación en la tabla 18:

Tabla 18. Tamices recomendados por norma

TAMICES			
(Pul)	(mm)		
3"	75.00		
1 1/2"	37.50		
3/4"	19.00		
3/8"	9.500		
Nº4	4.750		
Nº8	2.360		
Nº10	2.000		
Nº16	1.180		
N°30	0.600		
N°50	0.300		
N°100	0.150		
N°200	0.075		
< N° 200	FONDO		

Fuente: NTP 339.128

- 9. Se apila de forma descendente los tamices, y se vierte la muestra por la parte superior, se coloca la tapa en el tamiz superior.
- 10. Se procedió a realizar movimientos de un lado a otro a los tamices, esto con el fin de que la muestra pase por los diferentes tamices. La norma establece que se deben realizar 60 movimientos durante un minuto.
- 11. Concluida la agitación se procede con sumo cuidado a retirar los diferentes tamices, los cuales contendrán en cada uno de ellos diferentes porciones de la muestra que han sido retenidos en cada uno de estos.
- 12. Se realiza un cuadro con los pesos retenidos, % retenido parcial, % retenido acumulado y el % que pasa; con el fin de realizar la curva granulométrica.

Respecto a la curva granulometría, para graficar se tendrá en cuenta dos ejes, en el eje de las abscisas se colocaron los diámetros de los tamices en mm, mientras que en el eje de las ordenadas se colocara el porcentaje que pasa por los tamices. Cabe resaltar que debe estar en escala logarítmica.

Según lo establecido en la norma los cálculos realizados en este ensayo fueron los siguientes:

• Porcentaje de la muestra del material que pasa por el tamiz N° 200 % pasa el tamiz N° 200 = $\frac{P.Total - P.Retenido tamiz N° 200}{Peso Total} x 100$

• Porcentaje de la muestra que es retenido en cada tamiz

% retenido =
$$\frac{P.Retenido en el tamiz}{Peso Total} \times 100$$

Porcentaje más fino

$$% Pasa = 100 - % Retenido acumulado$$

Para mayor detalle en capítulo V de resultados en el ítem ubicado en la página 98, se muestran los resultados logrados del respectivo ensayo.

En el Anexos 10 (página 432) se exhiben fotográficas del ensayo y en el Anexo 03 (página 159) el formato desarrollado con los datos obtenidos.

4.3.3. Ensayo de límite líquido, límite plástico e índice de plasticidad

Se realizó el ensayo de límite líquido y límite plástico siguiendo las pautas establecidas en la NTP.339.129/ ASTM D 4318.

La muestra se obtendrá del porcentaje que pasa el tamiz N°40.

La norma establece que la cantidad de muestra para realizar el ensayo puede encontrarse en el rango de 150g a 200g, no obstante, en nuestra investigación optamos por realizar el ensayo con una muestra de aproximadamente unos 200g debido a los posibles errores que podamos encontrar al buscar los valores en los rangos determinados para el limite líquido y limite plástico, con esto se tuvo muestra adicional para cualquier percance.

Para iniciar el ensayo se utilizó la malla N°40, por donde se pasa una porción de muestra de cada estrato encontrado en las diferentes calicatas realizadas, previamente hasta tener un aproximado de 300g de muestra, la cual se colocó en una tara debidamente identificada.

Cabe recalcar que la porción de muestra que se utilizó para el ensayo debió ser secada previamente al aire libre protegiéndolo del sol, en un lugar protegido del polvo y seco.

Se llena una piseta con agua destilada, esta se vierte paulatinamente en la tara, en donde se encuentra la muestra, hasta lograr una masa homogénea, teniendo cuidado de no sobrepasarse de agua destilada.

Se cubre con rollo film, se clasifica por nombre y se deja por 24 h. Esto con el fin de activar las propiedades plásticas del suelo.

Pasado este periodo de tiempo, se procede a realizar el ensayo para lo cual se utilizarán los siguientes implementos: balanza, ranurador, piseta, espátula, vidrio esmerilado, capsulas de secado, horno y el equipo de la Copa de Casagrande.

En la figura 42, se aprecian los materiales con los que se realizaron este ensayo de laboratorio.

Figura 42. Materiales para el ensayo de límite líquido y limite plástico **Fuente:** Elaborado por los autores.

Limite líquido (LL)

Para determinar el LL, en primer lugar, se pesaron cuatro taras pequeñas debidamente numeradas con los tiempos escritos en ellos. Este ensayo se realizará teniendo en cuenta cuatro rangos de 10-15, 15-20, 20-25 y 30-35.

Una pequeña porción, se colocó en la Copa de Casagrande, verificando que la copa descanse en la base, con ayuda de una espátula se presiona la muestra y se va esparciendo, teniendo en cuenta que esta debe estar a una profundidad de 10 mm en la parte más profunda y que quede de manera horizontal. Se limpia los sobrantes que pueden quedar colocando estos en la tara en donde se encuentra la demás muestra. Con ayuda de un ranurador se divide la muestra que se encuentra en el equipo y se procede a realizar los golpes necesarios hasta que esta ranura se cierre, teniendo en cuenta que esta ranura se debe cerrar entre los rangos expuestos anteriormente.

Se desarrolla el ensayo la cantidad de veces necesaria hasta obtener valores entre los cuatro rangos expuestos anteriormente.

Cuando cumpla el número de golpes entre los cuatro rangos se toma una tajada del tamaño de la espátula de la zona en donde se cerró la ranura. La cual, se colocó en las taras pequeñas y se pesó antes de ser colocadas en el horno.

Pasado 24 h se saca la muestra y se vuelve a pesar para hallar la la humedad perdida, que vendría a ser la resta entre la muestra antes y después del horno.

Una vez obtenido los datos del ensayo, el siguiente paso es realizar la gráfica de la curva de flujo, se escogen tres rangos que mejor se adapten al momento de realizar la recta. En la recta de las abscisas se ubica 25 golpes y en donde se intersecte con la recta se tomó el valor en las ordenadas del contenido de humedad, el cual vendría a ser el límite líquido.

Para mayor detalle en el capítulo V de resultados en el ítem ubicado en la página 100, se muestran los resultados del respectivo ensayo.

En el Anexos 10 (página 436) se muestran fotográficas del ensayo y en el Anexo 04 (página 189) el formato desarrollado con los datos obtenidos.

• Limite plástico (LP)

Generalmente para realizar el LP, la norma establece que se utiliza una porción de muestra empleada en el ensayo de LL, de aproximadamente unos 20 g.

Se pesan en primer lugar dos taras pequeñas en donde irán la muestra a ensayar. Posteriormente, se toma de 1.5 g a 2 g del total de los 20 g, con esta se forma una masa elipsoidal y con ayuda de un vidrio esmerilado se procede a enrollar esta masa de suelo en un hilo de diámetro de 3.2 mm (1/4 pulg) haciendo presión de forma equitativa en todo el hilo moldeado.

La formación del hilo debe ser realizada aproximadamente en menos de 2 minutos, ya que el rollo formado se debe fisurar de manera inmediata, de no ser el caso se repite el número de veces necesario hasta que cumpla con lo establecido en la norma.

Al cumplir con lo expuesto anteriormente, el rollo se divide en 4 partes, se colocaron en las taras pequeñas, se pesa y entra al horno por 24 h.

Una vez pasado este periodo de tiempo, las muestras son sacadas del horno y a continuación se halla el contenido de humedad, que vendría a ser la división entre el peso líquido de la muestra y el peso seco de esta, dado en porcentaje. Se halla por último un promedio de estos dos contenidos de humedad.

Para mayor detalle en el capítulo V de resultados en el ítem ubicado en la página 100, se muestran los resultados obtenidos del respectivo ensayo.

En el Anexos 10 (página 436) se muestran fotográficas del ensayo y en el Anexo 04 (página 189) el formato desarrollado con los datos obtenidos.

Índice de plasticidad (IP)

En la NTP 339.129, nos especifican que, para hallar el IP, se realizará mediante la siguiente formula:

IP = LL - LP

Donde:

IP: Índice de plasticidad en %

LL: Limite Liquido en %
LP: Limite Plástico en %

Para mayor detalle en el capítulo V de resultados en el ítem ubicado en la página 98, se dan a conocer los resultados del respectivo ensayo.

En el Anexo 10 (página 436) se muestran fotográficas del ensayo y en el Anexo 04 (página 189) el formato desarrollado con los datos obtenidos.

4.3.4. Sistema Unificado de Clasificación de Suelos (SUCS)

Se llevó a cabo la clasificación siguiendo lo dictado en la NTP.339.134 / ASTM D 2487.

El siguiente método de clasificación se elabora con los datos obtenidos del ensayo de granulometría, limite líquido e índice de plasticidad con el fin de realizar una clasificación del suelo estudiado.

Para ello, se contó con resultados de los ensayos realizados anteriormente.

Del ensayo de granulometría se analizó el porcentaje retenido acumulado y el porcentaje que pasa de los tamices N°4 y N°200, con el fin de determinar si nos encontramos con arena o grava, o con un suelo fino o grueso respectivamente. Así como, también el coeficiente de uniformidad y el coeficiente de curvatura de las calicatas C7 (estrato 1), C1 (estrato 1) y C4 (estrato 1).

Se utilizaron los resultados del límite líquido e índice de plasticidad para ubicar un punto en la carta de plasticidad.

De esta manera, como apreciamos en la tabla N° 19, si el porcentaje que pasa es mayor al 50% se considerara como un suelo fino y se analizara automáticamente la carta de plasticidad. En cambio, si el porcentaje que pasa es menor al 50% se considerará como un suelo grueso y se analizara si es una grava o una arena, dependiendo del porcentaje que pase el tamiz N°4.

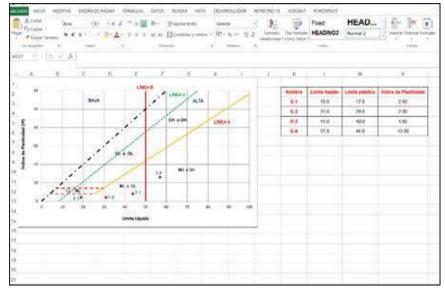
Tabla 19. Análisis suelo fino o suelo grueso

Malla N°200				
A) Suelo fino	> 50%			
Se analiza en la carta de plasticidad				
B) Suelo grueso	< 50%			
Se analiza en la malla Nº4				
Arena	> 50%			

Fuente: NTP 339.134

Con lo explicado anteriormente, conociendo el porcentaje de finos se procede a ubicar en la tabla N°20, el valor en el rango adecuado, así tenemos que podemos ubicar entre el rango B.1. Finos < 5%, B.2. 5% < Finos < 12% y 12 % Finos. Una vez ubicado el rango con lo obtenido del cuadro anterior, conociendo el porcentaje que pasa la malla N°4 elegimos entre una arena o una grava.

Tabla 20. Análisis rango de finos


B.1) Finos < 5% criterio 1				
Arenas	SP	SW		
Gravas	GP	GW		
B.2) 5%< Finos < 12 % criterio 1 y 2				
Arenas	SP-SM	SW-SM		
	SP-SC	SW-SC		
Gravas	GP-GM	GW-GM		
	GP-GC	GW-GC		
B.3) 12% < Finos criterio 2				
Arenas	SM	SC		
Gravas	GM	GC		

Fuente: NTP 339.134

Conociendo si es una arena o una grava, se procede con los criterios establecidos para cada rango, que tiene cada uno de estos rangos. Los criterios se muestran en la tabla N° 20, dependiendo del rango que se eligió siguiendo las pautas dadas anteriormente. Para los criterios expuestos que se necesitaran en la tabla anterior se utilizará la tabla N° 21, donde se usará uno o ambos criterios para clasificar el suelo.

Se elaboró una tabla recopilando todos los resultados de los ensayos mencionados anteriormente que son necesarios para poder clasificar el suelo.

Los investigadores efectuaron este proceso en una hoja de Microsoft Excel 2013, donde se plasmó todos los pasos expuesto anteriormente, esta hoja la podemos apreciar a continuación en la figura 43, donde se observa las tablas ordenadas con los datos de los ensayos realizados, para de esta manera clasificar el suelo.

Figura 43. Muestras para ensayo de límite líquido y limite plástico. **Fuente:** Elaborado por los autores.

Es así que de esta menra se logró catalogar el tipo de suelo.

Para mayor detalle en capítulo de resultados en el ítem ubicado en la página 102, se muestran los resultados obtenidos del respectivo ensayo.

En el Anexo 10 (página 436) se muestran fotográficas del ensayo y en el Anexo 05 (página 219) el formato desarrollado con los datos obtenidos.

4.3.5. Ensayo de contenido de sales solubles

El presente ensayo se llevó a cabo siguiendo los puntos señalados en la NTP. 339.152 / BS 1377

Tiene como fin determinar el contenido de sales que vendrá ser el peso residual posterior a la evaporación de una mezcla de agua destilada con una cantidad de muestra a ensayar.

Para este ensayo se utilizaron los materiales siguientes: botellas de vidrio, matraces, piseta, papel filtro, embudos, beakers, tamiz N°10 y la muestra de suelo representativa de cada estrato de las calicatas realizadas. En la figura 44, se observan los materiales utilizados para este ensayo.

Figura 44. Muestras y materiales para ensayo de límite líquido y limite plástico. **Fuente:** Elaborado por los autores.

Procedimiento:

La norma establece que se debe tomar aproximadamente unos 100g de muestra del suelo que pasa el tamiz N°10. La relación de mezcla suelo, agua destilada será 1:3.

- 1. La muestra previamente secada al aire libre, se cuarteo y se pasó por el tamiz N°10, hasta completar 100g. Debemos tener en cuenta, que la tara cuando esté sobre la balanza, se colocará en 0 para que no se considere el peso de la tara, y de esta manera solamente se considere el peso de la muestra.
- 2. En una botella, debidamente lavada, se vierte 300 ml de agua destilada con ayuda de una piseta.
- 3. Con los 100g obtenidos, se procede a colocar con ayuda de un embudo, la muestra en la botella, cerciorándose que nada de muestra se pierda.
- 4. Se tapa la botella y a continuación se agita por 1 hora, observando que la muestra se mezcle de forma homogénea.
- 5. Posterior al tiempo establecido se deja la botella en reposo por 24 horas, para que de esta manera se pueda asentar la muestra y sobre esta solo se encuentre liquido en la botella.
- 6. Transcurrido el tiempo procedemos a filtrar el líquido de la botella con papel filtro junto con un embudo, vertiendo este en un matraz, hasta

obtener un aproximado de 100 ml. Se debe tomar en cuenta que si el filtrado en el matraz sale de color turbio se debe realizar nuevamente el filtrado hasta obtener un color cristalino. Al contar con pocas unidades de matraces, se optó por colocar estos 100 ml en beakers. Vertiendo la cantidad de líquido del matraz al beaker, teniendo cuidado de no dejar liquido en el matraz y los 100 ml pasen al beaker.

- 7. Se pesa el beaker con líquido, y se lleva al horno por 24 horas.
- 8. Concluido el tiempo, se sacan los beaker del horno y se procedieron a pesarlos, teniendo en cuenta de no dejar un tiempo muy prolongado el pesarlos después de que sale, ya que las sales del residuo que queda absorben humedad del aire rápidamente.

La norma nos establece para hallar el porcentaje de contenido de sales solubles se realiza mediante la siguiente formula:

$$SS = \frac{(m_2 - m_1)x D}{E} \times 10^6$$

Donde:

SS = total de sales solubles, en ppm (mg/kg)

(m2-m1) = peso del residuo de evaporación en g.

D = relación de la mezcla de suelo: agua

E = volumen de extracto acuoso evaporado, mL

Para mayor detalle en capítulo de resultados en el ítem ubicado en la página 104, se exhiben los resultados hallados del respectivo ensayo.

En el Anexo 10 (página 439) se muestran fotográficas del ensayo y en el Anexo 06 (página 228) el formato desarrollado con los datos obtenidos.

4.3.6. Ensayo de peso específico relativo de los sólidos

El respectivo ensayo se siguió lo dictado por la NTP 339.131 / ASTM D 854.

El ensayo tiene objetivo determinar de una muestra, el peso específico relativo de los sólidos, denominada también como densidad de solidos la cual viene a ser la relación entre el peso de los sólidos y el peso del volumen del agua que es desalojada por estos.

Los utensilios necesarios para realizar el ensayo son: balanza, fiolas, cocina, piseta, embudo y agua destilada. Más adelante, en la Figura 45 se observa los materiales mencionados.

Figura 45. Muestras y materiales para ensayo de peso específico relativo. **Fuente:** Elaborado por los autores.

Calibración del fiolas:

Se contaron con 11 fiolas para el ensayo, los cuales fueron lavados y secados cuidadosamente, teniendo sumo cuidado de limpiar todas las paredes de este para realizar de esta manera un correcto ensayo.

- Cada fiola se llenó hasta 3/4 de su total, y se procedió a colocarlos en la cocina. Los picnómetros fueron colocados sobre taras con arena, para evitar que con el calor revienten.
- 2. Se dejaron un periodo de tiempo en la cocina, hasta el punto de ebullición con esto conseguimos eliminar el aire que se encuentre dentro de la fiola.

- 3. A continuación, se sacan de la cocina y se dejan enfriar, cada 15 minutos se mide la temperatura, se pesa y se enrasa nuevamente hasta que alcance una temperatura ambiente que fue de 22°C, este proceso se realizó por cada fiola. El enrasado se realizó con ayudo de una piseta y la temperatura con ayuda de un termómetro el cual se colocó siempre a una misma altura en la fiola
- Con los datos recolectados se procede a realizar la curva WA vs T (peso temperatura).

Esta grafica tendrá en las ordenadas el peso de la fiola + agua (WA) en gramos y en el eje de las abscisas a la temperatura en °C.

Determinación del peso específico relativo:

Concluida la calibración de fiolas, estos son lavados nuevamente para ser utilizados. La norma establece que la cantidad mínima de muestra de suelo seco para realizar este ensayo es de 25g, el cual debe pasar el tamiz N°4.

- La muestra total fue secada al horno, se cuarteo y se pasó por el tamiz N°4, se recolecta 30g de muestra.
- 2. Se determinó el peso de la fiola limpia y seca.
- 3. Con ayuda de un embudo se colocó la muestra en una fiola y se le ira adicionando agua destilada con ayuda de una piseta hasta sus 3/4.
- 4. Se procede a hervir la fiola para extraer el aire que contiene y se deja por un periodo de tiempo.
- 5. Al estar en ebullición se le deja por 10 minutos más, cerciorándose que no se pierda nada de muestra cuando se produzca (ya que la muestra puede saltar).
- 6. Se deja enfriar, con ayuda de un termómetro se va midiendo la temperatura y se va enrasando hasta que alcance una temperatura ambiente.
- 7. Por último, se pesó.

La norma establece la siguiente fórmula para hallar el peso específico de las partículas sólidas a una temperatura dada, en este caso de 24° C.

$$G_s(Tx) = Peso \ especifico \ (T_x/T_x \ ^{\circ}C) = \frac{M_o}{M_o + (M_a - M_b)}$$

Donde:

 G_s : Peso específico relativo de las partículas sólidas

 M_o : Masa de la muestra de suelo seco al horno, en g.

 M_a : Masa de la fiola lleno de agua a la temperatura Tx, en g.

 M_b : Masa de la fiola lleno de agua a la temperatura Tx, en g.

 T_x : Temperatura de los contenidos de las fiolas

Cabe resaltar que el M_a se halló de la calibración de fiolas a una temperaturita de 24 °C.

Hallado el peso específico relativo de los sólidos, la norma establece que se determina a 20°C, es por ello, que se aplicó un factor de corrección K, de la siguiente manera:

Peso especifico
$$(T_x/20 \, ^{\circ}C) = Kx(peso especifico \, T_x/T_x \, ^{\circ}C)$$

Donde el K, según la norma el factor para 20°C es de 1.0000. Con esto obtenemos el peso específico relativo de los sólidos a 20°.

Para mayor detalle en el capítulo V de resultados en el ítem ubicado en la página 105, se dan a conocer los resultados del respectivo ensayo.

En el Anexo 10 (página 443) se muestran fotográficas del ensayo y en el Anexo 07 (página 235) el formato desarrollado con los datos obtenidos.

4.3.7. Ensayo de peso específico volumétrico

Se desarrolló el ensayo siguiendo con lo establecido en la NTP 339.139 / BS 1377.

Para producir el ensayo de peso específico volumétrico, se contó con materiales tales como: cocina, parafina, balanza, probeta, molde circular, espátula, pabilo, taras y la muestra inalterada por cada calicata realizada. En la figura 46, se presentan los materiales expuestos anteriormente.

Figura 46. Muestras y materiales para ensayo de peso específico volumétrico. **Fuente:** Elaborado por los autores.

Según la norma la muestra puede ser de forma circular o de forma cuadrada, de unas dimensiones de aproximadamente 100 mm como mínimo.

Procedimiento:

- Comenzamos con la extracción de una porción de muestra inalterada, esta con sumo cuidado se comienza a tallar con ayuda de un molde circular.
- 2. Cuando tengamos tallada la muestra, se saca del molde y se cerciore que no contenga agujeros ni grietas; y se pesa.
- 3. De forma paralela se enciende la cocina y se derrite un poco de parafina.
- 4. Se enreda pabilo a la muestra de suelo pesada, contando con sumo cuidado para de esta menra no maltratar la muestra y se procede a

sumergir la muestra en la parafina derretida. La parafina cubrirá toda la muestra. Cuando esté totalmente recubierta se pesa nuevamente la muestra.

- En una base nivelada, se llena una probeta con agua hasta un volumen inicial conocido, el cual se registrará en los apuntes, el cual es de 800 ml para este ensayo.
- 6. Se introduce la muestra de suelo con parafina, se observa que ocurre un desplazamiento del volumen de agua, obteniendo un volumen final. El volumen desplazado en la probeta será el volumen del suelo parafinado.
- 7. La muestra es pesada nuevamente y se lleva al horno por 24 horas.
- 8. Pasado este periodo de tiempo se saca del horno y se vuelve a pesar, esto con el fin de hallar el contenido de humedad.

Teniendo los datos obtenidos se procede a hallar la densidad seca y la densidad húmeda, con las siguientes formulas:

 \triangleright Calculo del volumen del espécimen de prueba V_S en cm3:

$$V_S = \left(m_W - m_g\right) - \left(\frac{m_W - m_f}{\rho_p}\right)$$

Donde:

 m_w : Masa del espécimen cubierto de cera en g.

 m_g : Masa espécimen cubierto de cera cuando se suspende en agua en g.

 m_f : Masa espécimen después de rellenarse los vacíos superficiales en g.

 ρ_p : Densidad de la cera parafinada en g/cm3.

Calculo para hallar la densidad de masa del espécimen:

$$\rho = (\frac{m_s}{v_s})$$

Donde:

 m_s : Masa del espécimen del suelo en g.

Calculo para la hallar la densidad seca del espécimen, mediante la siguiente ecuación:

$$\rho_d = \frac{100\,\rho}{100 + w}$$

Donde:

w: Contenido de humedad del suelo en %.

Cabe resaltar que el peso específico de la parafina se consideró: 0.87 g/cm3.

Para mayor detalle en el capítulo V de resultados en el ítem ubicado en la página 107, se exhiben los resultados logrados del respectivo ensayo.

En el Anexo 10 (página 448) se muestran fotográficas del ensayo y en el Anexo 8 (página 247) el formato desarrollado con los datos obtenidos.

4.3.8. Ensayo de corte directo

Este ensayo se efectuó siguiendo lo dispuesto en la NTP 339.171 / ASTM D 3080.

Se contaron con diferentes materiales para realizar el ensayo tales como: balanza, agua destilada, taras, rollo film, espátula, papel filtro, balde y adicionalmente a estos se mandaron a confeccionar 18 moldes rectangulares (más 3 moldes con los que contaba el laboratorio) y 42 bridas para efectuar la saturación en las muestras respectivas. En la figura 47 se observan los materiales expuestos anteriormente.

Figura 47. Muestras y materiales para ensayo de corte directo.

Debido a que se evaluarán distintas saturaciones en diferentes muestras, y contando con una sola máquina de corte directo, se ideo una manera de saturar estas diferentes muestras fuera de la máquina. Es así que, para realizar este proceso de saturación se mandaron a realizar bridas con orificios de 0.5mm, que irán uno sobre otro en moldes cuadrados simulando la saturación que brinda la máquina de corte directo.

Procedimiento de saturación

Para el ensayo se necesitaron tres moldes cuadrados los cuales fueron identificados, medidos y pesados. Con los moldes se toma una porción de muestra inalterada para sacar tres muestras idénticas, las cuales son vueltas a pesar. De esta manera, determinamos el peso inicial de la muestra para posteriormente calcular el contenido inicial de humedad de la muestra.

Es de vital importancia realizar este ensayo, una vez traídas las muestras inalteradas al laboratorio, para que estas conserven lo más posible sus propiedades que presentan en campo.

La muestra se someterá a diferentes tiempos de saturación para observar su comportamiento, es así que, los tiempos escogidos son los

siguientes: 0 horas (estado natural), 3 horas, 8 horas, 15 horas, 1 semana y 1 mes.

Teniendo presente los tiempos se procedió a saturar la muestra colocando en la parte superior e inferior papel filtro que abarque toda la cara del molde con muestra, posterior se colocan en las bridas una arriba y la otra abajo teniendo sumo cuidado de que el papel filtro no se mueva de su lugar y se ajustan con unos tornillos (3 tornillos). Se colocan en un balde debidamente clasificado con agua y se deja saturando dependiendo del tiempo escogido. Se realizan los mismos pasos con las demás muestras inalteradas, cumpliendo con cada tiempo establecido anteriormente.

Las bridas tienen un diámetro de 12 cm y orificio de 1 mm.

Los moldes cuadrados tienen una dimensión de 6 cm x 6 cm x 2 cm aproximadamente.

Se forro con film los baldes para que las muestras no se vean alteradas por agentes externos, debido a que algunas muestras serán saturadas a periodos de tiempo largos.

Los datos de los pesos específicos de la muestra inalterada son importantes para hallar el grado de saturación en la que se encuentra el suelo.

Procedimiento máquina de corte directo

Pasado el tiempo establecido se saca la muestra del balde y se quitan los tornillos, las bridas y el papel filtro que contenían a la muestra con sumo cuidado.

La muestra se encuentra lista para ser ensayada, se procede a ensamblar la caja de corte directo para de esta manera ser trasladado a la máquina. En la caja de corte se coloca en el fondo una piedra porosa, seguido de papel filtro que cubra toda la cara de la muestra saturada, con ayuda del extractor de muestra, con sumo cuidado, se desliza la muestra saturada en la

máquina de corte sobre el papel filtro. Se pone otro pedazo de papel filtro sobre la cara superior de la muestra, se coloca la placa de transferencia de carga, la caja de corte se ajusta con 3 tornillos.

Se procede a encender la máquina de corte considerando 3 diferentes esfuerzos normales 0.5 kg/cm2, 1 kg cm/ cm2 y 2 kg/cm2.

Se calibró con una velocidad de 0.25 mm/min la máquina de corte para de esta manera hallar los esfuerzos cortantes cada 30 segundos.

Con los datos obtenidos, debidamente ordenados, se colocan en una hoja de Microsoft Excel 2013, la cual fue realizada por los investigadores. En ella se presentan celdas donde se ingresarán los tiempos tomados y en donde se analizará la cohesión y el ángulo de fricción.

Para mayor detalle en el capítulo V de resultados en el ítem ubicado en la página 108 y 119, se dan a conocer los resultados del respectivo ensayo.

En el Anexos 10 (página 451) se muestran fotográficas del ensayo y en el Anexo 09 (página 255) el formato desarrollado con los datos obtenidos.

CAPITULO V. RESULTADOS

5.1. Ensayos para las características físicas de los suelos

5.1.1. Contenido de humedad

Se muestran los resultados obtenidos según lo indicado en la N.T.P 339.127/ASTM D-2216, en el ensayo de contenido de humedad, de las 7 calicatas con sus respectivas profundidades. Se procedió de acuerdo con el ítem 4.3.1, página 73 capitulo IV. Los ensayos completos se podrán encontrar en el anexo 2, página 147.

Tabla 21. Resumen del ensayo de contenido de humedad, por estratos de las 7 calicatas de los 7 distritos de la región Lambayeque- Perú.

Calicata 1 - Distrito de Pir	mentel	Profundidad: 2.7	'0 m
Estrato	Contenido	de Humedad	Profundidad
01	6.	00 %	0.10 - 0.80 m
02	10	.30 %	0.80 - 1.50 m
03	15	.10 %	1.50 - 2.20 m
04	18	.60 %	2.20 - 2.70 m
Inalteradas	21	.90 %	2.40 m
Calicata 2 - Distrito de La	mbayeque	Profundidad: 2.6	60 m
Estrato	Contenido	de Humedad	Profundidad
01	13	.30 %	0.20 - 1.10 m
02	15	.40 %	1.10 - 1.80 m
03	17	.20 %	1.80 - 2.20 m
04	23.50 %		2.20 - 2.60 m
Inalteradas	27.10 %		2.30 m
Calicata 3 - Distrito de La	Victoria	Profu	undidad: 2.70 m
Estrato	Contenido	de Humedad	Profundidad
01	12	.00 %	0.10 - 0.70 m
02	14.00 %		0.70 - 1.50 m
03	15.00 %		1.50 - 1.80 m
04	15.90 %		1.80 - 2.70 m
Inalteradas	17	.60 %	2.20 m
Calicata 4 - Distrito de Ci	udad Etan	Donal	undidad: 2.40 m

Estrato	Contenido	de Humedad	Profundidad
01	13.10 %		0.15 - 1.05 m
02	16	.90 %	1.05 - 1.60 m
03	18	.40 %	1.60 - 2.40 m
Inalteradas	21	.70 %	1.90 m
Calicata 5 - Distrito de Mo	onsefú	F	Profundidad: 2.70 m
Estrato	Contenido	de Humedad	Profundidad
01	11	.00 %	0.40 - 1.00 m
02	12	.20 %	1.00 - 1.40 m
03	13	.00 %	1.40 - 1.70 m
04	15	.30 %	1.70 - 2.40 m
05	16	.80 %	2.40 - 2.70 m
Inalteradas	19	.10 %	2.50 m
Calicata 6 - Distrito de Pi	csi	F	Profundidad: 2.60 m
Estrato	Contenido de Humedad		Profundidad
01	13.10 %		0.13 - 1.00 m
02	15.50 %		1.00 - 1.30 m
03	17.40 %		1.30 - 2.40 m
04	18	.60 %	2.40 - 2.70 m
Inalteradas	21	.30 %	2.60 m
-			
Calicata 7- Distrito de Pueb	olo Nuevo	F	Profundidad: 3.00 m
Estrato	Contenido	de Humedad	Profundidad
01	12.00 %		0.10 - 0.65 m
02	13.50 %		0.65 - 1.35 m
03	16.50 %		1.35 - 2.05 m
04	18	.70 %	2.05 - 2.27 m
05	20	.90 %	2.27 - 3.00 m
Inalteradas	23	.00 %	2.37 m
			1

5.1.2. Granulometría

Se muestra el formato modelo utilizado para determinar si los estratos de las 7 calicatas son suelos son finos o gruesos a través de las mallas indicadas en la Ntp 339.128 / ASTM D-422. Además, se observa la curva granulométrica que resulta entre el diámetro de los tamices en mm y el % que pasa del suelo por cada malla. Se procedió de acuerdo con el ítem 4.3.2,

página 75 capitulo IV. Los ensayos completos se encuentran en el anexo 3, página 159.

Ejemplo: estrato 1 calicata Pimentel

Datos:

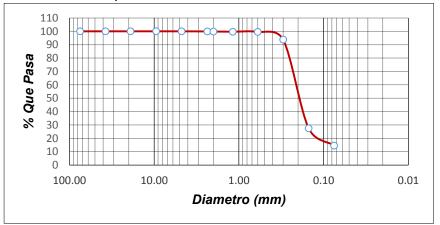
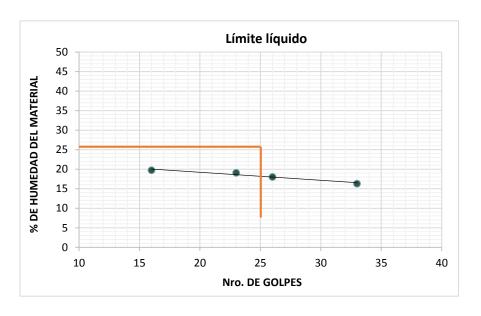

Peso total: 200 g Peso tamizado: 171.75 g Peso lavado: 28.25 g

Tabla 22. Granulometría por tamizado calicata 1, distrito Pimentel- estrato 1.

TAMIC	CES NTP	PESO	% RETENIDO	% RETENIDO	% QUE	
(Pul)	(mm)	RETENIDO	PARCIAL	ACUMULADO	PASA	
3"	75.00	0.00	0.00	0.00	100.00	
1 1/2"	37.50	0.00	0.00	0.00	100.00	
3/4"	19.00	0.00	0.00	0.00	100.00	
3/8"	9.500	0.00	0.00	0.00	100.00	
N°4	4.750	0.00	0.00	0.00	100.00	
Nº8	2.360	0.18	0.09	0.09	99.91	
N°10	2.000	0.17	0.09	0.18	99.83	
N°16	1.180	0.21	0.11	0.28	99.72	
N°30	0.600	0.31	0.16	0.44	99.57	
N°50	0.300	11.60	5.80	6.24	93.77	
N°100	0.150	132.44	66.22	72.46	27.55	
N°200	0.075	25.84	12.92	85.38	14.63	
< Nº 200	FONDO	29.25	14.63	100.00	0.00	

Fuente: Elaborado por los autores

Figura 48. Granulometría por tamizado calicata 1, distrito Pimentel- estrato 1.


Como observamos más de la mitad del material es retenido en la malla N° 200 así que se trata de un suelo grueso; además, más de la mitad del material pasa la malla N°4; por lo tanto, se trata de una arena.

Con este modelo de formato hicimos la granulometría de las 7 calicatas con un total de 29 estratos. Teniendo como resultados 27 estratos considerados suelos finos y 3 estratos suelos gruesos (arenas) siendo estos los estratos 1 de las calicatas 1, 4 y 7.

5.1.3. Límite líquido, límite plástico e índice de plasticidad

Según la NTP 339.129/ASTM D-4318, se muestran los resultados de las 7 calicatas por estratos. Además, en el siguiente gráfico N° de golpes vs % humedad, en forma de ejemplo representativo, se detalla cómo se halló el límite líquido del estrato 1 de la calicata 1. Siendo el límite líquido la intersección de 25 golpes con la recta. Se procedió de acuerdo con el ítem 4.3.3, página 78 capitulo IV. Los ensayos completos se encuentran en el anexo 4, página 189.

Figura 49. Número de golpes vs % de humedad del material calicata 1, distrito Pimentel- estrato 1.

Tabla 23. Resumen del ensayo de límite líquido, límite plástico e índice de plasticidad, por estratos de las 7 calicatas de los 7 distritos de la región Lambayeque-Perú.

Denominación	Estratos	Límite	Límite	Índice de plasticidad
	01	19.00	17.00	2.00
Calicata 1	02	31.00	29.00	2.00
Distrito Pimentel	03	44.00	40.00	4.00
	04	57.00	44.00	13.00
				1
Denominación	Estratos	Límite	Límite	Índice de plasticidad
	01	43.00	37.00	6.00
Calicata 2	02	65.00	60.00	5.00
Distrito Lambayeque	03	73.00	65.00	8.00
	04	62.00	27.00	35.00
D	-	14	1714.	The residence of the second
Denominación	Estratos	Límite	Límite	Índice de plasticidad
Calicata 3	01	29.00	26.00	3.00
	02	35.00	31.00	4.00
Distrito La Victoria	03	37.00	36.00	1.00
	04	24.00	22.00	2.00
Denominación	Estratos	Límite	Límite	Índice de plasticidad
	01	23.00	20.00	3.00
Calicata 4	02	34.00	30.00	4.00
Distrito Ciudad Eten _	03	64.00	30.00	34.00
Denominación	Estratos	Límite	Límite	Índice de plasticidad
	01	42.00	34.00	8.00
Calicata 5	02	58.00	52.00	6.00
Distrito Monsefú	03	23.00	20.00	3.00
	04	17.00	14.00	3.00
	05	36.00	25.00	11.00
Denominación	Estratos	Límite	Límite	Índice de plasticidad
Denominación	01	30.00	29.00	1.00
Calicata 6	02	29.00	27.00	2.00
Distrito Picsi	03	25.00	24.00	1.00
District resi	04	34.00	32.00	2.00
	U -1	J - 7.00	02.00	2.00
Denominación	Estratos	Límite	Límite	Índice de plasticidad
	01	37.00	32.00	5.00
Calicata 7	02	20.00	12.00	8.00
Distrito Pueblo Nuevo	03	20.00	18.00	2.00
District debic Nucvo	04	65.00	31.00	34.00
	05	66.00	30.00	36.00

5.1.4. Clasificación del suelo (SUCS)

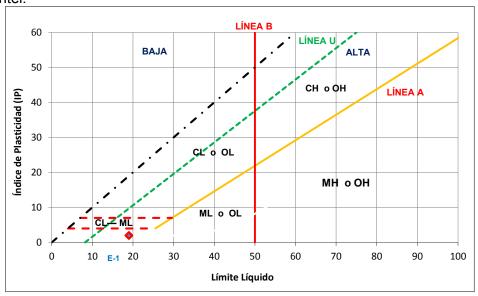

Para la clasificación de suelos se utilizaron los datos obtenidos en el ensayo de granulometría y límites de consistencia, según la NTP 339.134/ ASTM D-2487. Se presenta un ejemplo de la clasificación de la calicata 1, ubicada en el distrito de Pimentel. Se procedió de acuerdo con el ítem 4.3.4, página 82 capitulo IV. Los ensayos completos se podrán encontrar en el anexo 5, página 219.

Tabla 24. Granulometría por tamizado por la malla N°4 y N°200, límite líquido e índice de plasticidad de la calicata 1-distrito Pimentel- estrato 1.

	Estrato 1					
	Tamices %Rete		nido	% que		
	N'	NTP Acun		ılado	Pasa	
	N	°4	0.0	0	100.00	
	N°	200	85.3	38	14.63	
		SM - Aren		a limo	sa	
١	lombre	re Límite líquido		Índic	e de Plasticida	ad
	E-1	19.00			2.00	

Fuente: Elaborado por los autores

Figura 50. Carta de plasticidad para la clasificación de suelos de la calicata 1- Distrito Pimentel.

Este suelo se clasifica como una arena limosa debido a que más del 50% pasa el tamiz N° 4; además, más del 12% pasa la malla N° 200, por ello se analiza solo en la carta de plasticidad.

A continuación, se mostrarán la clasificación de las 7 calicatas con sus respectivos estratos.

Tabla 25. Resumen de la clasificación de suelos por estratos de las 7 calicatas de los 7 distritos de la región Lambayeque- Perú.

CALICATA 1 - DISTRITO PIMENTEL		
Estrato 1	SM - Arena limosa	
Estrato 2	ML - Limo de baja plasticidad	
Estrato 3	ML - Limo de baja plasticidad	
Estrato 4	MH - Limo de alta plasticidad	

CALICATA 2 - DISTRITO LAMBAYEQUE		
Estrato 1	ML - Limo de baja plasticidad	
Estrato 2	MH - Limo de alta plasticidad	
Estrato 3	MH - Limo de alta plasticidad	
Estrato 4	CH - Arcilla de alta plasticidad	

CALICATA 3 - I	CALICATA 3 - DISTRITO LA VICTORIA		
Estrato 1	ML - Limo de baja plasticidad		
Estrato 2	ML - Limo de baja plasticidad		
Estrato 3	ML - Limo de baja plasticidad		
Estrato 4	ML - Limo de baja plasticidad		

CALICATA 4 - DISTRITO CIUDAD ETEN		
Estrato 1	SM - Arena limosa	
Estrato 2	Estrato 2 ML - Limo de baja plasticidad	
Estrato 3	CH - Arcilla de alta plasticidad	

CALICATA 5 - DISTRITO MONSEFÚ		
Estrato 1	ML - Limo de baja plasticidad	
Estrato 2	MH - Limo de alta plasticidad	
Estrato 3	ML - Limo de baja plasticidad	
Estrato 4	ML - Limo de baja plasticidad	
Estrato 5	ML - Limo de baja plasticidad	

CALICATA 6 - DISTRITO PICSI		
Estrato 1	ML - Limo de baja plasticidad	
Estrato 2	ML - Limo de baja plasticidad	
Estrato 3	ML - Limo de baja plasticidad	
Estrato 4	ML - Limo de baja plasticidad	

CALICATA 7 - DISTRITO PUBLO NUEVO		
Estrato 1	SP-SM - Arena pobremente graduada con limos de baja plasticidad	
Estrato 2	CL - Arcilla de baja plasticidad	
Estrato 3	ML - Limo de baja plasticidad	
Estrato 4	CH - Arcilla de alta plasticidad	
Estrato 5	CH - Arcilla de alta plasticidad	

5.1.5. Contenido de sales solubles totales

Se presenta el contenido de sales solubles de las 7 calicatas, según la NTP 339.152/ BS-1377. Se procedió de acuerdo con el ítem 4.3.5, página 85 capitulo IV. Los ensayos completos se exhiben en el anexo 6, página 228.

Tabla 26. Resumen del ensayo de contenido de sales, por estratos de las 7 calicatas de los 7 distritos de la región Lambayeque-Perú.

Denominación	Estratos	% Contenido de sales
	01	0.36
Calicata 1	02	0.39
Distrito Pimentel	03	0.27
	04	0.33
Denominación	Estratos	% Contenido de sales
	01	0.18
Calicata 2	02	0.24
Distrito Lambayeque	03	0.21
	04	0.15
Denominación	Estratos	% Contenido de sales
	01	0.33
Calicata 3	02	0.42
Distrito La Victoria	03	0.96
	04	0.42

Denominación	Estratos	% Contenido de sales
Calicata 4	01	0.42
Distrito Ciudad Eten	02	0.36
Distrito Ciddad Eteri	03	0.45
Denominación	Fatuataa	% Contenido de sales
Denominación	Estratos	
	01	0.51
Calicata 5	02	0.63
Distrito Monsefú	03	0.54
Distrito Moriseiu	04	0.69
	05	0.72
Denominación	Estratos	% Contenido de sales
	01	0.21
Calicata 6	02	0.27
Distrito Picsi	03	0.30
	04	0.36
Denominación	Estratos	% Contenido de sales
	01	0.30
Calicata 7	02	0.36
	03	0.36
Distrito Pueblo Nuevo	04	0.45

5.1.6. Peso específico relativo de sólidos.

Se obtuvieron los siguientes valores de pesos específicos de cada estrato de las 7 calicatas, siguiendo lo indicado en la N.T.P 339.131/ ASTM D-854. Los valores fueron determinados por medio de fiolas calibradas. Se procedió de acuerdo con el ítem 4.3.6, página 88 capitulo IV. Los ensayos completos se muestran en el anexo 7, página 235.

Tabla 27. Resumen del ensayo de peso específico, por estratos de las 7 calicatas de los 7 distritos de la región Lambayeque- Perú.

Denominación	Estratos	Peso específico relativo de sólidos a 20°C
Calicata 1	01	2.30
Distrito Pimentel	02	2.34
	03	2.67

	04	2.70
Denominación	Estratos	Peso específico relativo de sólidos a 20°C
Calicata 2	01	2.64
Calicata 2 Distrito	02	2.61
Lambayeque	03	2.61
Lambayeque	04	2.71
Denominación	Estratos	Peso específico relativo de sólidos a 20°C
	01	2.71
Calicata 3	02	2.69
Distrito La Victoria	03	2.31
	04	2.82
Denominación	Estratos	Peso específico relativo de sólidos a 20°C
Calicata 4	01	2.67
Distrito Ciudad	02	2.67
Distrito Oradad	02	
Eten	03	2.73
Eten	03	2.73
		2.73
Eten	03	2.73
Denominación	03 Estratos	2.73 Peso específico relativo de sólidos a 20°C
Denominación Calicata 5	03 Estratos 01	2.73 Peso específico relativo de sólidos a 20°C 2.72
Denominación	03 Estratos 01 02	2.73 Peso específico relativo de sólidos a 20°C 2.72 2.65

Denominación	Estratos	Peso específico relativo de sólidos a 20°C
	01	2.65
Calicata 6	02	2.60
Distrito Picsi	03	2.65
	04	2.68
Denominación	Estratos	Peso específico relativo de sólidos a 20°C
	01	2.7
Calicata 7	02	2.65
Distrito Pueblo	03	2.28
Nuevo	04	2.65
	05	2.68

5.1.7. Peso volumétrico de un suelo cohesivo.

Se muestra el cuadro de resumen de los valores obtenidos del ensayo de peso volumétrico de un suelo cohesivo, según la N.T.P 339.139/ BS 1377. Se procedió de acuerdo con el ítem 4.3.7, página 91 capitulo IV. Los ensayos completos se encuentran en el anexo 8, página 247.

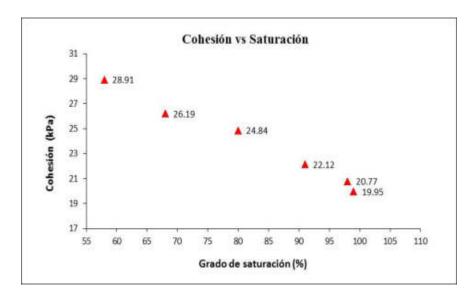
Tabla 28. Resumen del ensayo de peso volumétrico de un suelo cohesivo de las muestras inalteradas de las 7 calicatas.

Calicata 1 -	Distrito de Pimentel	Profund	didad: 2.70 m	
Estrato	Promedio densida	ad húmeda	Promedio densidad seca	
Inalterada	1.67 g/cn	n ³	1.38 g/cm ³	
Calicata 2 -	Distrito de Lambayeque		didad: 2.60 m	
Estrato	Promedio densida	ad húmeda	Promedio densidad seca	
Inalterada	1.79 g/cn	n ³	1.41 g/cm ³	
Calicata 3 -	Distrito de La Victoria		Profundidad: 2.70 m	
Estrato	Promedio densida	ad húmeda	Promedio densidad seca	
Inalterada	1.89 g/cn	n ³	1.62 g/cm ³	
Calicata 4 -	Distrito de Ciudad Eten		Profundidad: 2.40 m	
Estrato	Promedio densida	ad húmeda	Promedio densidad seca	
Inalterada	1.89 g/cn	n ³	1.56 g/cm ³	
Calicata 5 -				
Cancata 5 -	Distrito de Monsefú		Profundidad: 2.70 m	
Estrato	Distrito de Monsefú Promedio densida	ad húmeda	Profundidad: 2.70 m Promedio densidad seca	
Estrato Inalterada	Promedio densida		Promedio densidad seca	
Estrato Inalterada	Promedio densida 1.85 g/cn	n ³	Promedio densidad seca 1.57 g/cm ³	
Estrato Inalterada Calicata 6 -	Promedio densida 1.85 g/cn Distrito de Picsi	d húmeda	Promedio densidad seca 1.57 g/cm ³ Profundidad: 2.60 m	
Estrato Inalterada Calicata 6 - Estrato	Promedio densida 1.85 g/cn Distrito de Picsi Promedio densida	d húmeda	Promedio densidad seca 1.57 g/cm³ Profundidad: 2.60 m Promedio densidad seca	
Estrato Inalterada Calicata 6 - Estrato Inalterada	Promedio densida 1.85 g/cn Distrito de Picsi Promedio densida	d húmeda	Promedio densidad seca 1.57 g/cm³ Profundidad: 2.60 m Promedio densidad seca	
Estrato Inalterada Calicata 6 - Estrato Inalterada	Promedio densida 1.85 g/cn Distrito de Picsi Promedio densida 1.79 g/cm	d húmeda	Promedio densidad seca 1.57 g/cm³ Profundidad: 2.60 m Promedio densidad seca 1.48 g/cm³	

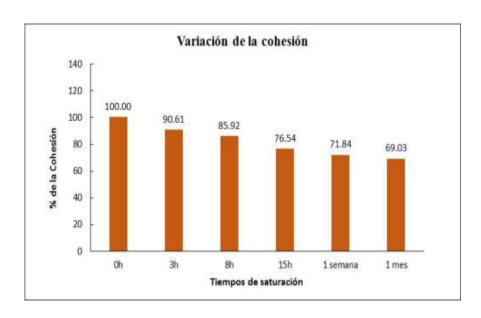
5.2. Ensayo de corte directo para determinar la cohesión.

Se presentan a continuación los resultados de las 7 calicatas de la variación de la cohesión a diferentes grados de saturación y los porcentajes en las que se encuentran en estos grados controlados por tiempos de 0 horas, 3 horas, 8 horas, 15 horas, 1 semana y 1 mes. Se procedió de acuerdo con el ítem 4.3.8, página 93 capitulo IV. Los ensayos completos se encuentran en el anexo 9, página 255.

5.2.1. Variación de la cohesión en el Distrito de Pimentel.


Tabla 29. Variación de la cohesión a diferentes grados de saturación, de la calicata 1- distrito Pimentel.

		0 Horas	3 Horas	8 Horas	15 Horas	1 Semana	1 Mes
C-1 MH	С	28.91	26.19	24.84	22.12	20.77	19.95
	S	58.00	68.00	80.00	91.00	98.00	99.00

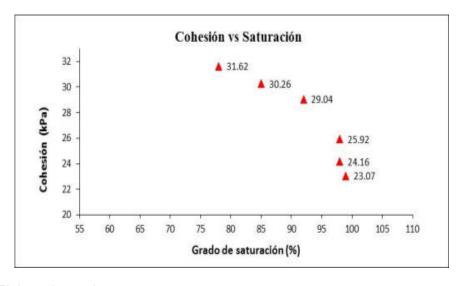

Fuente: Elaborado por los autores

Se exponen los resultados de la calicata del distrito de Pimentel, donde la muestra inalterada pertenece a un suelo tipo MH (Limo de alta plasticidad). Se observó que en las primeras 15 horas la cohesión del suelo disminuyó en un 23.46% esto sucede en el intervalo de 58% a 91% de saturación. Al 99% de saturación alcanzada en un mes la cohesión disminuye un 7.51% más.

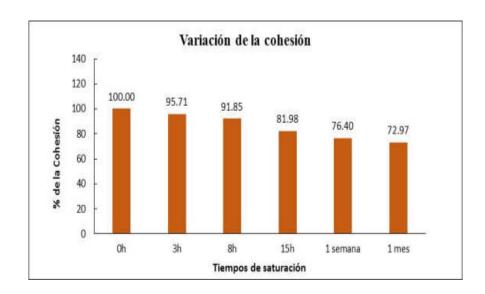
Figura 51. Variación de la cohesión a diferentes grados de saturación- Distrito Pimentel.

Figura 52. Variación del porcentaje de la cohesión en diferentes tiempos de saturación- distrito Pimentel.

5.2.2. Variación de la cohesión en el distrito de Lambayeque.


Tabla 30. Resumen de la cohesión a diferentes tiempos de saturación de la calicata 2- Distrito Lambayeque.

		0 Horas	3 Horas	8 Horas	15 Horas	1 Semana	1 Mes
C-2 CH	С	31.62	30.26	29.04	25.92	24.16	23.07
	S	78.00	85.00	92.00	98.00	98.00	99.00

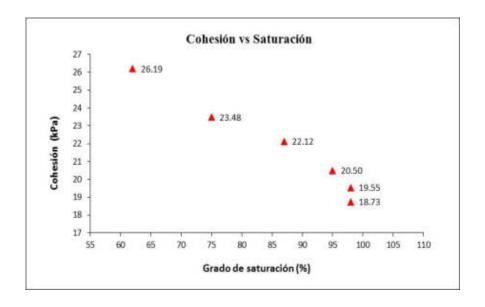

Fuente: Elaborado por los autores

Se indican los resultados de la calicata del distrito de Lambayeque, donde la muestra inalterada pertenece a un suelo tipo CH (Arcilla de alta plasticidad). Se observó que en las primeras 15 horas la cohesión del suelo disminuyó en un 18.02% esto sucede en el intervalo de 78% a 98% de saturación. Al 99% de saturación alcanzada en un mes la cohesión disminuye un 9.01 % más.

Figura 53. Variación de la cohesión a diferentes grados de saturación- distrito Lambayeque.

Figura 54. Variación del porcentaje de la cohesión en diferentes tiempos de saturación- distrito Lambayeque.

5.2.3. Variación de la cohesión en el distrito de La Victoria.


Tabla 31. Variación de la cohesión a diferentes grados de saturación, de la calicata 3- distrito La Victoria.

		0 Horas	3 Horas	8 Horas	15 Horas	1 Semana	1 Mes
C-3 ML	С	26.19	23.48	22.12	20.50	19.55	18.73
	S	62.00	75.00	87.00	95.00	98.00	98.00

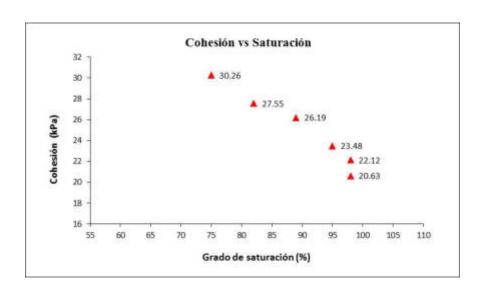

Fuente: Elaborado por los autores

Se señalan los resultados de la calicata del distrito de La Victoria, donde la muestra inalterada pertenece a un suelo tipo ML (Limo de baja plasticidad). Se observó que en las primeras 15 horas la cohesión del suelo disminuyó en un 21.75% esto sucede en el intervalo de 62% a 95% de saturación. Al 98% de saturación alcanzada en un mes la cohesión disminuye un 6.73 % más.

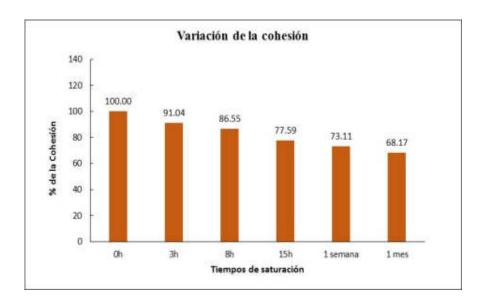
Figura 55. Variación de la cohesión a diferentes grados de saturación- distrito La Victoria.

Figura 56. Variación del porcentaje de la cohesión en diferentes tiempos de saturación- distrito La Victoria.

5.2.4. Variación de la cohesión en el distrito de Ciudad Eten.


Tabla 32. Variación de la cohesión a diferentes grados de saturación, de la calicata 4- distrito Ciudad Eten.

		0 Horas	3 Horas	8 Horas	15 Horas	1 Semana	1 Mes
C-4 CH	С	30.26	27.55	26.19	23.48	22.12	20.63
	S	75.00	82.00	93.00	97.00	98.00	98.00

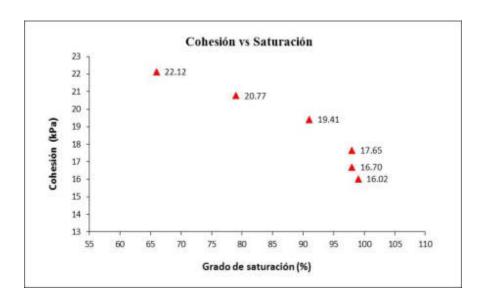

Fuente: Elaborado por los autores

Se presentan los resultados de la calicata del distrito de Ciudad Eten, donde la muestra inalterada pertenece a un suelo tipo CH (Arcilla de alta plasticidad). Se observó que en las primeras 15 horas la cohesión del suelo disminuyó en un 22.41% esto sucede en el intervalo de 75% a 97% de saturación. Al 98% de saturación alcanzada en un mes la cohesión disminuye un 9.41 % más.

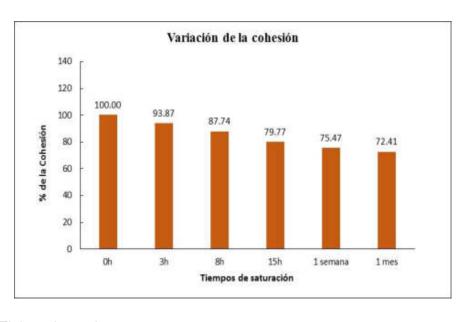
Figura 57. Variación de la cohesión a diferentes grados de saturación- distrito Ciudad Eten.

Figura 58. Variación del porcentaje de la cohesión en diferentes tiempos de saturación- distrito Ciudad Eten.

5.2.5. Variación de la cohesión en el distrito de Monsefú.


Tabla 33. Variación de la cohesión a diferentes grados de saturación, de la calicata 5- distrito Monsefú.

		0 Horas	3 Horas	8 Horas	15 Horas	1 Semana	1 Mes
C-5 ML	С	22.12	20.77	19.41	17.65	16.70	16.02
	S	66.00	79.00	91.00	98.00	98.00	99.00

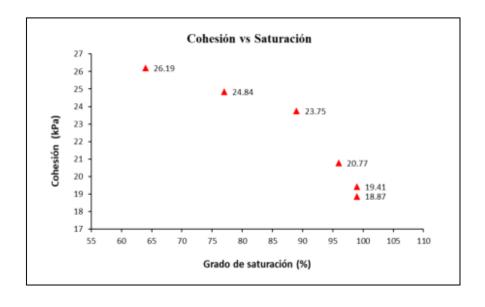

Fuente: Elaborado por los autores

Se señalan los resultados de la calicata del distrito de Monsefú, donde la muestra inalterada pertenece a un suelo tipo ML (Limo de baja plasticidad). Se observó que en las primeras 15 horas la cohesión del suelo disminuyó en un 20.23% esto sucede en el intervalo de 66% a 98% de saturación. Al 99% de saturación alcanzada en un mes la cohesión disminuye un 7.36 % más.

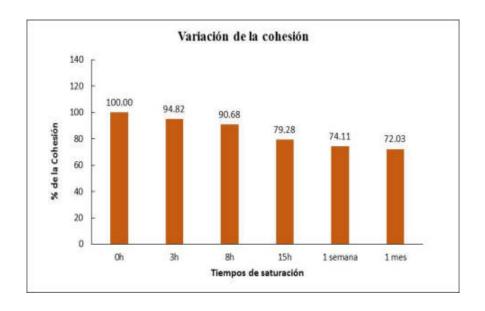
Figura 59. Variación de la cohesión a diferentes grados de saturación- distrito Monsefú.

Figura 60. Variación del porcentaje de la cohesión en diferentes tiempos de saturación- distrito Monsefú.

5.2.6. Variación de la cohesión en el distrito de Picsi.


Tabla 34. Variación de la cohesión a diferentes grados de saturación, de la calicata 6- distrito Picsi.

		0 Horas	3 Horas	8 Horas	15 Horas	1 Semana	1 Mes
C-6 ML	С	26.19	24.84	23.75	20.77	19.41	18.87
	S	64.00	77.00	89.00	96.00	99.00	99.00


Fuente: Elaborado por los autores

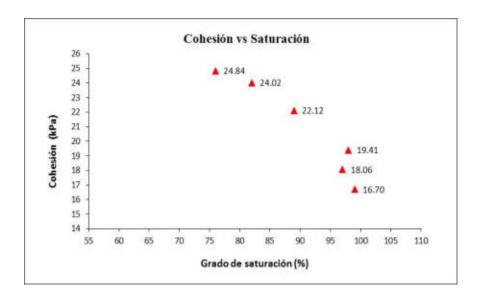
Se exponen los resultados de la calicata del distrito de Picsi, donde la muestra inalterada pertenece a un suelo tipo ML (Limo de baja plasticidad). Se observó que en las primeras 15 horas la cohesión del suelo disminuyó en un 20.72% esto sucede en el intervalo de 64% a 96% de saturación. Al 99% de saturación alcanzada en un mes la cohesión disminuye un 7.25 % más.

Figura 61. Variación de la cohesión a diferentes grados de saturación- distrito Picsi.

Figura 62. Variación del porcentaje de la cohesión en diferentes tiempos de saturación- distrito Picsi.

5.2.7. Variación de la cohesión en el distrito de Pueblo Nuevo.

Tabla 35. Variación de la cohesión a diferentes grados de saturación, de la calicata 7- distrito Pueblo Nuevo.


		0 Horas	3 Horas	8 Horas	15 Horas	1 Semana	1 Mes
C-7 CH	С	24.84	24.02	22.12	19.41	18.06	16.70
	S	76.00	82.00	92.00	98.00	97.00	99.00

Fuente: Elaborado por los autores

Se muestran los resultados de la calicata del distrito de Pueblo Nuevo, donde la muestra inalterada pertenece a un suelo tipo CH (Arcila de alta plasticidad). Se observó que en las primeras 15 horas la cohesión del suelo disminuyó en un 21.85% esto sucede en el intervalo de 76% a 98% de

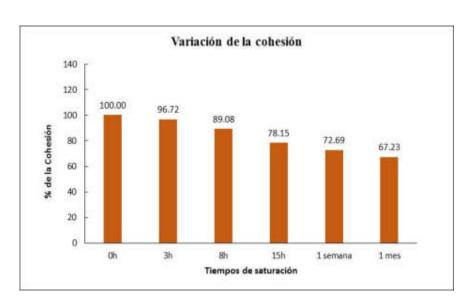

saturación. Al 99% de saturación alcanzada en un mes la cohesión disminuye un 10.92 % más.

Figura 63. Variación de la cohesión a diferentes grados de saturación- distrito Pueblo Nuevo.

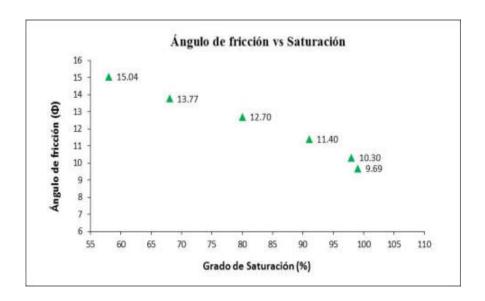
Fuente: Elaborado por los autores

Figura 64. Variación del porcentaje de la cohesión en diferentes tiempos de saturación- distrito Pueblo Nuevo.

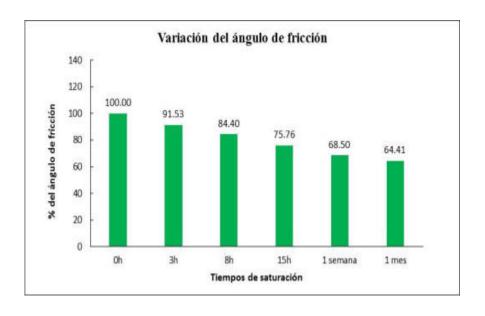
5.3. Ensayo de corte directo para determinar el ángulo de fricción.

Se presentan los resultados de las 7 calicatas de la variación del ángulo de fricción a diferentes grados de saturación y los porcentajes en las que se encuentran en estos grados controlados por tiempos de 0 horas, 3 horas, 8 horas, 15 horas, 1 semana y 1 mes. Se procedió de acuerdo con el ítem 4.3.8, página 93 capitulo IV. Los ensayos completos se encuentran en el anexo 9, página 255.

5.3.1. Variación del ángulo de fricción en el distrito de Pimentel.


Tabla 36. Variación de la cohesión a diferentes grados de saturación, de la calicata 1- Distrito Pimentel

		0 Horas	3 Horas	8 Horas	15 Horas	1 Semana	1 Mes
C-1 MH	Ф	15.04	13.77	12.70	11.40	10.30	9.69
	S	58.00	68.00	80.00	91.00	98.00	99.00


Fuente: Elaborado por los autores

Se muestran los resultados de la calicata del distrito de Pimentel, donde la muestra inalterada pertenece a un suelo tipo MH (Limo de alta plasticidad). Se observó que en las primeras 15 horas el ángulo de fricción del suelo disminuyó en un 24.24% esto sucede en el intervalo de 58% a 91% de saturación. Al 99% de saturación alcanzada en un mes el ángulo de fricción disminuye un 11.35% más.

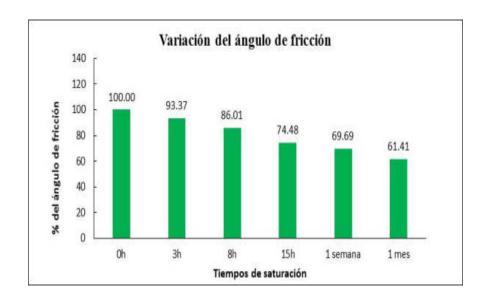
Figura 65. Variación de la cohesión a diferentes grados de saturación- Distrito Pimentel.

Figura 66. Variación del porcentaje de la cohesión en diferentes tiempos de saturación- distrito Pimentel.

5.3.2. Variación del ángulo de fricción en el distrito de Lambayeque.

Tabla 37. Variación de la cohesión a diferentes grados de saturación, de la calicata 2- distrito Lambayeque.

		0 Horas	3 Horas	8 Horas	15 Horas	1 Semana	1 Mes
C-2 CH	Φ	15.88	14.83	13.66	11.83	11.07	9.76
	S	78.00	85.00	92.00	98.00	98.00	99.00

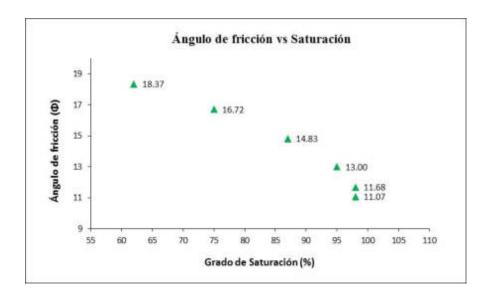

Fuente: Elaborado por los autores

Se exponen los resultados de la calicata del distrito de Lambayeque, donde la muestra inalterada pertenece a un suelo tipo CH (Arcilla de alta plasticidad). Se observó que en las primeras 15 horas el ángulo de fricción del suelo disminuyó en un 25.52% esto sucede en el intervalo de 78% a 98% de saturación. Al 99% de saturación alcanzada en un mes el ángulo de fricción disminuye un 13.07 % más.

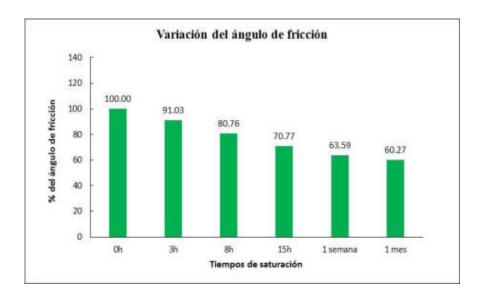
Figura 67. Variación de la cohesión a diferentes grados de saturación- Distrito Lambayeque.

Figura 68. Variación del porcentaje de la cohesión en diferentes tiempos de saturación- distrito Lambayeque.

5.3.3. Variación del ángulo de fricción en el distrito de La Victoria.


Tabla 38. Variación de la cohesión a diferentes grados de saturación, de la calicata 3- distrito La Victoria.

C-3 ML		0 Horas	3 Horas	8 Horas	15 Horas	1 Semana	1 Mes
	Φ	18.37	16.72	14.83	13.00	11.68	11.07
	S	62.00	75.00	87.00	95.00	98.00	98.00

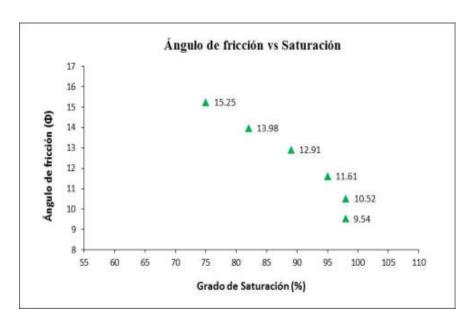

Fuente: Elaborado por los autores

Se indican los resultados de la calicata del distrito de La Victoria, donde la muestra inalterada pertenece a un suelo tipo ML (Limo de baja plasticidad). Se observó que en las primeras 15 horas el ángulo de fricción del suelo disminuyó en un 29.23% esto sucede en el intervalo de 62% a 95% de saturación. Al 98% de saturación alcanzada en un mes el ángulo de fricción disminuye un 10.50 % más.

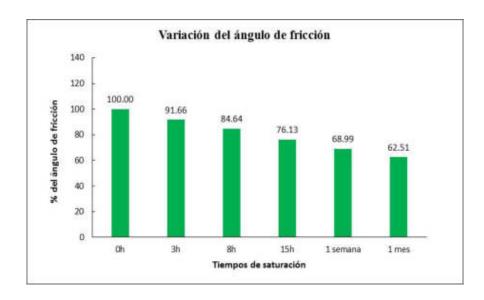
Figura 69. Variación de la cohesión a diferentes grados de saturación- distrito La Victoria.

Figura 70. Variación del porcentaje de la cohesión en diferentes tiempos de saturación- distrito La Victoria.

5.3.4. Variación del ángulo de fricción en el distrito de Ciudad Eten.


Tabla 39. Variación de la cohesión a diferentes grados de saturación, de la calicata 4- distrito Ciudad Eten.

C-4 CH		0 Horas	3 Horas	8 Horas	15 Horas	1 Semana	1 Mes
	Φ	15.25	13.98	12.91	11.61	10.52	9.54
	S	75.00	82.00	93.00	97.00	98.00	98.00


Fuente: Elaborado por los autores

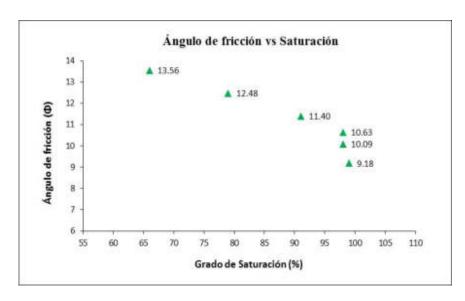
Los resultados de la calicata del distrito de Ciudad Eten, donde la muestra inalterada pertenece a un suelo tipo CH (Arcilla de alta plasticidad). Se observó que en las primeras 15 horas el ángulo de fricción del suelo disminuyó en un 23.87% esto sucede en el intervalo de 75% a 97% de saturación. Al 98% de saturación alcanzada en un mes el ángulo de fricción disminuye un 13.63 % más.

Figura 71. Variación de la cohesión a diferentes grados de saturación- distrito Ciudad Eten.

Figura 72. Variación del porcentaje de la cohesión en diferentes tiempos de saturación- distrito Ciudad Eten.

Fuente: Elaborado por los autores

5.3.5. Variación del ángulo de fricción en el distrito de Monsefú.


Tabla 40. Variación de la cohesión a diferentes grados de saturación, de la calicata 5- distrito Monsefú.

		0 Horas	3 Horas	8 Horas	15 Horas	1 Semana	1 Mes
C-5 ML	Φ	13.56	12.48	11.40	10.63	10.09	9.18
	S	66.00	79.00	91.00	98.00	98.00	99.00

Fuente: Elaborado por los autores

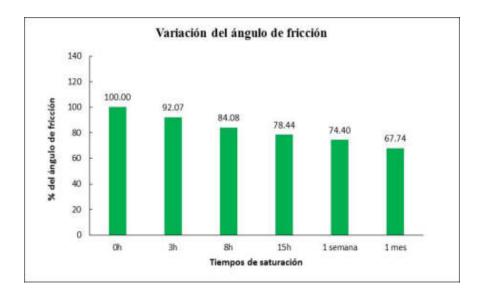

Se señalan los resultados de la calicata del distrito de Monsefú, donde la muestra inalterada pertenece a un suelo tipo ML (Limo de baja plasticidad). Se observó que en las primeras 15 horas el ángulo de fricción del suelo disminuyó en un 21.56% esto sucede en el intervalo de 66% a 98% de saturación. Al 99% de saturación alcanzada en un mes el ángulo de fricción disminuye un 10.70 % más.

Figura 73. Variación de la cohesión a diferentes grados de saturación- distrito Monsefú.

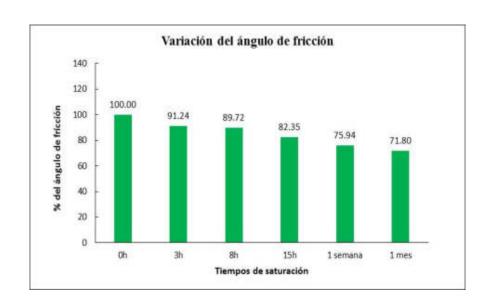
Fuente: Elaborado por los autores

Figura 74. Variación del porcentaje de la cohesión en diferentes tiempos de saturación-distrito Monsefú.

Fuente: Elaborado por los autores

5.3.6. Variación del ángulo de fricción en el distrito de Picsi.

Tabla 41. Variación de la cohesión a diferentes grados de saturación, de la calicata 6- distrito Picsi.


		0 Horas	3 Horas	8 Horas	15 Horas	1 Semana	1 Mes
C-6 ML	Φ	16.72	15.25	15.00	13.77	12.70	12.00
	S	64.00	77.00	89.00	96.00	99.00	99.00

Fuente: Elaborado por los autores

Se exponen los resultados de la calicata del distrito de Picsi, donde la muestra inalterada pertenece a un suelo tipo ML (Limo de baja plasticidad). Se observó que en las primeras 15 horas el ángulo de fricción del suelo disminuyó en un 17.65% esto sucede en el intervalo de 64% a 96% de saturación. Al 99% de saturación alcanzada en un mes el ángulo de fricción disminuye un 10.55 % más.

Figura 75. Variación de la cohesión a diferentes grados de saturación- distrito Picsi. **Fuente:** Elaborado por los autores

Figura 76. Variación del porcentaje de la cohesión en diferentes tiempos de saturación- Distrito Picsi

Fuente: Elaborado por los autores

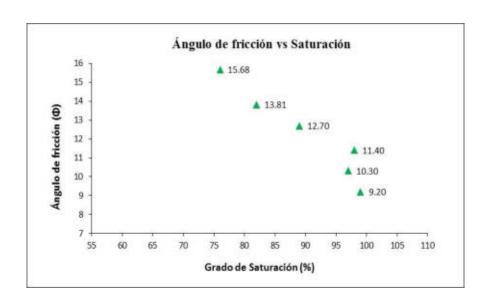
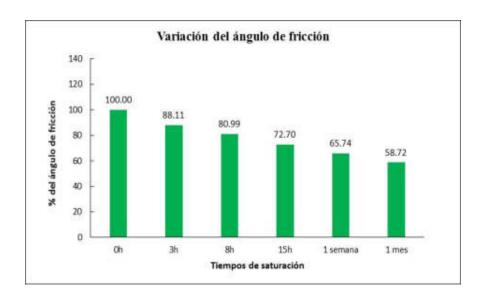

5.3.7. Variación del ángulo de fricción en el Distrito de Pueblo Nuevo.

Tabla 42. Variación de la cohesión a diferentes grados de saturación, de la calicata 7- Distrito Pueblo Nuevo.

		0 Horas	3 Horas	8 Horas	15 Horas	1 Semana	1 Mes
C-7 CH	Φ	15.68	13.81	12.70	11.40	10.30	9.20
	S	76.00	82.00	92.00	98.00	97.00	99.00


Fuente: Elaborado por los autores

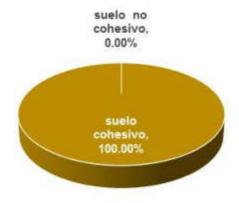
Se presentan los resultados de la calicata del distrito de Pueblo Nuevo, donde la muestra inalterada pertenece a un suelo tipo CH (Arcila de alta plasticidad). Se observó que en las primeras 15 horas el ángulo de fricción del suelo disminuyó en un 27.30% esto sucede en el intervalo de 76% a 98% de saturación. Al 99% de saturación alcanzada en un mes el ángulo de fricción disminuye un 13.98 % más.

Figura 77. Variación de la cohesión a diferentes grados de saturación- Distrito Pueblo Nuevo

Fuente: Elaborado por los autores

Figura 78. Variación del porcentaje de la cohesión en diferentes tiempos de saturación- distrito Pueblo Nuevo.

Fuente: Elaborado por los autores


CAPITULO VI. DISCUSIÓN

6.1. Contrastación de hipótesis

Hipótesis específica 1

"La comprobación de las características físicas de los suelos influyen positivamente al clasificarlos como cohesivos para determinar la variación de los parámetros de resistencia al corte con diferentes grados de saturación en siete distritos de la región Lambayeque-Perú"

La hipótesis planteada es válida, ya que los suelos de los siete distritos elegidos son cohesivos (como se identifica en la Figura 79). Estos suelos presentan mayor inestabilidad al variar el grado de saturación ante agentes externos; es decir, el agua al reemplazar el volumen del aire origina que el suelo pierda resistencia lo que sea su esfuerzo cortante disminuye al estar más saturado. Por ello, los parámetros de resistencia al corte varían y debido a la comprobación de estos suelos se puede realizar los ensayos respectivos.

Figura 79. Hipótesis específica 1 **Fuente:** Elaborado por los autores.

Hipótesis específica 2

"El aumento del grado de saturación influye en la disminución de la cohesión en suelos cohesivos en 7 distritos de la región Lambayeque-Perú"

La Hipótesis planteada es válida, ya que, según los resultados en el ensayo de corte directo, a diferentes tiempos, hubo una reducción de la cohesión hasta un 32.77%. En la Figura 80 se observa la reducción máxima de la cohesión en 1 mes de saturación.

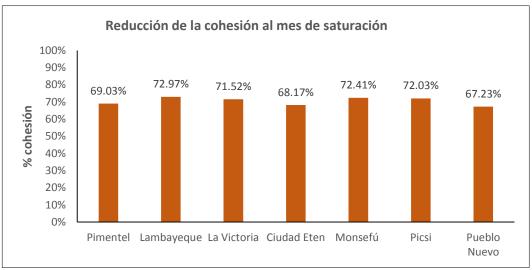


Figura 80. Hipótesis específica 2

Fuente: Elaborado por los autores (2019)

Hipótesis específica 3

"El aumento del grado de saturación influye en la disminución del ángulo de fricción en suelos cohesivos en 7 distritos de la región Lambayeque-Perú"

La hipótesis planteada es válida, debido a que, según los resultados en el ensayo de corte directo, a diferentes tiempos, hubo una reducción del ángulo de fricción hasta un 41.28%. En la Figura 81 se analiza la reducción máxima del ángulo de fricción en 1 mes de saturación.

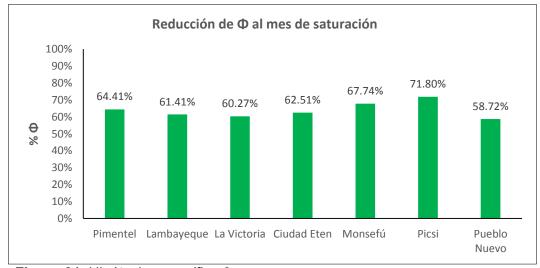


Figura 81. Hipótesis específica 3

Fuente: Elaborado por los autores (2019)

6.2. Comparación con otras investigaciones

Quijano (2015), encontró una reducción máxima del 37% en la cohesión y del 40% en el ángulo de fricción, esto ocurre después de 2 a 4 días continuos de lluvia al estar el suelo al 100% de saturación. Los porcentajes hallados son similares a los encontrados en nuestra investigación, con la diferencia que su estudio se basó en una sola zona, donde se extrajeron muestras inalteradas, las cuales tienen similar humedad y por ende grado de saturación. Al estar sometidas las muestras a diferentes tiempos no se pueden lograr el 100% de saturación, ya que el porcentaje de saturación, mediante el procedimiento seguido, no se puede controlar.

Betancur, Builes y Millán (2013), indica que al variar de 71% al 97% el grado de saturación, la cohesión tiene un incremento cerca del 43% y el ángulo de fricción disminuye en un 34%, aproximadamente. Estos no coinciden con los encontrados en la investigación; debido a que la cohesión en nuestro caso disminuye y no aumenta. Al entrar más agua al suelo y reemplazando al aire, en un estado parcialmente saturado, el suelo disminuye su resistencia cortante habiendo mayor desplazamiento y las partículas del suelo empiezan a separarse; por ello, no se puede indicar que la cohesión aumente.

Llique y Guerrero (2014), concluye que las arcillas de alta y baja plasticidad son expansivas y al aumentar el contenido de humedad en un suelo parcialmente saturado hay un incremento en el peso específico y el peso específico seco, pero que al aumentar el contenido de humedad en un suelo de condición saturada el agua no puede desplazar más aire e impide que las partículas sólidas se unan y se desplazan, esto lleva a una disminución del peso específico y por consiguiente de la fase sólida. En nuestra investigación ocurre lo mismo al variar el grado de saturación del 98% al 97% en tiempos de mayor a menor respectivamente, pudiendo evidenciar que la parte sólida disminuye al ser desplazado por el agua.

CONCLUSIONES

- 1. Se determinaron las características físicas de los suelos en los siete distritos, obteniendo lo siguiente:
 - ➤ Distrito Pimentel: tipo de suelo MH Limo de alta plasticidad, contenido de sales de 0.33%, peso específico relativo de sólidos de 2.70 y una densidad húmeda de 1.67 g/cm³.
 - Lambayeque: tipo de suelo CH- Arcilla de alta plasticidad, contenido de sales de 0.15%, peso específico relativo de sólidos de 2.71 y una densidad húmeda de 1.79 g/cm³.
 - ➤ La Victoria: tipo de suelo ML- Limo de baja plasticidad, contenido de sales de 0.42%, peso específico relativo de sólidos de 2.82 y una densidad húmeda de 1.89 g/cm³.
 - ➤ Ciudad Eten: tipo de suelo CH- Arcilla de alta plasticidad, contenido de sales de 0.45%, peso específico relativo de sólidos de 2.73 y una densidad húmeda de 1.89 g/cm³.
 - Monsefú: tipo de suelo ML- Limo de baja plasticidad, contenido de sales de 0.72%, peso específico relativo de sólidos de 2.78 y una densidad húmeda de 1.85 g/cm³.
 - ➤ Picsi: tipo de suelo ML- Limo de baja plasticidad, contenido de sales de 0.36%, peso específico relativo de sólidos de 2.68 y una densidad húmeda de 1.79 g/cm³.
 - Pueblo Nuevo: tipo de suelo CH- Arcilla de alta plasticidad, contenido de sales de 0.54%, peso específico relativo de sólidos de 2.68 y una densidad húmeda de 1.84 g/cm³.

Se concluye, que los suelos son cohesivos al ser arcillas de alta plasticidad y limos de baja y alta plasticidad, el peso específico relativo de sólidos es aproximado debido a que se encuentran en zonas de mismas características geográficas. Cabe indicar, que esta clasificación se ha considerado tomando los resultados del estrato de mayor profundidad, donde las muestras inalteradas fueron extraídas.

2. En el distrito de Pimentel, la cohesión disminuye hasta un 30.97% al estar el suelo en exposición con el agua durante 1 mes, pero la variación significativa se evidencia en las primeras 15 horas con una disminución del 23.46%, esto se debe a que el suelo de tipo MH (Limo de alta plasticidad) se encuentra en un estado de saturación inicial del 58% y su volumen de aire es ocupado por el agua al transcurrir las horas, ello cambia la composición interna del suelo y su esfuerzo cortante disminuye al estar más saturado. Entre las 15 horas y 1 semana el suelo alcanza el 100% de saturación donde disminuyen la cohesión, la densidad seca y la masa del suelo.

En el distrito de Lambayeque, la cohesión disminuye hasta un 27.03% al estar el suelo en exposición con el agua durante 1 mes, aun así la variación de esta fue de forma gradual sin tener una máxima disminución en un tiempo determinado, esto se debe a que el suelo de tipo CH (Arcilla de alta plasticidad) se encuentra en un estado de saturación inicial del 78% y su volumen de aire es ocupado por el agua al transcurrir las horas, no obstante la composición interna del suelo y su esfuerzo cortante disminuye al estar más saturado. Entre las 8 horas y 15 horas el suelo alcanza el 100% de saturación donde disminuyen la cohesión, la densidad seca y la masa del suelo.

En el distrito de La Victoria, la cohesión disminuye hasta un 28.48% al estar el suelo en exposición con el agua durante 1 mes, pese a ello la variación significativa se evidencia en las primeras 15 horas con una disminución del 21.75%, esto se debe a que el suelo de tipo ML (Limo de baja plasticidad) se encuentra en un estado de saturación inicial del 62% y su volumen de aire es ocupado por el agua al transcurrir las horas, ello transforma la composición interna del suelo y su esfuerzo cortante disminuye al estar más saturado. Entre las 15 horas y 1 semana el suelo alcanza el 100% de saturación donde disminuyen la cohesión, la densidad seca y la masa del suelo.

En el distrito de Ciudad Eten, la cohesión disminuye hasta un 31.83% al estar el suelo en exposición con el agua durante 1 mes, sin embargo la

variación de esta fue de forma gradual sin tener una máxima disminución en un tiempo determinado, esto se debe a que el suelo de tipo CH (Arcilla de alta plasticidad) se encuentra en un estado de saturación inicial del 75% y su volumen de aire es ocupado por el agua al transcurrir las horas, ello modifica la composición interna del suelo y su esfuerzo cortante disminuye al estar más saturado. Entre las 8 horas y 15 horas el suelo alcanza el 100% de saturación donde disminuyen la cohesión, la densidad seca y la masa del suelo.

En el distrito de Monsefú, la cohesión disminuye hasta un 27.59% al estar el suelo en exposición con el agua durante 1 mes, sin embargo la variación significativa se evidencia en las primeras 15 horas con una disminución del 20.23%, esto se debe a que el suelo de tipo ML (Limo de baja plasticidad) se encuentra en un estado de saturación inicial del 66% y su volumen de aire es ocupado por el agua al transcurrir las horas, ello varia la composición interna del suelo y su esfuerzo cortante disminuye al estar más saturado. Entre las 15 horas y 1 semana el suelo alcanza el 100% de saturación donde disminuyen la cohesión, la densidad seca y la masa del suelo.

En el distrito de Picsi, la cohesión disminuye hasta un 27.97% al estar el suelo en exposición con el agua durante 1 mes, aunque la variación significativa se evidencia en las primeras 15 horas con una disminución del 20.72%, esto se debe a que el suelo de tipo ML (Limo de baja plasticidad) se encuentra en un estado de saturación inicial del 64% y su volumen de aire es ocupado por el agua al transcurrir las horas, ello altera la composición interna del suelo y su esfuerzo cortante disminuye al estar más saturado. Entre las 15 horas y 1 semana el suelo alcanza el 100% de saturación donde disminuyen la cohesión, la densidad seca y la masa del suelo.

En el distrito de Pueblo Nuevo, la cohesión disminuye hasta un 32.77% al estar el suelo en exposición con el agua durante 1 mes, aun así la variación

de esta fue de forma gradual sin tener una máxima disminución en un tiempo determinado, esto se debe a que el suelo de tipo CH (Arcilla de alta plasticidad) se encuentra en un estado de saturación inicial del 76% y su volumen de aire es ocupado por el agua al transcurrir las horas, ello modifica la composición interna del suelo y su esfuerzo cortante disminuye al estar más saturado. Entre las 8 horas y 15 horas el suelo alcanza el 100% de saturación donde disminuyen la cohesión, la densidad seca y la masa del suelo.

En conclusión, en los suelos tipo ML (Limo de baja plasticidad) y MH (Limo de baja plasticidad) tienden absorber mayor cantidad de agua en las primeras 15 horas de contacto, sin embargo, los suelos tipo CH (arcilla de alta plasticidad) absorben agua de forma gradual hasta el mes de saturación. Por ello, se evidencia mayor porcentaje de pérdida de la cohesión en los suelos tipo CH, debido a que son expansivos y pierden masa al ser desplazada por el agua que ingresa en sus poros.

3. En el distrito de Pimentel, el ángulo de fricción disminuye hasta un 35.59% al estar el suelo en exposición con el agua durante 1 mes, aun así la variación significativa se evidencia en las primeras 15 horas con una disminución del 24.24%, esto se debe a que el suelo de tipo MH (Limo de alta plasticidad) se encuentra en un estado de saturación inicial del 58% y su volumen de aire es ocupado por el agua al transcurrir las horas, ello transforma la composición interna del suelo y su esfuerzo cortante disminuye al estar más saturado. Entre las 15 horas y 1 semana el suelo alcanza el 100% de saturación donde disminuyen la cohesión, la densidad seca y la masa del suelo.

En el distrito de Lambayeque, el ángulo de fricción disminuye hasta un 38.59% al estar el suelo en exposición con el agua durante 1 mes, no obstante la variación de esta fue de forma gradual sin tener una máxima disminución en un tiempo determinado, esto se debe a que el suelo de tipo CH (Arcilla de alta plasticidad) se encuentra en un estado de saturación inicial del 78% y su

volumen de aire es ocupado por el agua al transcurrir las horas, ello varia la composición interna del suelo y su esfuerzo cortante disminuye al estar más saturado. Entre las 8 horas y 15 horas el suelo alcanza el 100% de saturación donde disminuyen la cohesión, la densidad seca y la masa del suelo.

En el distrito de La Victoria, el ángulo de fricción disminuye hasta un 39.73% al estar el suelo en exposición con el agua durante 1 mes, a pesar de ello, la variación significativa se evidencia en las primeras 15 horas con una disminución del 29.23%, esto se debe a que el suelo de tipo ML (Limo de baja plasticidad) se encuentra en un estado de saturación inicial del 62% y su volumen de aire es ocupado por el agua al transcurrir las horas, ello altera la composición interna del suelo y su esfuerzo cortante disminuye al estar más saturado. Entre las 15 horas y 1 semana el suelo alcanza el 100% de saturación donde disminuyen la cohesión, la densidad seca y la masa del suelo.

En el distrito de Ciudad Eten, el ángulo de fricción disminuye hasta un 37.49% al estar el suelo en exposición con el agua durante 1 mes, aun así la variación de esta fue de forma gradual sin tener una máxima disminución en un tiempo determinado, esto se debe a que el suelo de tipo CH (Arcilla de alta plasticidad) se encuentra en un estado de saturación inicial del 75% y su volumen de aire es ocupado por el agua al transcurrir las horas, ello modifica la composición interna del suelo y su esfuerzo cortante disminuye al estar más saturado. Entre las 8 horas y 15 horas el suelo alcanza el 100% de saturación donde disminuyen la cohesión, la densidad seca y la masa del suelo.

En el distrito de Monsefú, el ángulo de fricción disminuye hasta un 32.26% al estar el suelo en exposición con el agua durante 1 mes, no obstante la variación significativa se evidencia en las primeras 15 horas con una disminución del 21.56%, esto se debe a que el suelo de tipo ML (Limo de baja plasticidad) se encuentra en un estado de saturación inicial del 66% y su

volumen de aire es ocupado por el agua al transcurrir las horas, ello varía la composición interna del suelo y su esfuerzo cortante disminuye al estar más saturado. Entre las 15 horas y 1 semana el suelo alcanza el 100% de saturación donde disminuyen la cohesión, la densidad seca y la masa del suelo.

En el distrito de Picsi, el ángulo de fricción disminuye hasta un 28.20% al estar el suelo en exposición con el agua durante 1 mes, aunque la variación significativa se evidencia en las primeras 15 horas con una disminución del 17.65%, esto se debe a que el suelo de tipo ML (Limo de baja plasticidad) se encuentra en un estado de saturación inicial del 64% y su volumen de aire es ocupado por el agua al transcurrir las horas, ello varía la composición interna del suelo y su esfuerzo cortante disminuye al estar más saturado. Entre las 15 horas y 1 semana el suelo alcanza el 100% de saturación donde disminuyen la cohesión, la densidad seca y la masa del suelo.

En el distrito de Pueblo Nuevo, el ángulo de fricción disminuye hasta un 41.28% al estar el suelo en exposición con el agua durante 1 mes, sin embargo la variación de esta fue de forma gradual sin tener una máxima disminución en un tiempo determinado, esto se debe a que el suelo de tipo CH (Arcilla de alta plasticidad) se encuentra en un estado de saturación inicial del 76% y su volumen de aire es ocupado por el agua al transcurrir las horas, ello modifica la composición interna del suelo y su esfuerzo cortante disminuye al estar más saturado. Entre las 8 horas y 15 horas el suelo alcanza el 100% de saturación donde disminuyen la cohesión, la densidad seca y la masa del suelo.

1

En consecuencia, en los suelos tipo ML (Limo de baja plasticidad) y MH (Limo de baja plasticidad) tienden absorber mayor cantidad de agua en las primeras 15 horas de contacto, pero los suelos tipo CH (arcilla de alta plasticidad) absorben agua de forma gradual hasta el mes de saturación. Por

ello, se evidencia mayor porcentaje de pérdida del ángulo de fricción en los suelos tipo CH, debido a que son expansivos y pierden masa al ser desplazada por el agua que ingresa en sus poros.

En conclusión, de acuerdo a la hipótesis general existe una disminución en los parámetros de resistencia al corte al aumentar el grado de saturación, siendo las arcillas de alta plasticidad que disminuyen más que los limos por ser expansivas, ya que su fase sólida se va esparciendo por el agua. Esto se debe a la baja permeabilidad que tienen los suelos cohesivos

RECOMENDACIONES

- Proteger las muestras alteradas e inalteradas para conservar la humedad de las mismas, ya que es el factor más importante al influir en el grado de saturación.
- Realizar estudios más especializados para corroborar la variación de los parámetros de resistencia al corte en suelos cohesivos de forma más real, ya que el suelo no todo el tiempo estaría en contacto con el agua, sino que existe el fenómeno de evapotranspiración, donde el suelo expulsa el agua, variando los parámetros de resistencia al corte.
- Llevar a cabo ensayos de expansión de suelos arcillosos para ver el comportamiento al entrar en contacto con el agua.
- Verificar las calibraciones de la máquina de corte directo e instrumentos de laboratorio para obtener valores más precisos.

FUENTES DE INFORMACIÓN

- Badillo, E., & Rodríguez, A. (2005). Mecánica de Suelos. Tomo 1 Fundamentos de la Mecánica de Suelos. México D.F: LIMUSA. Obtenido de https://es.slideshare.net/alejandrocarrillo19/mecanica-desuelos-juarez-badillo-15294009
- Bañón, L., & Beviá, J. (2000). Manual de carreteras. *Construccion mantenimiento* 2. ISBN. Obtenido de http://rua.ua.es/dspace/handle/10045/1787
- Bazán, R. (Marzo de 2017). Manual de Procedimientos de los Análisis de Suelos y Agua con Fines de Riego. Obtenido de Repositorio Institucional Instituto Nacional de Innovación Agraria: http://repositorio.inia.gob.pe/bitstream/inia/504/1/Bazan-Manual_de_procedimientos_de_los.pdf
- Berry, P., & Reid, D. (1993). *Mecánica de Suelos*. McGraw Hill. Obtenido de https://es.slideshare.net/antuanets/mecanica-desuelos-peter-l-berry
- Betancur, Y., Builes, M., & Millián, Á. (2013). Variación de las Propiedades Mecánicas de Arcillas Alófanas en Colombia al Variar el Grado de Saturación. *EIA*, 173-181. Obtenido de http://www.scielo.org.co/pdf/eia/n20/n20a15.pdf
- Castillo, A. (2010). Análisis del Efecto de la Cohesión Aparente en el Cálculo de Estabilidad de Taludes. Obtenido de http://www.kerwa.ucr.ac.cr/handle/10669/73043
- Córdova, Y., & Montalvan, C. (2017). Zonificación Geotécnica del Barrio

 Centro del Distrito de Picota, Provincia de Picota Región San Martín.

 Obtenido de http://repositorio.unsm.edu.pe/handle/11458/2724?show=full
- Crespo, C. (2004). *Mecánica de Suelos y Cimentaciones 5a ed.* México: Limusa. Obtenido de https://es.slideshare.net/adonay553/crespo-villalaz-carlos-mecanica-de-suelos-y-cimentaciones-5ed
- Das, B. (2013). Fundamentos de Ingeniería Geotécnica. Cengage Learning.

- Dranichnikova, T. (2013). *Nuevas Tendencias en la Mecánica de Suelos*.

 Obtenido de https://www.redalyc.org/pdf/5055/505554806004.pdf
- González, L. (2004). *Ingeniería Geológica*. Madrid: Person Educación.

 Obtenido de

 https://es.slideshare.net/victorflaviomanriquezuniga/ingenieriageologica-vallejos
- Guerra, J. (2018). *Mecánica de suelos. Conceptos básicos y aplicaciones.*España: Dextra.
- Hoyos, F. (2012). *Geotecnia Dicionario Básico*. Medellín: Derechos Editoriales Fabián Hoyos Patiño.
- INDECI. (s.f.). BOLETIN ESTADISTICO VIRTUAL DE LA GESTION REACTIVA. Perú. Obtenido de https://www.indeci.gob.pe/wpcontent/uploads/2019/01/201708091706381.pdf
- Jimenez, J., & Justo, J. (1975). Geotecnia y Cimientos I. Madrid: Rueda.
- Lambe, T., & Whitman, R. (2004). *Mecánica de Suelos.* México: Limusa.
- Llique, R., & Guerrero, A. (2014). *Influencia de la humedad de compactación* en el comportamiento volumétrico de los suelos arcillosos. Obtenido de http://revistas.unitru.edu.pe/index.php/PGM/article/view/795/722
- Meza, V. (2012). Suelos Parcialmente Saturados, de la Investigación a la Cátedra Universitaria. *Revista Electronica UN Boletín Ciencias de la Tierra*. Obtenido de http://www.bdigital.unal.edu.co/31933/
- Ortiz, R. (2017). Influencia del Nivel Freático en la Determinación de Capacidad Portante de Suelos, en Cimentaciones Superficiales, Distrito de Pilcomayo en 2017. Obtenido de http://repositorio.uncp.edu.pe/handle/UNCP/3871
- PUCP. (Marzo de 2012). Guía del Laboratorio de Mecánica de Suelos.

 Obtenido de https://es.scribd.com/document/220604119/2-PUCPGuia-de-Laboratorio-de-Mecanica-de-Suelos-2013-1-DensPg61-64

- Quijano, A. (2013). Variaciones en la Cohesión y en el Ángulo de Fricción Interna de un Suelo Debidas a Cambios en su Saturación. Caso Depósito de Cenizas Volcánicas Meteorizadas del Valle de San Nicolás. (Tesis de pregrado). Obtenido de https://repository.eia.edu.co/handle/11190/277
- Quispe, J., & Mamani, F. (2017). Estudio de Suelos para Cimentaciones de Edificaciones en la Zona de Alto Locumba del Distrito de Locumba Provincia Jorge Basadre, Departamento de Tacna. Obtenido de http://repositorio.upt.edu.pe/handle/UPT/345
- RPP. (14 de Marzo de 2017). Una impresionante nubosidad provocó alarma en Chiclayo. Chiclayo, Lambayeque, Perú.
- SENAMHI. (18 de Marzo de 2017). SENAMHI. Obtenido de https://www.senamhi.gob.pe/?p=aviso-meteorologico-detalle&a=2017&b=038&c=022&d=SENA
- Villalobos, R. (2014). Estudio de la Capacidad Portante de los Suelos del Centro Poblado Las Palmas, Distrito de la Banda de Shilcayo. Obtenido de http://repositorio.unsm.edu.pe/handle/11458/299

ANEXOS

ANEXO 01: MATRIZ DE CONSISTENCIA	145
ANEXO 02: FORMATO DE CONTENIDO DE HUMEDAD	147
ANEXO 03: FORMATO DE ANÁLISIS GRANULOMÉTRICO	159
ANEXO 04: FORMATO DE LÍMITE LÍQUIDO, LÍMITE PLÁSTICO E	
INDICE DE PLASTICIDAD	189
ANEXO 05: FORMATO DE CLASIFICACION DE SUELOS (SUCS)	219
ANEXO 06: FORMATO DE CONTENIDO DE SALES SOLUBLES	228
ANEXO 07: FORMATO DE PESO ESPECÍFICO RELATIVO	235
ANEXO 08: FORMATO PESO VOLUMÉTRICO SUELO COHESIVO.	247
ANEXO 09: FORMATO DE CORTE DIRECTO	255
ANEXO 10: PANEL FOTOGRÁFICO	428
ANEXO 11: CALIBRACIÓN MÁQUINAS LABORATORIO USMP-FN	461
ANEXO 12: ENCUESTAS EXPERTOS	476
ANEXO 13: MAPAS INDECI	511

ANEXO 01: MATRIZ DE CONSISTENCIA

ANEXO 02: FORMATO DE CONTENIDO DE HUMEDAD

EL RESUMEN SE DETALLA EN EL ÍTEM 5.1.1, PÁGINA 97

CAPÍTULO V

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL CONTENIDO DE HUMEDAD N.T.P. 339.127 / ASTM D-2216

Tesis	Variación de los parámetros de resistencia al corte con diferentes grados de
16313	saturación en suelos cohesivos en siete distritos de la región Lambayeque-Perú

<u>Identificación</u>

Calicata	: 01	Ubicación	Distrito Pimentel	Profundidad	: 2.70 m
----------	------	-----------	-------------------	-------------	----------

Nº	Denominación	Und.	Estrato 01		
1	Profundidad	m	0.10 m - 0.80 m		
2	Tara		01	02	03
3	Masa de muestra húmeda + tara	g	75.68	87.76	85.66
4	Masa de muestra seca + tara	g	73.68	85.26	83.27
5	Masa de la tara	g	41.49	43.55	42.38
6	Masa de muestra seca	g	32.19	41.71	40.89
7	Masa del agua	g	2.00	2.50	2.39
8	Contenido de humedad	%	6.20	6.00	5.80
9	Promedio	%		6.00	

Nº	Denominación	Und.	Estrato 02			
1	Profundidad	m		0.80 m - 1.50 m		
2	Tara		01 02 03			
3	Masa de muestra húmeda + tara	g	80.71	87.46	101.83	
4	Masa de muestra seca + tara	g	77.03	83.04	97.47	
5	Masa de la tara	g	42.24	35.88	57.85	
6	Masa de muestra seca	g	34.79	47.16	39.62	
7	Masa del agua	g	3.68	4.42	4.36	
8	Contenido de humedad	%	10.60	9.40	11.00	
9	Promedio	%		10.30		

Nº	Denominación	Und.	Estrato 03			
1	Profundidad	m		1.50 m - 2.20 m		
2	Tara		01	02	03	
3	Masa de muestra húmeda + tara	g	80.54	87.30	87.70	
4	Masa de muestra seca + tara	g	75.54	81.16	81.76	
5	Masa de la tara	g	42.28	41.52	41.75	
6	Masa de muestra seca	g	33.26	39.64	40.01	
7	Masa del agua	g	5.00	6.14	5.94	
8	Contenido de humedad	%	15.00	15.50	14.90	
9	Promedio	%		15.10		

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL CONTENIDO DE HUMEDAD N.T.P. 339.127 / ASTM D-2216

Nº	Denominación	Und.	Estrato 04			
1	Profundidad	m		2.20 m - 2.70 m		
2	Tara		01	02	03	
3	Masa de muestra húmeda + tara	g	83.62	81.62	87.52	
4	Masa de muestra seca + tara	g	77.04	75.33	80.63	
5	Masa de la tara	g	42.01	41.29	43.1	
6	Masa de muestra seca	g	35.03	34.04	37.53	
7	Masa del agua	g	6.58	6.29	6.89	
8	Contenido de humedad	%	18.80	18.50	18.40	
9	Promedio	%		18.60		

Nº	Denominación	Und.	Inalteradas		
1	Profundidad	m	2.40 m		
2	Tara		01	02	03
3	Masa de muestra húmeda + tara	g	85.20	85.70	84.78
4	Masa de muestra seca + tara	g	77.61	78.27	77.21
5	Masa de la tara	g	41.91	43.73	44.25
6	Masa de muestra seca	g	35.70	34.54	32.96
7	Masa del agua	g	7.59	7.43	7.57
8	Contenido de humedad	%	21.30	21.50	23.00
9	Promedio	%		21.90	

Identificación

Calicata	: 02	Ubicación	: Distrito Lambayeque	Profundidad	: 2.60 m
----------	------	-----------	-----------------------	-------------	----------

Nº	Denominación	Und.	Estrato 01		
1	Profundidad	m	0.20 m - 1.10 m		
2	Tara		01	02	03
3	Masa de muestra húmeda + tara	g	61.36	68.85	67.95
4	Masa de muestra seca + tara	g	57.70	64.17	63.04
5	Masa de la tara	g	28.94	28.08	28.35
6	Masa de muestra seca	g	28.76	36.09	34.69
7	Masa del agua	g	3.66	4.68	4.91
8	Contenido de humedad	%	12.70	13.00	14.20
9	Promedio	%		13.30	

ESCUELA DE INGENIERÍA CIVIL TITULO EN INGENIERÍA CIVIL CONTENIDO DE HUMEDAD N.T.P. 339.127 / ASTM D-2216

Nº	Denominación	Und.	Estrato 02			
1	Profundidad	m	1.10 m - 1.80 m			
2	Tara		01	02	03	
3	Masa de muestra húmeda + tara	g	62.93	59.36	56.37	
4	Masa de muestra seca + tara	g	58.10	55.21	52.77	
5	Masa de la tara	g	28.19	28.44	28.14	
6	Masa de muestra seca	g	29.91	26.77	24.63	
7	Masa del agua	g	4.83	4.15	3.60	
8	Contenido de humedad	%	16.10	15.50	14.60	
9	Promedio	%		15.40		

Nº	Denominación	Und.	Estrato 03		
1	Profundidad	m	1.80 m - 2.20 m		
2	Tara		01	02	03
3	Masa de muestra húmeda + tara	g	68.03	77.36	65.36
4	Masa de muestra seca + tara	g	62.15	69.88	60.23
5	Masa de la tara	g	28.35	28.28	28.34
6	Masa de muestra seca	g	33.80	41.60	31.89
7	Masa del agua	g	5.88	7.48	5.13
8	Contenido de humedad	%	17.40	18.00	16.10
9	Promedio	%		17.20	

Nº	Denominación	Und.		Estrato 04		
1	Profundidad	m		2.20 m - 2.60 m		
2	Tara		01	02	03	
3	Masa de muestra húmeda + tara	g	59.02	60.20	63.87	
4	Masa de muestra seca + tara	g	53.19	54.10	57.11	
5	Masa de la tara	g	28.37	28.16	28.41	
6	Masa de muestra seca	g	24.82	25.94	28.70	
7	Masa del agua	g	5.83	6.10	6.76	
8	Contenido de humedad	%	23.50	23.50	23.60	
9	Promedio	%		23.50		

Nº	Denominación	Und.		Inalteradas		
1	Profundidad	m	2.30 m			
2	Tara		01	02	03	
3	Masa de muestra húmeda + tara	g	67.69	74.25	71.71	
4	Masa de muestra seca + tara	g	62.14	67.37	65.35	
5	Masa de la tara	g	41.60	42.28	41.65	
6	Masa de muestra seca	g	20.54	25.09	23.70	
7	Masa del agua	g	5.55	6.88	6.36	
8	Contenido de humedad	%	27.00	27.40	26.80	
9	Promedio	%		27.10		

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL CONTENIDO DE HUMEDAD N.T.P. 339.127 / ASTM D-2216

Identificación

Calicata	: 03	Ubicación	: Distrito La Victoria	Profundidad	: 2.70 m
----------	------	-----------	------------------------	-------------	----------

N°	Denominación	Und.	Estrato 01			
1	Profundidad	m	0.10 m - 0.70 m			
2	Tara		01	02	03	
3	Masa de muestra húmeda + tara	g	82.93	80.41	86.95	
4	Masa de muestra seca + tara	g	78.60	76.41	82.17	
5	Masa de la tara	g	41.49	43.55	42.38	
6	Masa de muestra seca	g	37.11	32.86	39.79	
7	Masa del agua	g	4.33	4.00	4.78	
8	Contenido de humedad	%	11.70	12.20	12.00	
9	Promedio	%		12.00		

N°	Denominación	Und.	Estrato 02		
1	Profundidad	m	0.70 m - 1.50 m		
2	Tara		01	02	03
3	Masa de muestra húmeda + tara	g	83.29	79.65	95.65
4	Masa de muestra seca + tara	g	77.64	73.62	90.42
5	Masa de la tara	g	42.24	35.88	37.85
6	Masa de muestra seca	g	35.40	37.74	52.57
7	Masa del agua	g	5.65	6.03	5.23
8	Contenido de humedad	%	16.00	16.00	9.90
9	Promedio	%		14.00	

N°	Denominación	Und.		Estrato 03		
1	Profundidad	m		1.50 m - 1.80 m		
2	Tara		01	02	03	
3	Masa de muestra húmeda + tara	g	90.28	94.82	94.96	
4	Masa de muestra seca + tara	g	83.9	87.88	88.17	
5	Masa de la tara	g	42.28	41.52	41.75	
6	Masa de muestra seca	g	41.62	46.36	46.42	
7	Masa del agua	g	6.38	6.94	6.79	
8	Contenido de humedad	%	15.30	15.00	14.60	
9	Promedio	%		15.00		

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÍA CIVIL CONTENIDO DE HUMEDAD N.T.P. 339.127 / ASTM D-2216

N°	Denominación	Und.		Estrato 04			
1	Profundidad	m	1.80 m - 2.70 m				
2	Tara		01	02	03		
3	Masa de muestra húmeda + tara	g	83.09	79.68	99		
4	Masa de muestra seca + tara	g	77.64	73.62	90.42		
5	Masa de la tara	g	42.24	35.88	37.85		
6	Masa de muestra seca	g	35.40	37.74	52.57		
7	Masa del agua	g	5.45	6.06	8.58		
8	Contenido de humedad	%	15.40	16.10	16.30		
9	Promedio	%		15.90			

N°	Denominación	Und.		Inalteradas		
1	Profundidad	m	2.20 m			
2	Tara		01	02	03	
3	Masa de muestra húmeda + tara	g	77.87	73.84	83.57	
4	Masa de muestra seca + tara	g	72.63	69.51	77.34	
5	Masa de la tara	g	41.91	43.73	44.25	
6	Masa de muestra seca	g	30.72	25.78	33.09	
7	Masa del agua	g	5.24	4.33	6.23	
8	Contenido de humedad	%	17.10	16.80	18.80	
9	Promedio	%		17.60		

Identificación

Calicata	: 04	Ubicación	: Distrito Ciudad Eten	Profundidad	: 2.40 m	l
----------	------	-----------	------------------------	-------------	----------	---

Nº	Denominación	Und.	Estrato 01			
1	Profundidad	m	0.15 m - 1.05 m			
2	Tara		01	02	03	
3	Masa de muestra húmeda + tara	g	80.52	89.04	75.41	
4	Masa de muestra seca + tara	g	74.32	81.92	70.26	
5	Masa de la tara	g	28.94	28.08	28.35	
6	Masa de muestra seca	g	45.38	53.84	41.91	
7	Masa del agua	g	6.20	7.12	5.15	
8	Contenido de humedad	%	13.70	13.20	12.30	
9	Promedio	%		13.10		

USMP

UNIVERSIDAD SAN MARTIN DE PORRES

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL CONTENIDO DE HUMEDAD N.T.P. 339.127 / ASTM D-2216

Nº	Denominación	Und.	Estrato 02			
1	Profundidad	m	1.05 m - 1.60 m			
2	Tara		01	02	03	
3	Masa de muestra húmeda + tara	g	70.04	70.34	64.52	
4	Masa de muestra seca + tara	g	64.1	64.26	59.22	
5	Masa de la tara	g	28.19	28.44	28.14	
6	Masa de muestra seca	g	35.91	35.82	31.08	
7	Masa del agua	g	5.94	6.08	5.30	
8	Contenido de humedad	%	16.50	17.00	17.10	
9	Promedio	%		16.90		

N°	Denominación	Und.	Estrato 03				
1	Profundidad	m	1.60 m - 2.40 m				
2	Tara		01	02	03		
3	Masa de muestra húmeda + tara	g	72.03	89.62	79.96		
4	Masa de muestra seca + tara	g	65.25	79.97	72		
5	Masa de la tara	g	28.37	28.16	28.41		
6	Masa de muestra seca	g	36.88	51.81	43.59		
7	Masa del agua	g	6.78	9.65	7.96		
8	Contenido de humedad	%	18.40	18.60	18.30		
9	Promedio	%		18.40			

N°	Denominación	Und.	Inalteradas			
1	Profundidad	m	1.90 m			
2	Tara		01	02	03	
3	Masa de muestra húmeda + tara	g	77.11	78.02	78.12	
4	Masa de muestra seca + tara	g	70.94	71.58	71.53	
5	Masa de la tara	g	41.6	42.28	41.65	
6	Masa de muestra seca	g	29.34	29.30	29.88	
7	Masa del agua	g	6.17	6.44	6.59	
8	Contenido de humedad	%	21.00	22.00	22.10	
9	Promedio	%		21.70		

<u>Identificación</u>

Cal	icata	:	05	Ubicación	: Distrito Monsefú	Profundidad	: 2.70 m	
-----	-------	---	----	-----------	--------------------	-------------	----------	--

9

Promedio

UNIVERSIDAD SAN MARTIN DE PORRES

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL CONTENIDO DE HUMEDAD N.T.P. 339.127 / ASTM D-2216

N°	Denominación	Und.		Estrato 01		
1	Profundidad	m		0.40 m - 1.00 m		
2	Tara		01	02	03	
3	Masa de muestra húmeda + tara	g	88.37	88.85	86.7	
4	Masa de muestra seca + tara	g	83.88	84.36	82.15	
5	Masa de la tara	g	41.49	43.55	42.38	
6	Masa de muestra seca	g	42.39	40.81	39.77	
7	Masa del agua	g	4.49	4.49	4.55	
8	Contenido de humedad	%	10.60	11.00	11.40	

%

11.00

Nº	Denominación	Und.	Estrato 02			
1	Profundidad	m	1.00 m - 1.40 m			
2	Tara		01	02	03	
3	Masa de muestra húmeda + tara	g	80.75	79.42	83.43	
4	Masa de muestra seca + tara	g	76.58	75.21	79.05	
5	Masa de la tara	g	42.01	41.29	43.1	
6	Masa de muestra seca	g	34.57	33.92	35.95	
7	Masa del agua	g	4.17	4.21	4.38	
8	Contenido de humedad	%	12.10	12.40	12.20	
9	Promedio	%		12.20		

Nº	Denominación	Und.	Estrato 03			
1	Profundidad	m	1.40 m - 1.70 m			
2	Tara		01	02	03	
3	Masa de muestra húmeda + tara	g	70.33	67.7	88.34	
4	Masa de muestra seca + tara	g	67.12	64.09	84.79	
5	Masa de la tara	g	42.24	35.88	57.85	
6	Masa de muestra seca	g	24.88	28.21	26.94	
7	Masa del agua	g	3.21	3.61	3.55	
8	Contenido de humedad	%	12.90	12.80	13.20	
9	Promedio	%		13.00		

Nº	Denominación	Und.	Estrato 04			
1	Profundidad	m	1.70 m - 2.40 m			
2	Tara		01	02	03	
3	Masa de muestra húmeda + tara	g	82.10	79.75	81.69	
4	Masa de muestra seca + tara	g	76.91	74.65	76.33	
5	Masa de la tara	g	42.28	41.52	41.75	
6	Masa de muestra seca	g	34.63	33.13	34.58	
7	Masa del agua	g	5.19	5.10	5.36	
8	Contenido de humedad	%	15.00	15.40	15.50	
9	Promedio	%		15.30		

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL CONTENIDO DE HUMEDAD N.T.P. 339.127 / ASTM D-2216

Nº	Denominación	Und.	Estrato 05			
1	Profundidad	m	2.40 m - 2.70 m			
2	Tara		01	02	03	
3	Masa de muestra húmeda + tara	g	76.62	75.59	74.48	
4	Masa de muestra seca + tara	g	72.15	70.68	70.15	
5	Masa de la tara	g	45.51	41.87	43.91	
6	Masa de muestra seca	g	26.64	28.81	26.24	
7	Masa del agua	g	4.47	4.91	4.33	
8	Contenido de humedad	%	16.80	17.00	16.50	
9	Promedio	%		16.80		

N°	Denominación	Und.	Inalteradas			
1	Profundidad	m	2.50 m			
2	Tara		01	02	03	
3	Masa de muestra húmeda + tara	g	77.36	76.03	75.15	
4	Masa de muestra seca + tara	g	71.71	70.86	70.20	
5	Masa de la tara	g	41.91	43.73	44.25	
6	Masa de muestra seca	g	29.80	27.13	25.95	
7	Masa del agua	g	5.65	5.17	4.95	
8	Contenido de humedad	%	19.00	19.10	19.10	
9	Promedio	%		19.10		

<u>Identificación</u>

Calicata	: 06	Ubicación	: Distrito Picsi	Profundidad	: 2.60 m	
----------	------	-----------	------------------	-------------	----------	--

Nº	Denominación	Und.	Estrato 01			
1	Profundidad	m		0.13 m - 1.00 m		
2	Tara		01	02	03	
3	Masa de muestra húmeda + tara	g	72.03	75.61	71.30	
4	Masa de muestra seca + tara	g	67.04	70.05	66.31	
5	Masa de la tara	g	28.37	28.16	28.41	
6	Masa de muestra seca	g	38.67	41.89	37.90	
7	Masa del agua	g	4.99	5.56	4.99	
8	Contenido de humedad	%	12.90	13.30	13.20	
9	Promedio	%		13.10		

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL CONTENIDO DE HUMEDAD N.T.P. 339.127 / ASTM D-2216

N°	Denominación	Und.	Estrato 02			
1	Profundidad	m		1.00 m - 1.30 m		
2	Tara		01	02	03	
3	Masa de muestra húmeda + tara	g	78.58	80.6	90.68	
4	Masa de muestra seca + tara	g	71.88	73.46	82.32	
5	Masa de la tara	g	28.19	28.44	28.14	
6	Masa de muestra seca	g	43.69	45.02	54.18	
7	Masa del agua	g	6.70	7.14	8.36	
8	Contenido de humedad	%	15.30	15.90	15.40	
9	Promedio	%		15.50		

N°	Denominación	Und.	Estrato 03			
1	Profundidad	m		1.30 m - 2.40 m		
2	Tara		01	02	03	
3	Masa de muestra húmeda + tara	g	83.37	79.34	81.91	
4	Masa de muestra seca + tara	g	75.44	71.6	74.00	
5	Masa de la tara	g	28.94	28.08	28.35	
6	Masa de muestra seca	g	46.50	43.52	45.65	
7	Masa del agua	g	7.93	7.74	7.91	
8	Contenido de humedad	%	17.10	17.80	17.30	
9	Promedio	%		17.40		

Nº	Denominación	Und.	Estrato 04			
1	Profundidad	m		2.40 m - 2.70 m		
2	Tara		01	02	03	
3	Masa de muestra húmeda + tara	g	69.58	76.22	78.87	
4	Masa de muestra seca + tara	g	63.38	68.44	70.92	
5	Masa de la tara	g	28.35	28.28	28.34	
6	Masa de muestra seca	g	35.03	40.16	42.58	
7	Masa del agua	g	6.20	7.78	7.95	
8	Contenido de humedad	%	17.70	19.40	18.70	
9	Promedio	%		18.60		

Nº	Denominación	Und.	Inalteradas			
1	Profundidad	m		2.60 m		
2	Tara		01	02	03	
3	Masa de muestra húmeda + tara	g	75.67	78.68	80.95	
4	Masa de muestra seca + tara	g	69.63	72.37	74.02	
5	Masa de la tara	g	41.6	42.28	41.65	
6	Masa de muestra seca	g	28.03	30.09	32.37	
7	Masa del agua	g	6.04	6.31	6.93	
8	Contenido de humedad	%	21.50	21.00	21.40	
9	Promedio	%		21.30		

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERIA CIVIL CONTENIDO DE HUMEDAD N.T.P. 339.127 / ASTM D-2216

Identificación

alicata : 07 Ubicación	: Distrito Pueblo Nuevo	Profundidad	: 3.00 m
------------------------	-------------------------	-------------	----------

Recolección de datos y resultados

Nº	Denominación	Und.	Estrato 01			
1	Profundidad	m		0.10 m - 0.65 m		
2	Tara		01	02	03	
3	Masa de muestra húmeda + tara	g	98.87	100.03	98.45	
4	Masa de muestra seca + tara	g	93.22	93.94	92.05	
5	Masa de la tara	g	41.49	43.55	42.38	
6	Masa de muestra seca	g	51.73	50.39	49.67	
7	Masa del agua	g	5.65	6.09	6.40	
8	Contenido de humedad	%	10.90	12.10	12.90	
9	Promedio	%		12.00		

1

Nº	Denominación	Und.	Estrato 02			
1	Profundidad	m		0.65 m - 1.35 m		
2	Tara		01	02	03	
3	Masa de muestra húmeda + tara	g	96.20	99.16	101.3	
4	Masa de muestra seca + tara	g	89.83	92.16	94.29	
5	Masa de la tara	g	42.28	41.52	41.75	
6	Masa de muestra seca	g	47.55	50.64	52.54	
7	Masa del agua	g	6.37	7.00	7.01	
8	Contenido de humedad	%	13.40	13.80	13.30	
9	Promedio	%		13.50		

N°	Denominación	Und.	Estrato 03			
1	Profundidad	m		1.35 m - 2.05 m		
2	Tara		01	02	03	
3	Masa de muestra húmeda + tara	g	98.25	88.6	110.8	
4	Masa de muestra seca + tara	g	89.96	80.95	103.83	
5	Masa de la tara	g	42.24	35.88	57.85	
6	Masa de muestra seca	g	47.72	45.07	45.98	
7	Masa del agua	g	8.29	7.65	6.97	
8	Contenido de humedad	%	17.40	17.00	15.20	
9	Promedio	%		16.50		

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL CONTENIDO DE HUMEDAD N.T.P. 339.127 / ASTM D-2216

N°	Denominación	Und.	Estrato 04			
1	Profundidad	m		2.05 m - 2.27 m		
2	Tara		01	02	03	
3	Masa de muestra húmeda + tara	g	98.98	89.34	112.35	
4	Masa de muestra seca + tara	g	89.96	80.95	103.83	
5	Masa de la tara	g	42.24	35.88	57.85	
6	Masa de muestra seca	g	47.72	45.07	45.98	
7	Masa del agua	g	9.02	8.39	8.52	
8	Contenido de humedad	%	18.90	18.60	18.50	
9	Promedio	%		18.70		

Nº	Denominación	Und.	Estrato 05			
1	Profundidad	m		2.27 m - 3.00 m		
2	Tara		01	02	03	
3	Masa de muestra húmeda + tara	g	98.65	103.41	97.88	
4	Masa de muestra seca + tara	g	89.55	92.51	88.65	
5	Masa de la tara	g	45.51	41.87	43.91	
6	Masa de muestra seca	g	44.04	50.64	44.74	
7	Masa del agua	g	9.10	10.90	9.23	
8	Contenido de humedad	%	20.70	21.50	20.60	
9	Promedio	%		20.90		

Nº	Denominación	Und.	Inalteradas			
1	Profundidad	m		2.37 m		
2	Tara		01	02	03	
3	Masa de muestra húmeda + tara	g	88.39	100.85	96.88	
4	Masa de muestra seca + tara	g	79.5	90.03	87.42	
5	Masa de la tara	g	41.91	43.73	44.25	
6	Masa de muestra seca	g	37.59	46.30	43.17	
7	Masa del agua	g	8.89	10.82	9.46	
8	Contenido de humedad	%	23.60	23.40	21.90	
9	Promedio	%		23.00		

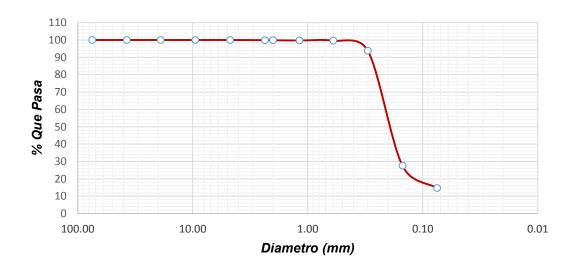
Elaborado por: Jhoan Terán Cotrina

Guido Alarcón Pejerrey

ANEXO 03: FORMATO DE GRANULOMETRÍA EL RESUMEN SE DETALLA EN EL ÍTEM 5.1.2, PÁGINA 98 CAPÍTULO V

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÍA CIVIL GRANULOMETRÍA POR TAMIZADO N.T.P. 339.128 / ASTM D - 422

Tesis


Variación de los parámetros de resistencia al corte con diferentes grados de saturación en suelos cohesivos en siete distritos de la región Lambayeque-Perú

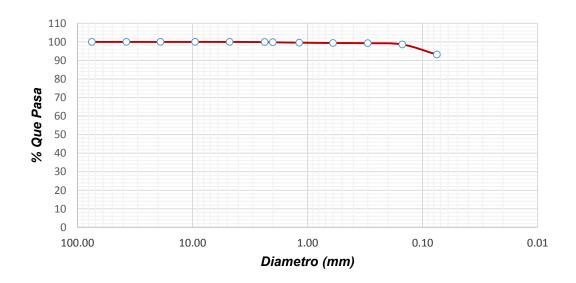
Identificación

Calicata	: 01	Ubicación	Distrito Pimentel	Profundidad	: 2.70 m

Peso Total	: 200 g	Peso Tamizado	:171.75 g
Estrato	: 01		

TAMIC	ES NTP	PESO	% RETENIDO	% RETENIDO	% QUE	
(Pul)	(mm)	RETENIDO	PARCIAL	ACUMULADO	PASA	
3"	75.00	0.00	0.00	0.00	100.00	
1 1/2"	37.50	0.00	0.00	0.00	100.00	
3/4"	19.00	0.00	0.00	0.00	100.00	
3/8"	9.500	0.00	0.00	0.00	100.00	
N°4	4.750	0.00	0.00	0.00	100.00	
Nº8	2.360	0.18	0.09	0.09	99.91	
Nº10	2.000	0.17	0.09	0.18	99.83	
Nº16	1.180	0.21	0.11	0.28	99.72	
N°30	0.600	0.31	0.16	0.44	99.57	
N°50	0.300	11.60	5.80	6.24	93.77	
N°100	0.150	132.44	66.22	72.46	27.55	
N°200	0.075	25.84	12.92	85.38	14.63	
< Nº 200	FONDO	29.25	14.63	100.00	0.00	

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL GRANULOMETRÍA POR TAMIZADO

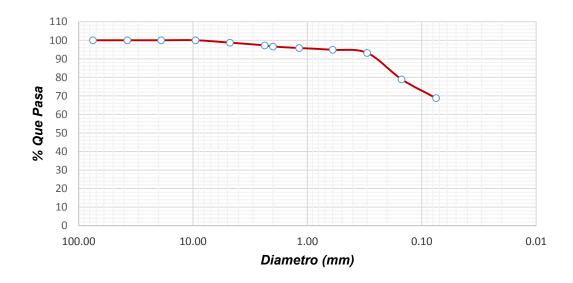

N.T.P. 339.128 / ASTM D - 422

<u>Identificación</u>

Calicata	: 01	Ubicación	Distrito Pimentel	Profundidad	: 2.70 m	ĺ
----------	------	-----------	-------------------	-------------	----------	---

Peso Total	: 200 g	Peso Tamizado	:15.23 g
Estrato	: 02		

TAMICES NTP		PESO % RETENIDO		% RETENIDO	% QUE
(Pul)	(mm)	RETENIDO	PARCIAL	ACUMULADO	PASA
3"	75.00	0.00	0.00	0.00	100.00
1 1/2"	37.50	0.00	0.00	0.00	100.00
3/4"	19.00	0.00	0.00	0.00	100.00
3/8"	9.500	0.00	0.00	0.00	100.00
N°4	4.750	0.00	0.00	0.00	100.00
Nº8	2.360	0.18	0.09	0.09	99.91
Nº10	2.000	0.23	0.12	0.21	99.80
Nº16	1.180	0.42	0.21	0.42	99.59
N°30	0.600	0.37	0.19	0.60	99.40
N°50	0.300	0.21	0.11	0.71	99.30
Nº100	0.150	1.35	0.68	1.38	98.62
N°200	0.075	10.90	5.45	6.83	93.17
< N° 200	FONDO	186.34	93.17	100.00	0.00

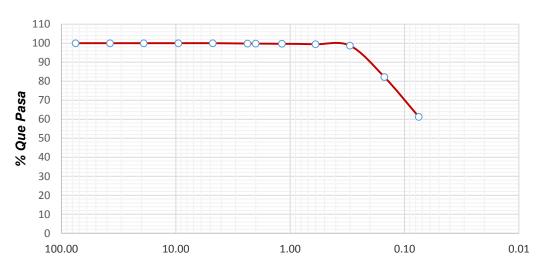

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÍA CIVIL GRANULOMETRÍA POR TAMIZADO N.T.P. 339.128 / ASTM D - 422

<u>Identificación</u>

Calicata : 01 Ubicación	Distrito Pimentel	Profundidad	: 2.70 m
-------------------------	-------------------	-------------	----------

Peso Total	: 200 g	Peso Tamizado	:63.41 g
Estrato	: 03		

TAMIC	ES NTP	PESO % RETENIDO		% RETENIDO	% QUE
(Pul)	(mm)	RETENIDO	PARCIAL	ACUMULADO	PASA
3"	75.00	0.00	0.00	0.00	100.00
1 1/2"	37.50	0.00	0.00	0.00	100.00
3/4"	19.00	0.00	0.00	0.00	100.00
3/8"	9.500	0.00	0.00	0.00	100.00
Nº4	4.750	2.55	1.28	1.28	98.73
Nº8	2.360	2.95	1.48	2.75	97.25
Nº10	2.000	1.24	0.62	3.37	96.63
Nº16	1.180	1.63	0.82	4.19	95.82
N°30	0.600	1.92	0.96	5.15	94.86
N°50	0.300	3.31	1.66	6.80	93.20
N°100	0.150	28.49	14.25	21.05	78.96
N°200	0.075	20.32	10.16	31.21	68.80
< N° 200	FONDO	137.59	68.80	100.00	0.00


ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÍA CIVIL GRANULOMETRÍA POR TAMIZADO N.T.P. 339.128 / ASTM D - 422

<u>Identificación</u>

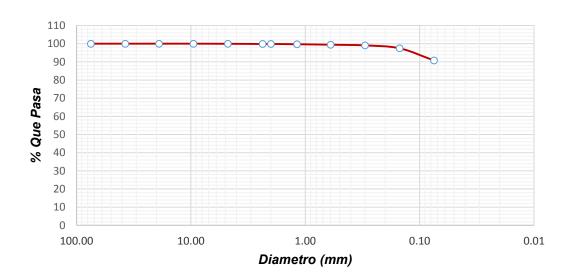
Calicata	: 01	Ubicación	Distrito Pimentel	Profundidad	: 2.70 m	l
----------	------	-----------	-------------------	-------------	----------	---

Peso Total	: 200 g	Peso Tamizado	:87.51 g
Estrato	: 04		

TAMICES NTP		PESO % RETENIDO		% RETENIDO	% QUE
(Pul)	(mm)	RETENIDO	PARCIAL	ACUMULADO	PASA
3"	75.00	0.00	0.00	0.00	100.00
1 1/2"	37.50	0.00	0.00	0.00	100.00
3/4"	19.00	0.00	0.00	0.00	100.00
3/8"	9.500	0.00	0.00	0.00	100.00
N°4	4.750	0.00	0.00	0.00	100.00
Nº8	2.360	0.38	0.19	0.19	99.81
Nº10	2.000	0.07	0.04	0.23	99.78
Nº16	1.180	0.20	0.10	0.33	99.68
N°30	0.600	0.45	0.23	0.55	99.45
N°50	0.300	1.50	0.75	1.30	98.70
Nº100	0.150	32.98	16.49	17.79	82.21
N°200	0.075	41.93	20.97	38.76	61.25
< N° 200	FONDO	122.49	61.25	100.00	0.00

Diametro (mm)

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL GRANULOMETRÍA POR TAMIZADO

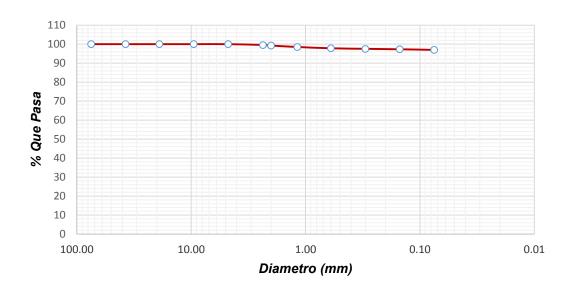

N.T.P. 339.128 / ASTM D - 422

<u>Identificación</u>

Calicata	: 02	Ubicación	Distrito Lambayeque	Profundidad	: 2.60 m	ĺ
----------	------	-----------	---------------------	-------------	----------	---

Peso Total	: 200 g	Peso Tamizado	:18.90 g
Estrato	: 01		

TAMICES NTP		PESO	PESO % RETENIDO		% QUE
(Pul)	(mm)	RETENIDO	PARCIAL	ACUMULADO	PASA
3"	75.00	0.00	0.00	0.00	100.00
1 1/2"	37.50	0.00	0.00	0.00	100.00
3/4"	19.00	0.00	0.00	0.00	100.00
3/8"	9.500	0.00	0.00	0.00	100.00
N°4	4.750	0.13	0.07	0.07	99.94
Nº8	2.360	0.20	0.10	0.17	99.84
Nº10	2.000	0.00	0.00	0.17	99.84
N°16	1.180	0.28	0.14	0.31	99.70
N°30	0.600	0.55	0.28	0.58	99.42
N°50	0.300	0.75	0.38	0.96	99.05
Nº100	0.150	3.16	1.58	2.54	97.47
N°200	0.075	13.37	6.69	9.22	90.78
< Nº 200	FONDO	181.56	90.78	100.00	0.00

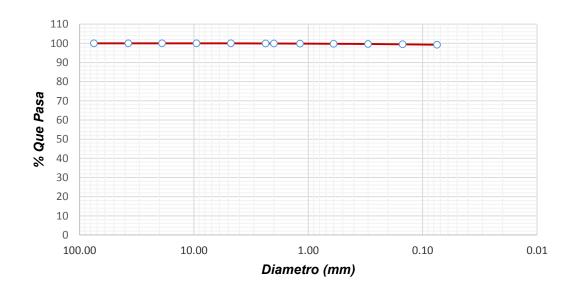

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÍA CIVIL GRANULOMETRÍA POR TAMIZADO N.T.P. 339.128 / ASTM D - 422

<u>Identificación</u>

Calicata : 02	Ubicación	Distrito Lambayeque	Profundidad	: 2.60 m
---------------	-----------	---------------------	-------------	----------

Peso Total	: 200 g	Peso Tamizado	:7.09 g
Estrato	: 02		

TAMIC	ES NTP	PESO	% RETENIDO	% RETENIDO	% QUE
(Pul)	(mm)	RETENIDO	PARCIAL	ACUMULADO	PASA
3"	75.00	0.00	0.00	0.00	100.00
1 1/2"	37.50	0.00	0.00	0.00	100.00
3/4"	19.00	0.00	0.00	0.00	100.00
3/8"	9.500	0.00	0.00	0.00	100.00
N°4	4.750	0.00	0.00	0.00	100.00
Nº8	2.360	0.87	0.44	0.44	99.57
Nº10	2.000	0.60	0.30	0.74	99.27
Nº16	1.180	1.49	0.75	1.48	98.52
N°30	0.600	1.36	0.68	2.16	97.84
N°50	0.300	0.59	0.30	2.46	97.55
Nº100	0.150	0.48	0.24	2.70	97.31
N°200	0.075	0.66	0.33	3.03	96.98
< N° 200	FONDO	193.95	96.98	100.00	0.00

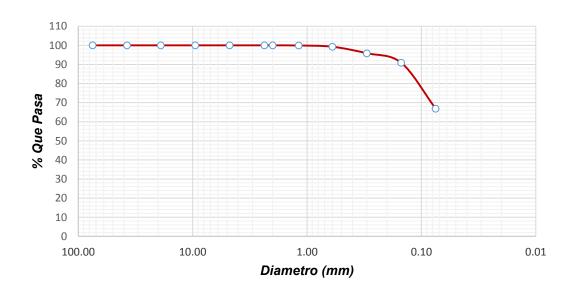

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÍA CIVIL GRANULOMETRÍA POR TAMIZADO N.T.P. 339.128 / ASTM D - 422

<u>Identificación</u>

Calicata	: 02	Ubicación	Distrito Lambayeque	Profundidad	: 2.60 m
----------	------	-----------	---------------------	-------------	----------

Peso Total	: 200 g	Peso Tamizado	:1.43 g
Estrato	· 0.3		

TAMIC	ES NTP	PESO	% RETENIDO	% RETENIDO	% QUE
(Pul)	(mm)	RETENIDO	PARCIAL	ACUMULADO	PASA
3"	75.00	0.00	0.00	0.00	100.00
1 1/2"	37.50	0.00	0.00	0.00	100.00
3/4"	19.00	0.00	0.00	0.00	100.00
3/8"	9.500	0.00	0.00	0.00	100.00
Nº4	4.750	0.00	0.00	0.00	100.00
Nº8	2.360	0.14	0.07	0.07	99.93
Nº10	2.000	0.03	0.02	0.09	99.92
Nº16	1.180	0.10	0.05	0.14	99.87
N°30	0.600	0.20	0.10	0.24	99.77
N°50	0.300	0.20	0.10	0.34	99.67
N°100	0.150	0.38	0.19	0.53	99.48
N°200	0.075	0.38	0.19	0.72	99.29
< N° 200	FONDO	198.57	99.29	100.00	0.00

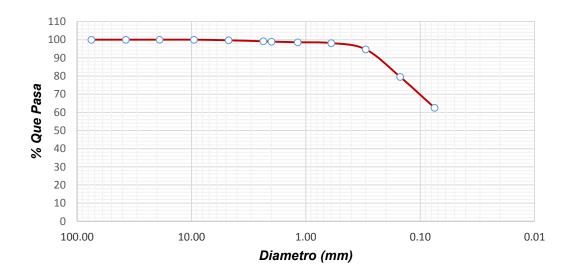

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÍA CIVIL GRANULOMETRÍA POR TAMIZADO N.T.P. 339.128 / ASTM D - 422

<u>Identificación</u>

Calicata	: 02	Ubicación	Distrito Lambayeque	Profundidad	: 2.60 m
----------	------	-----------	---------------------	-------------	----------

Peso Total	: 200 g	Peso Tamizado	:68.95 g
Estrato	: 04		

TAMIC	ES NTP	PESO	% RETENIDO	% RETENIDO	% QUE
(Pul)	(mm)	RETENIDO	PARCIAL	ACUMULADO	PASA
3"	75.00	0.00	0.00	0.00	100.00
1 1/2"	37.50	0.00	0.00	0.00	100.00
3/4"	19.00	0.00	0.00	0.00	100.00
3/8"	9.500	0.00	0.00	0.00	100.00
N°4	4.750	0.00	0.00	0.00	100.00
Nº8	2.360	0.00	0.00	0.00	100.00
Nº10	2.000	0.03	0.02	0.02	99.99
N°16	1.180	0.14	0.07	0.09	99.92
N°30	0.600	1.29	0.65	0.73	99.27
N°50	0.300	6.82	3.41	4.14	95.86
Nº100	0.150	10.00	5.00	9.14	90.86
N°200	0.075	48.00	24.00	33.14	66.86
< Nº 200	FONDO	133.72	66.86	100.00	0.00

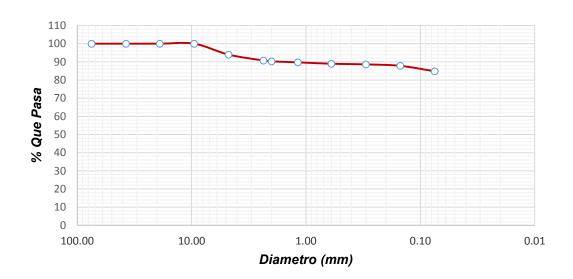

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÍA CIVIL GRANULOMETRÍA POR TAMIZADO N.T.P. 339.128 / ASTM D - 422

<u>Identificación</u>

Calicata	: 03	Ubicación	Distrito La Victoria	Profundidad	: 2.70 m
----------	------	-----------	----------------------	-------------	----------

Peso Total	: 200 g	Peso Tamizado	:76.60 g
Estrato	: 01		

TAMIC	ES NTP	PESO	% RETENIDO	% RETENIDO	% QUE
(Pul)	(mm)	RETENIDO	PARCIAL	ACUMULADO	PASA
3"	75.00	0.00	0.00	0.00	100.00
1 1/2"	37.50	0.00	0.00	0.00	100.00
3/4"	19.00	0.00	0.00	0.00	100.00
3/8"	9.500	0.00	0.00	0.00	100.00
N°4	4.750	0.67	0.34	0.34	99.67
Nº8	2.360	1.07	0.54	0.87	99.13
Nº10	2.000	0.38	0.19	1.06	98.94
Nº16	1.180	0.72	0.36	1.42	98.58
N°30	0.600	0.87	0.44	1.86	98.15
N°50	0.300	6.90	3.45	5.31	94.70
Nº100	0.150	30.27	15.14	20.44	79.56
N°200	0.075	34.02	17.01	37.45	62.55
< N° 200	FONDO	125.10	62.55	100.00	0.00

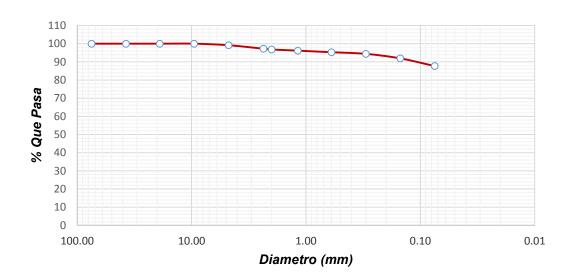

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÍA CIVIL GRANULOMETRÍA POR TAMIZADO N.T.P. 339.128 / ASTM D - 422

<u>Identificación</u>

Calicata	: 03	Ubicación	Distrito La Victoria	Profundidad	: 2.70 m
----------	------	-----------	----------------------	-------------	----------

Peso Total	: 200 g	Peso Tamizado	:31.87 g
Estrato	: 02		

TAMIC	ES NTP	PESO	% RETENIDO	% RETENIDO	% QUE
(Pul)	(mm)	RETENIDO	PARCIAL	ACUMULADO	PASA
3"	75.00	0.00	0.00	0.00	100.00
1 1/2"	37.50	0.00	0.00	0.00	100.00
3/4"	19.00	0.00	0.00	0.00	100.00
3/8"	9.500	0.00	0.00	0.00	100.00
N°4	4.750	12.04	6.02	6.02	93.98
Nº8	2.360	6.47	3.24	9.26	90.75
N°10	2.000	0.97	0.49	9.74	90.26
N°16	1.180	1.06	0.53	10.27	89.73
N°30	0.600	1.54	0.77	11.04	88.96
N°50	0.300	0.71	0.36	11.40	88.61
N°100	0.150	1.60	0.80	12.20	87.81
N°200	0.075	5.96	2.98	15.18	84.83
< N° 200	FONDO	169.65	84.83	100.00	0.00

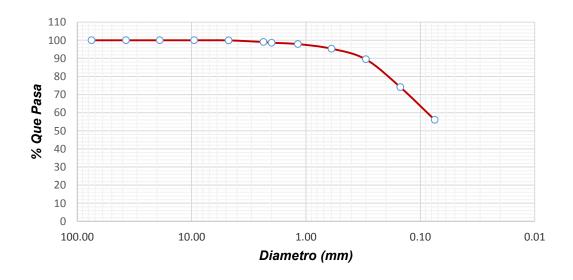

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÍA CIVIL GRANULOMETRÍA POR TAMIZADO N.T.P. 339.128 / ASTM D - 422

<u>Identificación</u>

Calicata	: 03	Ubicación	Distrito La Victoria	Profundidad	: 2.70 m
----------	------	-----------	----------------------	-------------	----------

Peso Total	: 200 g	Peso Tamizado	:25.80 g
Estrato	: 03		

TAMIC	ES NTP	PESO	% RETENIDO	% RETENIDO	% QUE
(Pul)	(mm)	RETENIDO	PARCIAL	ACUMULADO	PASA
3"	75.00	0.00	0.00	0.00	100.00
1 1/2"	37.50	0.00	0.00	0.00	100.00
3/4"	19.00	0.00	0.00	0.00	100.00
3/8"	9.500	0.00	0.00	0.00	100.00
Nº4	4.750	1.71	0.86	0.86	99.15
Nº8	2.360	3.81	1.91	2.76	97.24
Nº10	2.000	0.88	0.44	3.20	96.80
Nº16	1.180	1.27	0.64	3.84	96.17
N°30	0.600	1.74	0.87	4.71	95.30
N°50	0.300	1.79	0.90	5.60	94.40
N°100	0.150	4.95	2.48	8.08	91.93
N°200	0.075	8.47	4.24	12.31	87.69
< Nº 200	FONDO	175.38	87.69	100.00	0.00

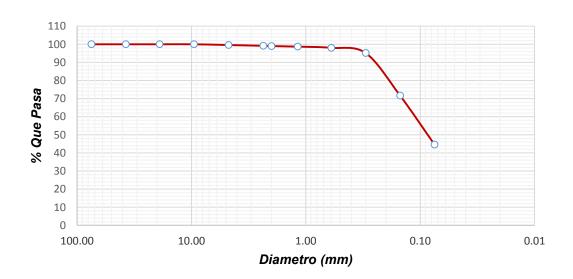

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÍA CIVIL GRANULOMETRÍA POR TAMIZADO N.T.P. 339.128 / ASTM D - 422

<u>Identificación</u>

Calicata	: 03	Ubicación	Distrito La Victoria	Profundidad	: 2.70 m
----------	------	-----------	----------------------	-------------	----------

Peso Total	: 200 g	Peso Tamizado	:88.23 g
Estrato	: 04		

TAMIC	ES NTP	PESO	% RETENIDO	% RETENIDO	% QUE
(Pul)	(mm)	RETENIDO	PARCIAL	ACUMULADO	PASA
3"	75.00	0.00	0.00	0.00	100.00
1 1/2"	37.50	0.00	0.00	0.00	100.00
3/4"	19.00	0.00	0.00	0.00	100.00
3/8"	9.500	0.00	0.00	0.00	100.00
Nº4	4.750	0.13	0.07	0.07	99.94
Nº8	2.360	1.77	0.89	0.95	99.05
Nº10	2.000	0.80	0.40	1.35	98.65
Nº16	1.180	1.50	0.75	2.10	97.90
N°30	0.600	5.06	2.53	4.63	95.37
N°50	0.300	11.77	5.89	10.52	89.49
N°100	0.150	30.67	15.34	25.85	74.15
N°200	0.075	36.12	18.06	43.91	56.09
< N° 200	FONDO	112.18	56.09	100.00	0.00

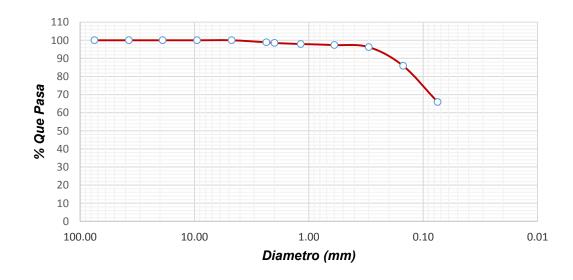

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÍA CIVIL GRANULOMETRÍA POR TAMIZADO N.T.P. 339.128 / ASTM D - 422

<u>Identificación</u>

Calicata	: 04	Ubicación	Distrito Ciudad Eten	Profundidad	: 2.40 m
----------	------	-----------	----------------------	-------------	----------

Peso Total	: 200 g	Peso Tamizado	:111.79 g
Estrato	: 01		

TAMIC	ES NTP	PESO	% RETENIDO	% RETENIDO	% QUE
(Pul)	(mm)	RETENIDO	PARCIAL	ACUMULADO	PASA
3"	75.00	0.00	0.00	0.00	100.00
1 1/2"	37.50	0.00	0.00	0.00	100.00
3/4"	19.00	0.00	0.00	0.00	100.00
3/8"	9.500	0.00	0.00	0.00	100.00
Nº4	4.750	0.84	0.42	0.42	99.58
Nº8	2.360	0.83	0.42	0.84	99.17
Nº10	2.000	0.32	0.16	1.00	99.01
Nº16	1.180	0.62	0.31	1.31	98.70
N°30	0.600	1.31	0.66	1.96	98.04
N°50	0.300	5.72	2.86	4.82	95.18
N°100	0.150	47.01	23.51	28.33	71.68
N°200	0.075	54.09	27.05	55.37	44.63
< N° 200	FONDO	89.26	44.63	100.00	0.00

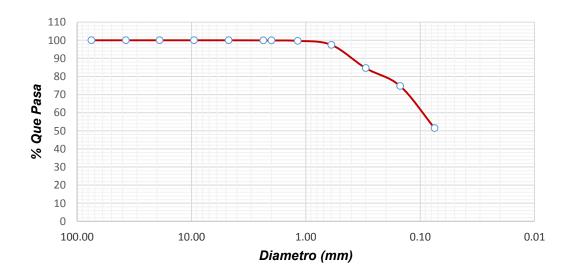

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÍA CIVIL GRANULOMETRÍA POR TAMIZADO N.T.P. 339.128 / ASTM D - 422

<u>Identificación</u>

Calicata	: 04	Ubicación	Distrito Ciudad Eten	Profundidad	: 2.40 m
----------	------	-----------	----------------------	-------------	----------

Peso Total	: 200 g	Peso Tamizado	:68.89 g
Estrato	: 02		

TAMIC	ES NTP	PESO	% RETENIDO	% RETENIDO	% QUE
(Pul)	(mm)	RETENIDO	PARCIAL	ACUMULADO	PASA
3"	75.00	0.00	0.00	0.00	100.00
1 1/2"	37.50	0.00	0.00	0.00	100.00
3/4"	19.00	0.00	0.00	0.00	100.00
3/8"	9.500	0.00	0.00	0.00	100.00
N°4	4.750	0.00	0.00	0.00	100.00
Nº8	2.360	2.23	1.12	1.12	98.89
Nº10	2.000	0.76	0.38	1.50	98.51
Nº16	1.180	1.13	0.57	2.06	97.94
N°30	0.600	1.16	0.58	2.64	97.36
N°50	0.300	2.24	1.12	3.76	96.24
N°100	0.150	20.65	10.33	14.09	85.92
N°200	0.075	39.93	19.97	34.05	65.95
< N° 200	FONDO	131.90	65.95	100.00	0.00

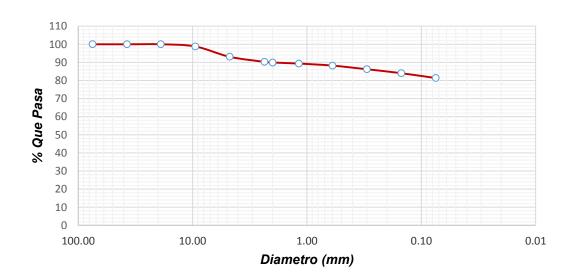

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÍA CIVIL GRANULOMETRÍA POR TAMIZADO N.T.P. 339.128 / ASTM D - 422

<u>Identificación</u>

Calicata	: 04	Ubicación	Distrito Ciudad Eten	Profundidad	: 2.40 m
----------	------	-----------	----------------------	-------------	----------

Peso Total	: 200 g	Peso Tamizado	:181.60 g
Estrato	· 03		

TAMIC	ES NTP	PESO	% RETENIDO	% RETENIDO	% QUE
(Pul)	(mm)	RETENIDO	PARCIAL	ACUMULADO	PASA
3"	75.00	0.00	0.00	0.00	100.00
1 1/2"	37.50	0.00	0.00	0.00	100.00
3/4"	19.00	0.00	0.00	0.00	100.00
3/8"	9.500	0.00	0.00	0.00	100.00
Nº4	4.750	0.00	0.00	0.00	100.00
Nº8	2.360	0.09	0.05	0.05	99.96
Nº10	2.000	0.10	0.05	0.10	99.91
Nº16	1.180	0.46	0.23	0.33	99.68
N°30	0.600	4.33	2.17	2.49	97.51
N°50	0.300	25.73	12.87	15.36	84.65
N°100	0.150	19.73	9.87	25.22	74.78
N°200	0.075	46.53	23.27	48.49	51.52
< N° 200	FONDO	103.03	51.52	100.00	0.00

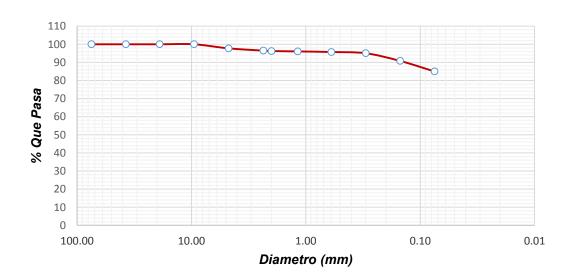

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÍA CIVIL GRANULOMETRÍA POR TAMIZADO N.T.P. 339.128 / ASTM D - 422

<u>Identificación</u>

Calicata	: 05	Ubicación	Distrito Monsefú	Profundidad	: 2.70 m
----------	------	-----------	------------------	-------------	----------

Peso Total	: 200 g	Peso Tamizado	:39.61 g
Estrato	: 01		

TAMIC	ES NTP	PESO	% RETENIDO	% RETENIDO	% QUE
(Pul)	(mm)	RETENIDO	PARCIAL	ACUMULADO	PASA
3"	75.00	0.00	0.00	0.00	100.00
1 1/2"	37.50	0.00	0.00	0.00	100.00
3/4"	19.00	0.00	0.00	0.00	100.00
3/8"	9.500	2.36	1.18	1.18	98.82
N°4	4.750	11.45	5.73	6.91	93.10
Nº8	2.360	5.55	2.78	9.68	90.32
Nº10	2.000	0.82	0.41	10.09	89.91
Nº16	1.180	1.12	0.56	10.65	89.35
N°30	0.600	2.24	1.12	11.77	88.23
N°50	0.300	4.04	2.02	13.79	86.21
N°100	0.150	4.34	2.17	15.96	84.04
N°200	0.075	5.38	2.69	18.65	81.35
< N° 200	FONDO	162.70	81.35	100.00	0.00

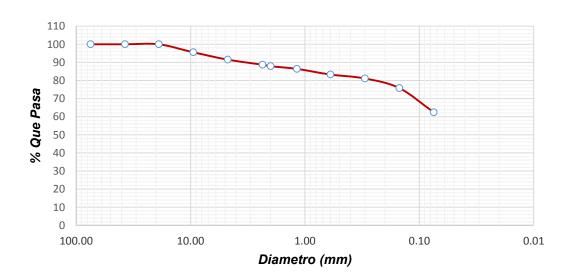

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÍA CIVIL GRANULOMETRÍA POR TAMIZADO N.T.P. 339.128 / ASTM D - 422

<u>Identificación</u>

Calicata	: 05	Ubicación	Distrito Monsefú	Profundidad	: 2.70 m
----------	------	-----------	------------------	-------------	----------

Peso Total	: 200 g	Peso Tamizado	:30.14 g
Estrato	· 02		_

TAMIC	ES NTP	PESO	% RETENIDO	% RETENIDO	% QUE
(Pul)	(mm)	RETENIDO	PARCIAL	ACUMULADO	PASA
3"	75.00	0.00	0.00	0.00	100.00
1 1/2"	37.50	0.00	0.00	0.00	100.00
3/4"	19.00	0.00	0.00	0.00	100.00
3/8"	9.500	0.00	0.00	0.00	100.00
N°4	4.750	4.50	2.25	2.25	97.75
Nº8	2.360	2.52	1.26	3.51	96.49
Nº10	2.000	0.46	0.23	3.74	96.26
Nº16	1.180	0.41	0.21	3.95	96.06
N°30	0.600	0.65	0.33	4.27	95.73
Nº50	0.300	1.36	0.68	4.95	95.05
N°100	0.150	8.47	4.24	9.19	90.82
N°200	0.075	11.62	5.81	15.00	85.01
< N° 200	FONDO	170.01	85.01	100.00	0.00

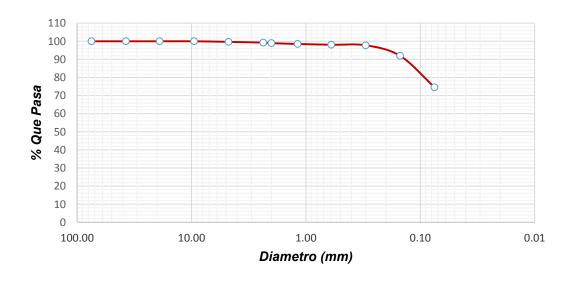

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÍA CIVIL GRANULOMETRÍA POR TAMIZADO N.T.P. 339.128 / ASTM D - 422

<u>Identificación</u>

Calicata	: 05	Ubicación	Distrito Monsefú	Profundidad	: 2.70 m
----------	------	-----------	------------------	-------------	----------

Peso Total	: 200 g	Peso Tamizado	:95.39 g
Estrato	: 03		

TAMIC	ES NTP	PESO	% RETENIDO	% RETENIDO	% QUE
(Pul)	(mm)	RETENIDO	PARCIAL	ACUMULADO	PASA
3"	75.00	0.00	0.00	0.00	100.00
1 1/2"	37.50	0.00	0.00	0.00	100.00
3/4"	19.00	0.00	0.00	0.00	100.00
3/8"	9.500	8.79	4.40	4.40	95.61
N°4	4.750	8.14	4.07	8.47	91.54
Nº8	2.360	5.64	2.82	11.29	88.72
N°10	2.000	1.66	0.83	12.12	87.89
N°16	1.180	2.95	1.48	13.59	86.41
N°30	0.600	6.21	3.11	16.70	83.31
N°50	0.300	4.37	2.19	18.88	81.12
N°100	0.150	10.56	5.28	24.16	75.84
N°200	0.075	26.71	13.36	37.52	62.49
< N° 200	FONDO	124.97	62.49	100.00	0.00

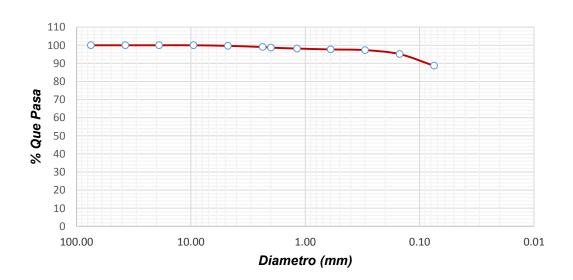

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÍA CIVIL GRANULOMETRÍA POR TAMIZADO N.T.P. 339.128 / ASTM D - 422

<u>Identificación</u>

Calicata	: 05	Ubicación	Distrito Monsefú	Profundidad	: 2.70 m
----------	------	-----------	------------------	-------------	----------

Peso Total	: 200 g	Peso Tamizado	:50.60 g
Estrato	: 04		

TAMIC	ES NTP	PESO % RETENIDO		% RETENIDO	% QUE
(Pul)	(mm)	RETENIDO	PARCIAL	ACUMULADO	PASA
3"	75.00	0.00	0.00	0.00	100.00
1 1/2"	37.50	0.00	0.00	0.00	100.00
3/4"	19.00	0.00	0.00	0.00	100.00
3/8"	9.500	0.00	0.00	0.00	100.00
N°4	4.750	0.65	0.33	0.33	99.68
Nº8	2.360	0.84	0.42	0.75	99.26
Nº10	2.000	0.57	0.29	1.03	98.97
Nº16	1.180	0.88	0.44	1.47	98.53
N°30	0.600	0.89	0.45	1.92	98.09
N°50	0.300	0.61	0.31	2.22	97.78
N°100	0.150	11.65	5.83	8.05	91.96
N°200	0.075	34.71	17.36	25.40	74.60
< N° 200	FONDO	149.20	74.60	100.00	0.00

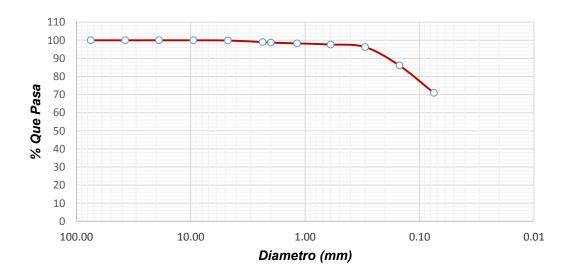

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÍA CIVIL GRANULOMETRÍA POR TAMIZADO N.T.P. 339.128 / ASTM D - 422

<u>Identificación</u>

Calicata	: 05	Ubicación	Distrito Monsefú	Profundidad	: 2.70 m
----------	------	-----------	------------------	-------------	----------

Peso Total	: 200 g	Peso Tamizado	:22.89 g
Estrato	: 05		

TAMIC	ES NTP	PESO	% RETENIDO	RETENIDO % RETENIDO	
(Pul)	(mm)	RETENIDO	PARCIAL	ACUMULADO	PASA
3"	75.00	0.00	0.00	0.00	100.00
1 1/2"	37.50	0.00	0.00	0.00	100.00
3/4"	19.00	0.00	0.00	0.00	100.00
3/8"	9.500	0.00	0.00	0.00	100.00
N°4	4.750	0.63	0.32	0.32	99.69
Nº8	2.360	1.29	0.65	0.96	99.04
Nº10	2.000	0.68	0.34	1.30	98.70
N°16	1.180	1.01	0.51	1.81	98.20
N°30	0.600	0.97	0.49	2.29	97.71
N°50	0.300	0.78	0.39	2.68	97.32
Nº100	0.150	4.36	2.18	4.86	95.14
N°200	0.075	12.92	6.46	11.32	88.68
< Nº 200	FONDO	177.36	88.68	100.00	0.00

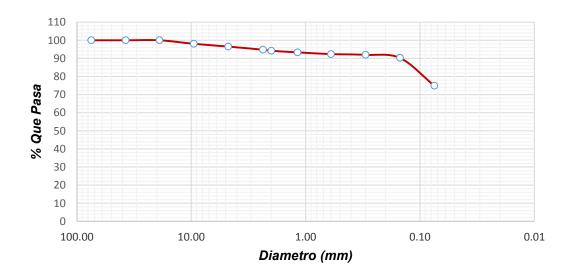

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÍA CIVIL GRANULOMETRÍA POR TAMIZADO N.T.P. 339.128 / ASTM D - 422

<u>Identificación</u>

Calicata	: 06	Ubicación	Distrito Picsi	Profundidad	: 2.60 m
----------	------	-----------	----------------	-------------	----------

Peso Total	: 200 g	Peso Tamizado	:59.14 g
Estrato	: 01		

TAMIC	ES NTP	PESO % RETENI		% RETENIDO	% QUE
(Pul)	(mm)	RETENIDO	PARCIAL	ACUMULADO	PASA
3"	75.00	0.00	0.00	0.00	100.00
1 1/2"	37.50	0.00	0.00	0.00	100.00
3/4"	19.00	0.00	0.00	0.00	100.00
3/8"	9.500	0.00	0.00	0.00	100.00
N°4	4.750	0.25	0.13	0.13	99.88
Nº8	2.360	1.76	0.88	1.01	99.00
Nº10	2.000	0.53	0.27	1.27	98.73
Nº16	1.180	0.93	0.47	1.74	98.27
N°30	0.600	1.21	0.61	2.34	97.66
N°50	0.300	2.80	1.40	3.74	96.26
N°100	0.150	20.40	10.20	13.94	86.06
N°200	0.075	30.20	15.10	29.04	70.96
< N° 200	FONDO	141.92	70.96	100.00	0.00

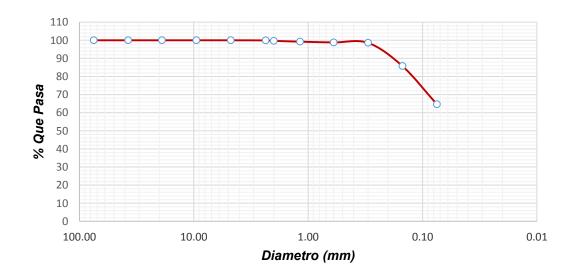

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÍA CIVIL GRANULOMETRÍA POR TAMIZADO N.T.P. 339.128 / ASTM D - 422

<u>Identificación</u>

Calicata : 06 Ubicación	n Distrito Picsi	Profundidad : 2.60 m
-------------------------	------------------	----------------------

Peso Total	: 200 g	Peso Tamizado	:52.29 g
Estrato	: 02		

TAMIC	ES NTP	PESO	% RETENIDO	RETENIDO % RETENIDO	
(Pul)	(mm)	RETENIDO	PARCIAL	ACUMULADO	PASA
3"	75.00	0.00	0.00	0.00	100.00
1 1/2"	37.50	0.00	0.00	0.00	100.00
3/4"	19.00	0.00	0.00	0.00	100.00
3/8"	9.500	3.86	1.93	1.93	98.07
N°4	4.750	3.12	1.56	3.49	96.51
Nº8	2.360	3.45	1.73	5.22	94.79
Nº10	2.000	1.16	0.58	5.80	94.21
Nº16	1.180	1.75	0.88	6.67	93.33
N°30	0.600	1.90	0.95	7.62	92.38
N°50	0.300	0.87	0.44	8.06	91.95
Nº100	0.150	3.35	1.68	9.73	90.27
N°200	0.075	30.75	15.38	25.11	74.90
< N° 200	FONDO	149.79	74.90	100.00	0.00

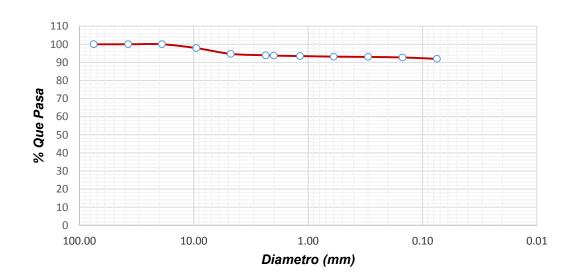

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÍA CIVIL GRANULOMETRÍA POR TAMIZADO N.T.P. 339.128 / ASTM D - 422

<u>Identificación</u>

Calicata	: 06	Ubicación	Distrito Picsi	Profundidad	: 2.60 m	l
----------	------	-----------	----------------	-------------	----------	---

Peso Total	: 200 g	Peso Tamizado	:82.49 g
Estrato	: 03		

TAMIC	ES NTP	PESO	% RETENIDO	% RETENIDO	% QUE
(Pul)	(mm)	RETENIDO	PARCIAL	ACUMULADO	PASA
3"	75.00	0.00	0.00	0.00	100.00
1 1/2"	37.50	0.00	0.00	0.00	100.00
3/4"	19.00	0.00	0.00	0.00	100.00
3/8"	9.500	0.00	0.00	0.00	100.00
N°4	4.750	0.00	0.00	0.00	100.00
Nº8	2.360	0.15	0.08	0.08	99.93
Nº10	2.000	0.47	0.24	0.31	99.69
Nº16	1.180	0.92	0.46	0.77	99.23
N°30	0.600	0.86	0.43	1.20	98.80
N°50	0.300	0.44	0.22	1.42	98.58
N°100	0.150	25.64	12.82	14.24	85.76
N°200	0.075	42.13	21.07	35.31	64.70
< N° 200	FONDO	129.39	64.70	100.00	0.00

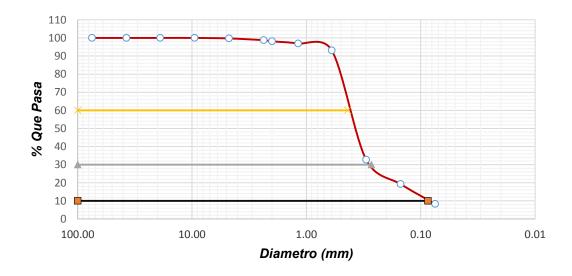

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÍA CIVIL GRANULOMETRÍA POR TAMIZADO N.T.P. 339.128 / ASTM D - 422

<u>Identificación</u>

Calicata	: 06	Ubicación	Distrito Picsi	Profundidad	: 2.60 m
----------	------	-----------	----------------	-------------	----------

Peso Total	: 200 g	Peso Tamizado	:16.21 g
Estrato	: 04		

TAMIC	ES NTP	PESO	% RETENIDO	% RETENIDO	% QUE
(Pul)	(mm)	RETENIDO	PARCIAL	ACUMULADO	PASA
3"	75.00	0.00	0.00	0.00	100.00
1 1/2"	37.50	0.00	0.00	0.00	100.00
3/4"	19.00	0.00	0.00	0.00	100.00
3/8"	9.500	4.22	2.11	2.11	97.89
N°4	4.750	6.39	3.20	5.31	94.70
Nº8	2.360	1.50	0.75	6.06	93.95
Nº10	2.000	0.40	0.20	6.26	93.75
Nº16	1.180	0.51	0.26	6.51	93.49
N°30	0.600	0.63	0.32	6.83	93.18
N°50	0.300	0.33	0.17	6.99	93.01
Nº100	0.150	0.55	0.28	7.27	92.74
N°200	0.075	1.58	0.79	8.06	91.95
< N° 200	FONDO	183.89	91.95	100.00	0.00


ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÍA CIVIL GRANULOMETRÍA POR TAMIZADO N.T.P. 339.128 / ASTM D - 422

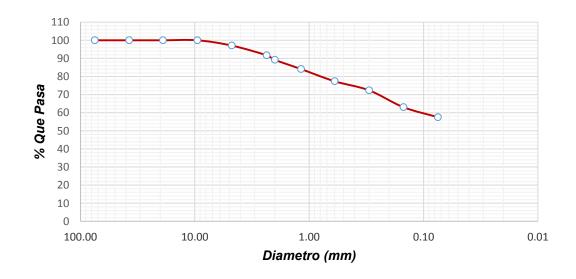
<u>Identificación</u>

Calicata	: 07	Ubicación	Distrito Pueblo Nuevo	Profundidad	: 3.00 m
----------	------	-----------	-----------------------	-------------	----------

Peso Total	: 200 g	Peso Tamizado	:183.64 g
Estrato	· 01		

TAMIC	ES NTP	PESO	% RETENIDO	% RETENIDO	% QUE
(Pul)	(mm)	RETENIDO	PARCIAL	ACUMULADO	PASA
3"	75.00	0.00	0.00	0.00	100.00
1 1/2"	37.50	0.00	0.00	0.00	100.00
3/4"	19.00	0.00	0.00	0.00	100.00
3/8"	9.500	0.00	0.00	0.00	100.00
N°4	4.750	0.55	0.28	0.28	99.73
Nº8	2.360	1.95	0.98	1.25	98.75
N°10	2.000	1.24	0.62	1.87	98.13
Nº16	1.180	2.45	1.23	3.10	96.91
N°30	0.600	7.51	3.76	6.85	93.15
N°50	0.300	120.89	60.45	67.30	32.71
N°100	0.150	26.81	13.41	80.70	19.30
N°200	0.075	21.97	10.99	91.69	8.32
< N° 200	FONDO	16.63	8.32	100.00	0.00

D10=	0.474	D30=	0.275	D60=	0.091
------	-------	------	-------	------	-------

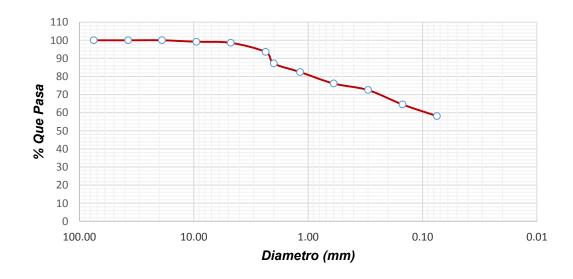

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÍA CIVIL GRANULOMETRÍA POR TAMIZADO N.T.P. 339.128 / ASTM D - 422

<u>Identificación</u>

Calicata	: 07	Ubicación	Distrito Pueblo Nuevo	Profundidad	: 3.00 m
----------	------	-----------	-----------------------	-------------	----------

Peso Total	: 200 g	Peso Tamizado	:85.10 g
Estrato	: 02		

TAMIC	ES NTP	PESO	% RETENIDO	% RETENIDO	% QUE
(Pul)	(mm)	RETENIDO	PARCIAL	ACUMULADO	PASA
3"	75.00	0.00	0.00	0.00	100.00
1 1/2"	37.50	0.00	0.00	0.00	100.00
3/4"	19.00	0.00	0.00	0.00	100.00
3/8"	9.500	0.00	0.00	0.00	100.00
N°4	4.750	5.85	2.93	2.93	97.08
Nº8	2.360	10.69	5.35	8.27	91.73
Nº10	2.000	5.04	2.52	10.79	89.21
Nº16	1.180	10.21	5.11	15.90	84.11
N°30	0.600	13.46	6.73	22.63	77.38
N°50	0.300	10.00	5.00	27.63	72.38
N°100	0.150	18.63	9.32	36.94	63.06
N°200	0.075	11.06	5.53	42.47	57.53
< N° 200	FONDO	115.06	57.53	100.00	0.00

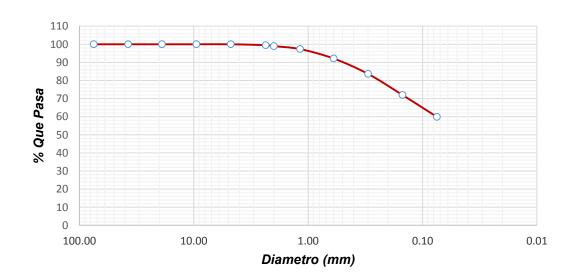

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÍA CIVIL GRANULOMETRÍA POR TAMIZADO N.T.P. 339.128 / ASTM D - 422

<u>Identificación</u>

Calicata : 07 Ubica	ción Distrito Pueblo Nuevo	Profundidad : 3.00 m
---------------------	----------------------------	----------------------

Peso Total	: 200 g	Peso Tamizado	:83.85 g
Estrato	: 03		

TAMIC	ES NTP	PESO	% RETENIDO	% RETENIDO	% QUE
(Pul)	(mm)	RETENIDO	PARCIAL	ACUMULADO	PASA
3"	75.00	0.00	0.00	0.00	100.00
1 1/2"	37.50	0.00	0.00	0.00	100.00
3/4"	19.00	0.00	0.00	0.00	100.00
3/8"	9.500	1.63	0.82	0.82	99.19
N°4	4.750	1.20	0.60	1.42	98.59
Nº8	2.360	10.09	5.05	6.46	93.54
Nº10	2.000	12.67	6.34	12.80	87.21
Nº16	1.180	9.46	4.73	17.53	82.48
N°30	0.600	12.68	6.34	23.87	76.14
N°50	0.300	7.28	3.64	27.51	72.50
N°100	0.150	15.87	7.94	35.44	64.56
N°200	0.075	12.81	6.41	41.85	58.16
< N° 200	FONDO	116.31	58.16	100.00	0.00


ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÍA CIVIL GRANULOMETRÍA POR TAMIZADO N.T.P. 339.128 / ASTM D - 422

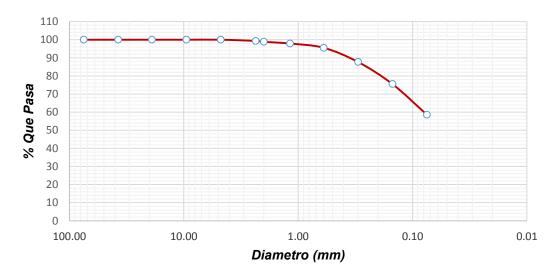
<u>Identificación</u>

Calicata : 07 Ubica	ción Distrito Pueblo Nuevo	Profundidad : 3.00 m
---------------------	----------------------------	----------------------

Peso Total	: 200 g	Peso Tamizado	:80.33 g
Estrato	: 04		

TAMIC	ES NTP	PESO	% RETENIDO	% RETENIDO	% QUE
(Pul)	(mm)	RETENIDO	PARCIAL	ACUMULADO	PASA
3"	75.00	0.00	0.00	0.00	100.00
1 1/2"	37.50	0.00	0.00	0.00	100.00
3/4"	19.00	0.00	0.00	0.00	100.00
3/8"	9.500	0.00	0.00	0.00	100.00
Nº4	4.750	0.00	0.00	0.00	100.00
Nº8	2.360	0.98	0.49	0.49	99.51
Nº10	2.000	1.08	0.54	1.03	98.97
Nº16	1.180	3.23	1.62	2.65	97.36
N°30	0.600	10.39	5.20	7.84	92.16
N°50	0.300	17.00	8.50	16.34	83.66
N°100	0.150	23.26	11.63	27.97	72.03
N°200	0.075	24.20	12.10	40.07	59.93
< N° 200	FONDO	119.86	59.93	100.00	0.00

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÍA CIVIL GRANULOMETRÍA POR TAMIZADO N.T.P. 339.128 / ASTM D - 422


Identificación

Calicata : 07 Ubica	ción Distrito Pueblo Nuevo	Profundidad : 3.00 m
---------------------	----------------------------	----------------------

Recolección de datos y resultados

Peso Total	: 200 g	Peso Tamizado	:83.44 g
Estrato	: 05		

TAMIC	ES NTP	PESO	% RETENIDO	% RETENIDO	% QUE
(Pul)	(mm)	RETENIDO	PARCIAL	ACUMULADO	PASA
3"	75.00	0.00	0.00	0.00	100.00
1 1/2"	37.50	0.00	0.00	0.00	100.00
3/4"	19.00	0.00	0.00	0.00	100.00
3/8"	9.500	0.00	0.00	0.00	100.00
N°4	4.750	0.00	0.00	0.00	100.00
Nº8	2.360	1.34	0.67	0.67	99.33
N°10	2.000	0.93	0.47	1.14	98.87
Nº16	1.180	1.97	0.99	2.12	97.88
N°30	0.600	4.64	2.32	4.44	95.56
N°50	0.300	15.67	7.84	12.28	87.73
N°100	0.150	24.41	12.21	24.48	75.52
N°200	0.075	33.80	16.90	41.38	58.62
< N° 200	FONDO	117.24	58.62	100.00	0.00

Elaborado por: Jhoan Terán Cotrina

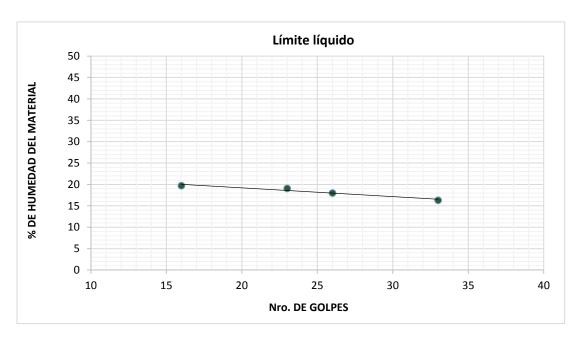
Guido Alarcón Pejerrey

ANEXO 04: FORMATO DE LÍMITE LÍQUIDO, LÍMITE PLÁSTICO E ÍNDICE DE PLASTICIDAD

EL RESUMEN SE DETALLA EN EL ÍTEM 5.1.3, PÁGINA 100 CAPÍTULO V

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL <u>LÍMITE LÍQUIDO, LÍMITE PLÁSTICO E ÍNDICE DE PLASTICIDAD</u> N.T.P. 339.129 / ASTM D-4318

Tesis


Variación de los parámetros de resistencia al corte con diferentes grados de saturación en suelos cohesivos en siete distritos de la región Lambayeque-Perú

Identificación

licata : 01 Ubicació	Distrito Pimentel	Profundidad	: 2.70 m
----------------------	-------------------	-------------	----------

Estrato	: 01
---------	------

N.º	Denominación	Unid.		Límite líquido			Límite _l	olástico
1	Tara		15-20	20-25	25-30	30-35	Lp 1	Lp 2
2	Nro. de golpes		16	23	26	33		
3	Masa tara		22.35	19.57	19.55	19.76	19.81	28.44
4	Masa muestra húmeda + tara	gr	42.99	42.08	50.30	37.09	32.47	37.47
5	Masa muestra seca + tara	gr	39.59	38.47	45.61	34.66	30.62	36.16
6	Masa del agua	gr	3.40	3.61	4.69	2.43	1.85	1.31
7	Masa muestra seca	gr	17.24	18.90	26.06	14.90	10.81	7.72
8	Contenido de humedad	%	19.72	19.10	18.00	16.31	17.11	16.97
9	Promedio C.H	%	19.00 17.04			.04		

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL LÍMITE LÍQUIDO, LÍMITE PLÁSTICO E ÍNDICE DE PLASTICIDAD N.T.P. 339.129 / ASTM D-4318

Identificación

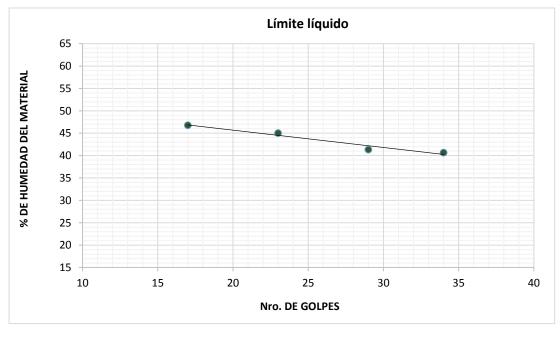
Calicata	: 01	Ubicación	Distrito Pimentel	Profundidad	: 2.70 m	
----------	------	-----------	-------------------	-------------	----------	--

Recolección de datos y resultados

N.º	Denominación	Unid.		Límite líquido			Límite _l	plástico
1	Tara		15-20	20-25	25-30	30-35	Lp 1	Lp 2
2	Nro. de golpes		16	24	27	32		
3	Masa tara	gr	19.74	19.46	19.75	19.60	8.61	8.60
4	Masa muestra húmeda + tara	gr	45.89	46.75	43.90	41.60	22.18	23.10
5	Masa muestra seca + tara	gr	39.65	40.29	38.24	36.52	19.11	19.85
6	Masa del agua	gr	6.24	6.46	5.66	5.08	3.07	3.25
7	Masa muestra seca	gr	19.91	20.83	18.49	16.92	10.50	11.25
8	Contenido de humedad	%	31.34	31.01	30.61	30.02	29.24	28.89
9	Promedio C.H	%		31.00			29	.06

Límite líquido:	31.00	Límite plástico:	29.00	Índice de plasticidad:	2.00	1
-----------------	-------	------------------	-------	------------------------	------	---

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL LÍMITE LÍQUIDO, LÍMITE PLÁSTICO E ÍNDICE DE PLASTICIDAD N.T.P. 339.129 / ASTM D-4318


Identificación

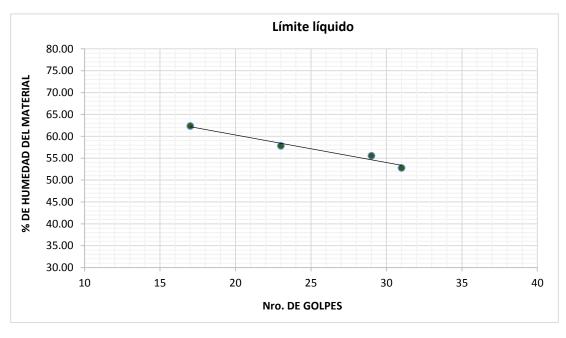
Calicata	: 01	Ubicación	Distrito Pimentel	Profundidad	: 2.70 m
----------	------	-----------	-------------------	-------------	----------

Recolección de datos y resultados

N.º	Denominación	Unid.		Límite líquido			Límite _l	plástico
1	Tara		15-20	20-25	25-30	30-35	Lp 1	Lp 2
2	Nro. de golpes		17	23	29	34		
3	Masa tara	gr	8.60	28.56	28.86	22.35	8.60	8.62
4	Masa muestra húmeda + tara	gr	27.56	55.91	52.83	44.21	22.66	23.66
5	Masa muestra seca + tara	gr	21.52	47.42	45.82	37.89	18.66	19.39
6	Masa del agua	gr	6.04	8.49	7.01	6.32	4.00	4.27
7	Masa muestra seca	gr	12.92	18.86	16.96	15.54	10.06	10.77
8	Contenido de humedad	%	46.75	45.02	41.33	40.67	39.76	39.65
9	Promedio C.H	%	44.00			39	.70	

Límite líquido:	44.00	Límite plástico:	40.00	Índice de plasticidad:	4.00
-----------------	-------	------------------	-------	------------------------	------

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL LÍMITE LÍQUIDO, LÍMITE PLÁSTICO E ÍNDICE DE PLASTICIDAD N.T.P. 339.129 / ASTM D-4318


Identificación

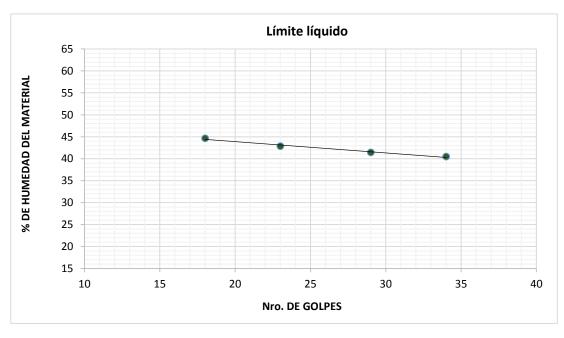
Calicata	: 01	Ubicación	Distrito Pimentel	Profundidad	: 2.70 m
----------	------	-----------	-------------------	-------------	----------

Recolección de datos y resultados

N.º	Denominación	Unid.		Límite líquido				olástico
1	Tara		15-20	20-25	25-30	30-35	Lp 1	Lp 2
2	Nro. de golpes		17	23	29	31		
3	Masa tara	gr	28.56	28.86	22.35	28.85	30.03	28.69
4	Masa muestra húmeda + tara	gr	70.47	70.78	67.33	77.18	81.46	77.91
5	Masa muestra seca + tara	gr	54.37	55.42	51.26	60.48	65.82	62.65
6	Masa del agua	gr	16.10	15.36	16.07	16.70	15.64	15.26
7	Masa muestra seca	gr	25.81	26.56	28.91	31.63	35.79	33.96
8	Contenido de humedad	%	62.38	57.83	55.59	52.80	43.70	44.94
9	Promedio C.H	%		57.00			44	.32

Límite líquido:	57.00	Límite plástico:	44.00	Índice de plasticidad:	13.00	1
-----------------	-------	------------------	-------	------------------------	-------	---

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL LÍMITE LÍQUIDO, LÍMITE PLÁSTICO E ÍNDICE DE PLASTICIDAD N.T.P. 339.129 / ASTM D-4318


Identificación

Calicata	: 02	Ubicación	Distrito Lambayeque	Profundidad	: 2.60 m
----------	------	-----------	---------------------	-------------	----------

Recolección de datos y resultados

N.º	Denominación	Unid.		Límite líquido				Límite plástico	
1	Tara		15-20	20-25	25-30	30-35	Lp 1	Lp 2	
2	Nro. de golpes		18	23	29	34			
3	Masa tara	gr	8.59	8.59	8.60	8.61	8.60	8.60	
4	Masa muestra húmeda + tara	gr	41.73	35.92	30.10	32.17	17.70	21.80	
5	Masa muestra seca + tara	gr	31.50	27.72	23.80	25.38	15.26	18.24	
6	Masa del agua	gr	10.23	8.20	6.30	6.79	2.44	3.56	
7	Masa muestra seca	gr	22.91	19.13	15.20	16.77	6.66	9.64	
8	Contenido de humedad	%	44.65	42.86	41.45	40.49	36.64	36.93	
9	Promedio C.H	%		43.00			36	.78	

Límite líquido:	43.00	Límite plástico:	37.00	Índice de plasticidad:	6.00
-----------------	-------	------------------	-------	------------------------	------

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÍA CIVIL LÍMITE LÍQUIDO, LÍMITE PLÁSTICO E ÍNDICE DE PLASTICIDAD N.T.P. 339.129 / ASTM D-4318

Identificación

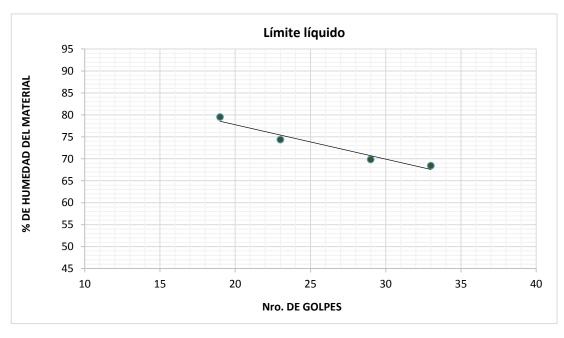
Calicata : 02 Ubicación	Distrito Lambayeque	Profundidad : 2.60 m
-------------------------	---------------------	----------------------

Recolección de datos y resultados

N.º	Denominación	Unid.		Límit	Límite plástico			
1	Tara		15-20	20-25	25-30	30-35	Lp 1	Lp 2
2	Nro. de golpes		19	24	27	32		
3	Masa tara	gr	19.47	28.64	28.70	19.74	30.04	28.05
4	Masa muestra húmeda + tara	gr	31.30	39.70	39.01	28.08	37.98	34.07
5	Masa muestra seca + tara	gr	26.56	35.33	34.98	24.90	35.09	31.77
6	Masa del agua	gr	4.74	4.37	4.03	3.18	2.89	2.30
7	Masa muestra seca	gr	7.09	6.69	6.28	5.16	5.05	3.72
8	Contenido de humedad	%	66.85	65.32	64.17	61.63	57.23	61.83
9	Promedio C.H	%		65.00			59	.53

Límite líquido:	65.00	Límite plástico:	60.00	Índice de plasticidad:	5.00
-----------------	-------	------------------	-------	------------------------	------

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL LÍMITE LÍQUIDO, LÍMITE PLÁSTICO E ÍNDICE DE PLASTICIDAD N.T.P. 339.129 / ASTM D-4318

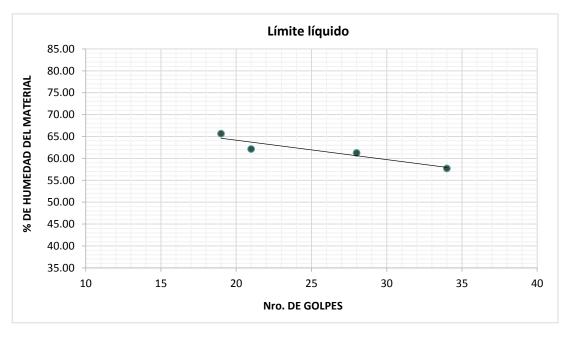

Identificación

Calicata : 02 Ubicación	Distrito Lambayeque	Profundidad : 2.60 m
-------------------------	---------------------	----------------------

Recolección de datos y resultados

N.º	Denominación	Unid.		Límit	Límite plástico			
1	Tara		15-20	20-25	25-30	30-35	Lp 1	Lp 2
2	Nro. de golpes		19	23	29	33		
3	Masa tara	gr	19.82	19.52	19.68	19.81	19.76	19.60
4	Masa muestra húmeda + tara	gr	43.30	38.84	42.34	40.85	34.74	33.50
5	Masa muestra seca + tara	gr	32.90	30.60	33.02	32.30	28.85	28.01
6	Masa del agua	gr	10.40	8.24	9.32	8.55	5.89	5.49
7	Masa muestra seca	gr	13.08	11.08	13.34	12.49	9.09	8.41
8	Contenido de humedad	%	79.51	74.37	69.87	68.45	64.80	65.28
9	Promedio C.H	%	73.00			65	.04	

Límite líquido:	73.00	Límite plástico:	65.00	Índice de plasticidad:	8.00
-----------------	-------	------------------	-------	------------------------	------


ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL LÍMITE LÍQUIDO, LÍMITE PLÁSTICO E ÍNDICE DE PLASTICIDAD N.T.P. 339.129 / ASTM D-4318

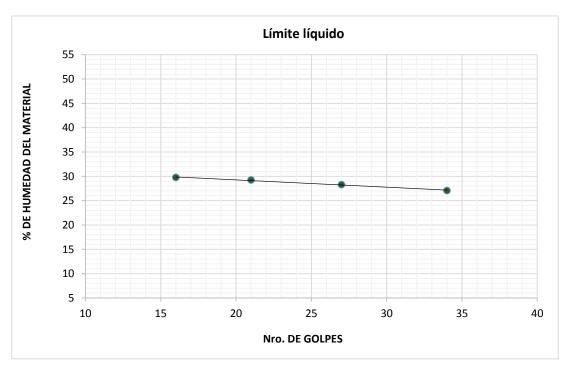
Identificación

Calicata	: 02	Ubicación	Distrito Lambayeque	Profundidad	: 2.60 m
----------	------	-----------	---------------------	-------------	----------

N.º	Denominación	Unid.		Límit		Límite _l	plástico	
1	Tara		15-20	20-25	25-30	30-35	Lp 1	Lp 2
2	Nro. de golpes		19	21	28	34		
3	Masa tara	gr	19.84	19.53	19.68	19.82	28.44	28.33
4	Masa muestra húmeda + tara	gr	78.68	81.36	71.24	74.27	62.36	63.45
5	Masa muestra seca + tara	gr	55.36	57.66	51.65	54.34	55.06	56.02
6	Masa del agua	gr	23.32	23.70	19.59	19.93	7.30	7.43
7	Masa muestra seca	gr	35.52	38.13	31.97	34.52	26.62	27.69
8	Contenido de humedad	%	65.65	62.16	61.28	57.73	27.42	26.83
9	Promedio C.H	%	62.00				27	.13

Límite líquido:	62.00	Límite plástico:	27.00	Índice de plasticidad:	35.00]
-----------------	-------	------------------	-------	------------------------	-------	---

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL LÍMITE LÍQUIDO, LÍMITE PLÁSTICO E ÍNDICE DE PLASTICIDAD N.T.P. 339.129 / ASTM D-4318


Identificación

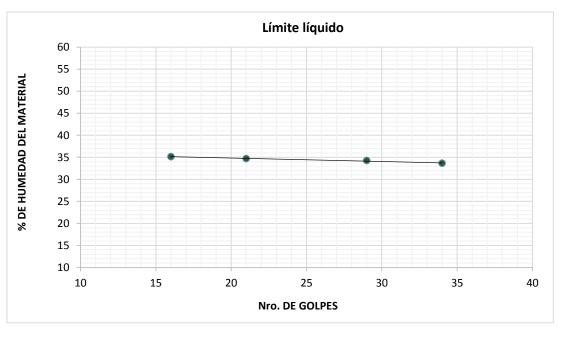
Calicata	: 03	Ubicación	Distrito La Victoria	Profundidad	: 2.70 m
----------	------	-----------	----------------------	-------------	----------

Estrato	· 01
Louato	. 01

N.º	Denominación	Unid.		Límit		Límite _l	olástico	
1	Tara		15-20	20-25	25-30	30-35	Lp 1	Lp 2
2	Nro. de golpes		16	21	27	34		
3	Masa tara	gr	28.84	28.56	29.42	28.15	13.57	8.53
4	Masa muestra húmeda + tara	gr	51.08	48.80	55.28	51.47	26.45	20.48
5	Masa muestra seca + tara	gr	45.98	44.22	49.58	46.50	23.78	18.03
6	Masa del agua	gr	5.10	4.58	5.70	4.97	2.67	2.45
7	Masa muestra seca	gr	17.14	15.66	20.16	18.35	10.21	9.50
8	Contenido de humedad	%	29.75	29.25	28.27	27.08	26.15	25.79
9	Promedio C.H	%	29.00					.97

Límite líquido:	29.00	Límite plástico:	26.00	Índice de plasticidad:	3.00	
-----------------	-------	------------------	-------	------------------------	------	--

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL LÍMITE LÍQUIDO, LÍMITE PLÁSTICO E ÍNDICE DE PLASTICIDAD N.T.P. 339.129 / ASTM D-4318


Identificación

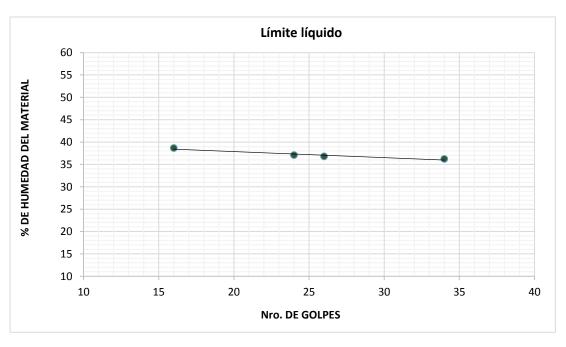
Calicata	: 03	Ubicación	Distrito La Victoria	Profundidad	: 2.70 m
----------	------	-----------	----------------------	-------------	----------

Recolección de datos y resultados

N.º	Denominación	Unid.		Límit		Límite _l	plástico	
1	Tara		15-20	20-25	25-30	30-35	Lp 1	Lp 2
2	Nro. de golpes		16	21	29	34		
3	Masa tara	gr	8.63	8.65	8.66	8.61	8.60	8.62
4	Masa muestra húmeda + tara	gr	25.82	20.64	29.03	25.61	14.89	14.64
5	Masa muestra seca + tara	gr	21.35	17.55	23.83	21.33	13.41	13.19
6	Masa del agua	gr	4.47	3.09	5.20	4.28	1.48	1.45
7	Masa muestra seca	gr	12.72	8.90	15.17	12.72	4.81	4.57
8	Contenido de humedad	%	35.14	34.72	34.28	33.65	30.77	31.73
9	Promedio C.H	%	35.00				31	.25

Límite líquido:	35.00	Límite plástico:	31.00	Índice de plasticidad:	4.00
-----------------	-------	------------------	-------	------------------------	------

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL LÍMITE LÍQUIDO, LÍMITE PLÁSTICO E ÍNDICE DE PLASTICIDAD N.T.P. 339.129 / ASTM D-4318


Identificación

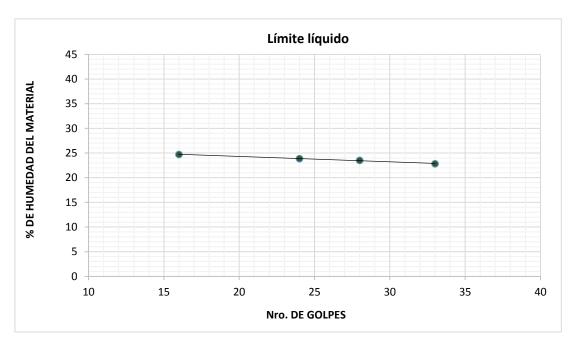
Calicata	: 03	Ubicación	Distrito La Victoria	Profundidad	: 2.70 m	
----------	------	-----------	----------------------	-------------	----------	--

Recolección de datos y resultados

N.º	Denominación	Unid.	Límite líquido				Límite plástico		
1	Tara		15-20	20-25	25-30	30-35	Lp 1	Lp 2	
2	Nro. de golpes		16	24	26	34			
3	Masa tara	gr	19.52	19.82	19.63	19.81	19.68	19.52	
4	Masa muestra húmeda + tara		41.00	39.82	42.87	38.01	34.86	33.02	
5	Masa muestra seca + tara	gr	35.01	34.41	36.62	33.17	30.88	29.42	
6	Masa del agua	gr	5.99	5.41	6.25	4.84	3.98	3.60	
7	Masa muestra seca	gr	15.49	14.59	16.99	13.36	11.20	9.90	
8	Contenido de humedad	%	38.67	37.08	36.79	36.23	35.54	36.36	
9	Promedio C.H	%	37.00				35.95		

Límite líquido:	37.00	Límite plástico:	36.00	Índice de plasticidad:	1.00
-----------------	-------	------------------	-------	------------------------	------

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÍA CIVIL LÍMITE LÍQUIDO, LÍMITE PLÁSTICO E ÍNDICE DE PLASTICIDAD N.T.P. 339.129 / ASTM D-4318


Identificación

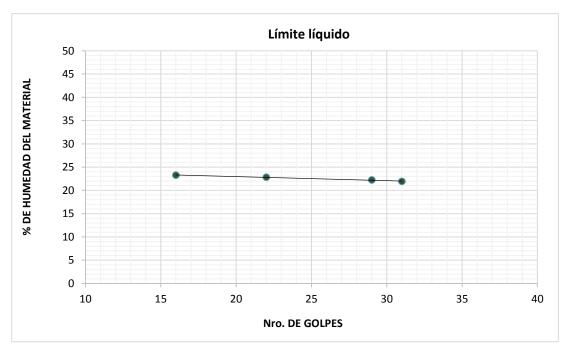
Calicata	: 03	Ubicación	Distrito La Victoria	Profundidad	: 2.70 m
----------	------	-----------	----------------------	-------------	----------

Recolección de datos y resultados

N.º	Denominación	Unid.	Límite líquido				Límite plástico		
1	Tara		15-20	20-25	25-30	30-35	Lp 1	Lp 2	
2	Nro. de golpes		16	24	28	33			
3	Masa tara	gr	20.35	19.70	19.56	19.76	8.53	8.61	
4	Masa muestra húmeda + tara		38.47	41.61	36.27	39.72	17.60	14.50	
5	Masa muestra seca + tara	gr	34.88	37.39	33.09	36.01	15.95	13.45	
6	Masa del agua	gr	3.59	4.22	3.18	3.71	1.65	1.05	
7	Masa muestra seca	gr	14.53	17.69	13.53	16.25	7.42	4.84	
8	Contenido de humedad	%	24.71	23.86	23.50	22.83	22.24	21.69	
9	Promedio C.H	%	24.00				21.97		

Límite líquido:	24.00	Límite plástico:	22.00	Índice de plasticidad:	2.00
-----------------	-------	------------------	-------	------------------------	------

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL LÍMITE LÍQUIDO, LÍMITE PLÁSTICO E ÍNDICE DE PLASTICIDAD N.T.P. 339.129 / ASTM D-4318


Identificación

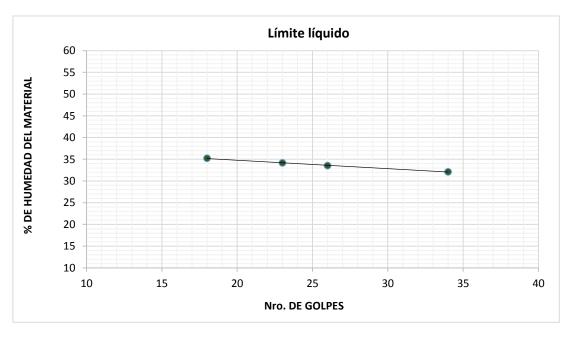
Calicata	: 04	Ubicación	Distrito Ciudad Eten	Profundidad	: 2.40 m	
----------	------	-----------	----------------------	-------------	----------	--

Estrato	· 01
Lotiato	. 0 1

N.º	Denominación	Unid.		Límit	te líquido		Límite _l	olástico
1	Tara		15-20	20-25	25-30	30-35	Lp 1	Lp 2
2	Nro. de golpes		16	22	29	31		
3	Masa tara	gr	13.48	13.54	12.75	15.95	12.68	29.26
4	Masa muestra húmeda + tara	gr	39.00	45.29	41.31	51.98	30.52	46.95
5	Masa muestra seca + tara	gr	34.18	39.39	36.11	45.50	27.51	43.97
6	Masa del agua	gr	4.82	5.90	5.20	6.48	3.01	2.98
7	Masa muestra seca	gr	20.70	25.85	23.36	29.55	14.83	14.71
8	Contenido de humedad	%	23.29	22.82	22.26	21.93	20.30	20.26
9	Promedio C.H	%	23.00				20.28	

Límite líquido:	23.00	Límite plástico:	20.00	Índice de plasticidad:	3.00
-----------------	-------	------------------	-------	------------------------	------

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÍA CIVIL LÍMITE LÍQUIDO, LÍMITE PLÁSTICO E ÍNDICE DE PLASTICIDAD N.T.P. 339.129 / ASTM D-4318


Identificación

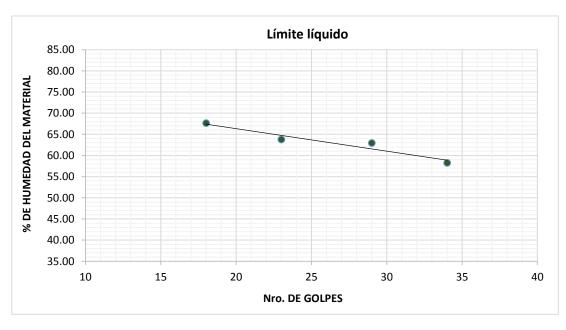
Calicata	: 04	Ubicación	Distrito Ciudad Eten	Profundidad	: 2.40 m
----------	------	-----------	----------------------	-------------	----------

Recolección de datos y resultados

N.º	Denominación	Unid.		Límit	te líquido		Límite plástico		
1	Tara		15-20	20-25	25-30	30-35	Lp 1	Lp 2	
2	Nro. de golpes		18	23	26	34			
3	Masa tara	gr	30.22	29.66	28.31	28.98	30.26	28.57	
4	Masa muestra húmeda + tara		42.70	42.23	40.10	41.20	37.63	35.78	
5	Masa muestra seca + tara	gr	39.45	39.03	37.14	38.23	35.93	34.13	
6	Masa del agua	gr	3.25	3.20	2.96	2.97	1.70	1.65	
7	Masa muestra seca	gr	9.23	9.37	8.83	9.25	5.67	5.56	
8	Contenido de humedad	%	35.21	34.15	33.52	32.11	29.98	29.68	
9	Promedio C.H	%	34.00				29.83		

Límite líquido:	34.00	Límite plástico:	30.00	Índice de plasticidad:	4.00	
-----------------	-------	------------------	-------	------------------------	------	--

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÍA CIVIL LÍMITE LÍQUIDO, LÍMITE PLÁSTICO E ÍNDICE DE PLASTICIDAD N.T.P. 339.129 / ASTM D-4318


Identificación

Calicata	: 04	Ubicación	Distrito Ciudad Eten	Profundidad	: 2.40 m
----------	------	-----------	----------------------	-------------	----------

Recolección de datos y resultados

N.º	Denominación	Unid.		Límit		Límite plástico		
1	Tara		15-20	20-25	25-30	30-35	Lp 1	Lp 2
2	Nro. de golpes		18	23	29	34		
3	Masa tara	gr	13.81	19.70	19.56	19.75	8.53	8.62
4	Masa muestra húmeda + tara	gr	49.40	48.77	40.30	42.16	28.33	28.69
5	Masa muestra seca + tara	gr	35.04	37.45	32.29	33.91	23.77	24.09
6	Masa del agua	gr	14.36	11.32	8.01	8.25	4.56	4.60
7	Masa muestra seca	gr	21.23	17.75	12.73	14.16	15.24	15.47
8	Contenido de humedad	%	67.64	63.77	62.92	58.26	29.92	29.73
9	Promedio C.H	%	64.00			29	.83	

Límite líquido:	64.00	Límite plástico:	30.00	Índice de plasticidad:	34.00
-----------------	-------	------------------	-------	------------------------	-------

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL LÍMITE LÍQUIDO, LÍMITE PLÁSTICO E ÍNDICE DE PLASTICIDAD N.T.P. 339.129 / ASTM D-4318

Identificación

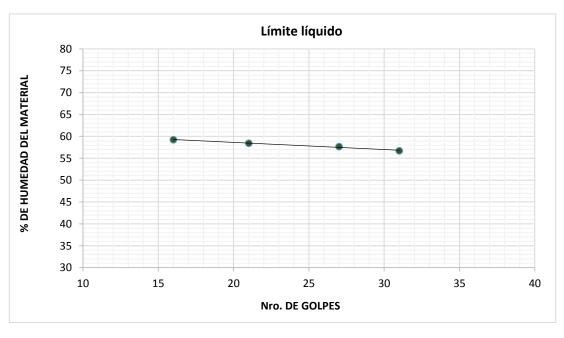
Calicata	: 05	Ubicación	Distrito Monsefú	Profundidad	: 2.70 m	l
----------	------	-----------	------------------	-------------	----------	---

Estrato	· 01
Louato	. 01

N.º	Denominación	Unid.		Lími	te líquido		Límite _l	olástico
1	Tara		15-20	20-25	25-30	30-35	Lp 1	Lp 2
2	Nro. de golpes		17	21	26	32		
3	Masa tara	gr	13.32	13.52	13.42	13.05	13.24	13.66
4	Masa muestra húmeda + tara	gr	29.50	25.90	24.56	25.68	19.04	20.58
5	Masa muestra seca + tara	gr	24.49	22.14	21.31	22.25	17.57	18.82
6	Masa del agua	gr	5.01	3.76	3.25	3.43	1.47	1.76
7	Masa muestra seca	gr	11.17	8.62	7.89	9.20	4.33	5.16
8	Contenido de humedad	%	44.85	43.62	41.19	37.28	33.95	34.11
9	Promedio C.H	%	42.00			34	.03	

Límite líquido:	42.00	Límite plástico:	34.00	Índice de plasticidad:	8.00
-----------------	-------	------------------	-------	------------------------	------

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL LÍMITE LÍQUIDO, LÍMITE PLÁSTICO E ÍNDICE DE PLASTICIDAD N.T.P. 339.129 / ASTM D-4318


Identificación

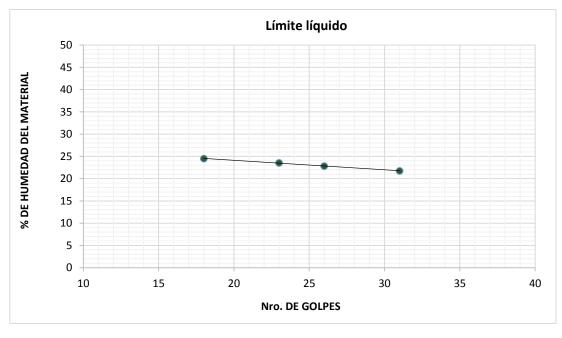
Calicata	: 05	Ubicación	Distrito Monsefú	Profundidad	: 2.70 m
----------	------	-----------	------------------	-------------	----------

Recolección de datos y resultados

N.º	Denominación	Unid.		Límit		Límite plástico		
1	Tara		15-20	20-25	25-30	30-35	Lp 1	Lp 2
2	Nro. de golpes		16	21	27	31		
3	Masa tara	gr	29.17	30.22	28.86	28.50	19.68	14.70
4	Masa muestra húmeda + tara	gr	51.64	50.39	51.42	46.93	34.82	29.84
5	Masa muestra seca + tara	gr	43.28	42.95	43.17	40.26	29.61	24.64
6	Masa del agua	gr	8.36	7.44	8.25	6.67	5.21	5.20
7	Masa muestra seca	gr	14.11	12.73	14.31	11.76	9.93	9.94
8	Contenido de humedad	%	59.25	58.44	57.65	56.72	52.47	52.31
9	Promedio C.H	%	58.00			52	.39	

Límite líquido:	58.00	Límite plástico:	52.00	Índice de plasticidad:	6.00	
-----------------	-------	------------------	-------	------------------------	------	--

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÍA CIVIL LÍMITE LÍQUIDO, LÍMITE PLÁSTICO E ÍNDICE DE PLASTICIDAD N.T.P. 339.129 / ASTM D-4318


Identificación

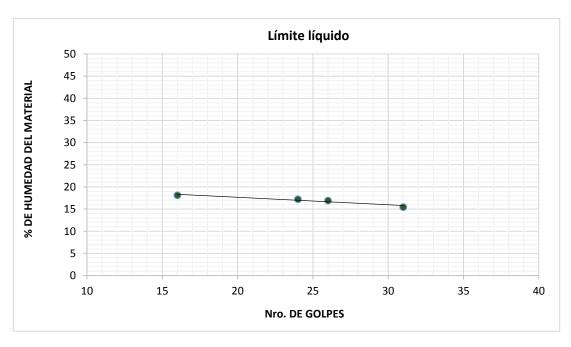
Calicata	: 05	Ubicación	Distrito Monsefú	Profundidad	: 2.70 m
----------	------	-----------	------------------	-------------	----------

Recolección de datos y resultados

N.º	Denominación	Unid.		Límit	te líquido		Límite plástico	
1	Tara		15-20	20-25	25-30	30-35	Lp 1	Lp 2
2	Nro. de golpes		18	23	26	31		
3	Masa tara	gr	28.57	30.25	19.60	28.32	29.66	28.99
4	Masa muestra húmeda + tara	gr	36.70	48.10	36.39	41.53	36.31	38.27
5	Masa muestra seca + tara	gr	35.10	44.70	33.27	39.17	35.21	36.74
6	Masa del agua	gr	1.60	3.40	3.12	2.36	1.10	1.53
7	Masa muestra seca	gr	6.53	14.45	13.67	10.85	5.55	7.75
8	Contenido de humedad	%	24.50	23.53	22.82	21.75	19.82	19.74
9	Promedio C.H	%	23.00				19.78	

Límite líquido:	23.00	Límite plástico:	20.00	Índice de plasticidad:	3.00	
-----------------	-------	------------------	-------	------------------------	------	--

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÍA CIVIL LÍMITE LÍQUIDO, LÍMITE PLÁSTICO E ÍNDICE DE PLASTICIDAD N.T.P. 339.129 / ASTM D-4318


Identificación

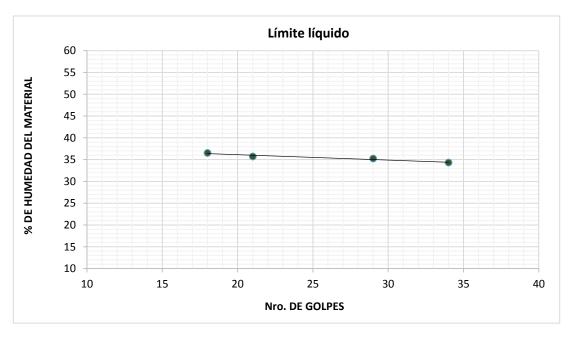
Calicata	: 05	Ubicación	Distrito Monsefú	Profundidad	: 2.70 m	l
----------	------	-----------	------------------	-------------	----------	---

Recolección de datos y resultados

N.º	Denominación	Unid.		Límite líquido				Límite plástico	
1	Tara		15-20	20-25	25-30	30-35	Lp 1	Lp 2	
2	Nro. de golpes		16	24	26	31			
3	Masa tara	gr	19.82	28.83	12.76	14.70	13.66	13.65	
4	Masa muestra húmeda + tara	gr	49.23	57.95	41.36	37.92	26.32	25.34	
5	Masa muestra seca + tara	gr	44.72	53.67	37.22	34.81	24.80	23.93	
6	Masa del agua	gr	4.51	4.28	4.14	3.11	1.52	1.41	
7	Masa muestra seca	gr	24.90	24.84	24.46	20.11	11.14	10.28	
8	Contenido de humedad	%	18.11	17.23	16.93	15.46	13.64	13.72	
9	Promedio C.H	%		17.00				.68	

Límite líquido:	17.00	Límite plástico:	14.00	Índice de plasticidad:	3.00
-----------------	-------	------------------	-------	------------------------	------

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÍA CIVIL LÍMITE LÍQUIDO, LÍMITE PLÁSTICO E ÍNDICE DE PLASTICIDAD N.T.P. 339.129 / ASTM D-4318


Identificación

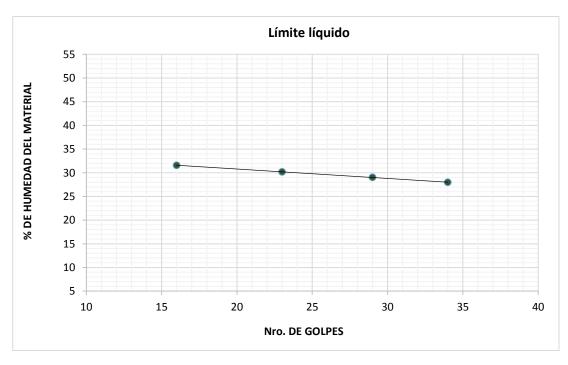
Calicata	: 05	Ubicación	Distrito Monsefú	Profundidad	: 2.70 m	l
----------	------	-----------	------------------	-------------	----------	---

Recolección de datos y resultados

N.º	Denominación	Unid.		Límit	te líquido		Límite plástico	
1	Tara		15-20	20-25	25-30	30-35	Lp 1	Lp 2
2	Nro. de golpes		18	21	29	34		
3	Masa tara	gr	13.32	13.52	13.48	13.05	13.24	13.66
4	Masa muestra húmeda + tara	gr	27.00	28.76	26.22	24.60	19.04	19.34
5	Masa muestra seca + tara	gr	23.34	24.75	22.90	21.65	17.89	18.22
6	Masa del agua	gr	3.66	4.01	3.32	2.95	1.15	1.12
7	Masa muestra seca	gr	10.02	11.23	9.42	8.60	4.65	4.56
8	Contenido de humedad	%	36.53	35.71	35.24	34.30	24.73	24.56
9	Promedio C.H	%		36.00				.65

Límite líquido:	36.00	Límite plástico:	25.00	Índice de plasticidad:	11.00	1
-----------------	-------	------------------	-------	------------------------	-------	---

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL LÍMITE LÍQUIDO, LÍMITE PLÁSTICO E ÍNDICE DE PLASTICIDAD N.T.P. 339.129 / ASTM D-4318


Identificación

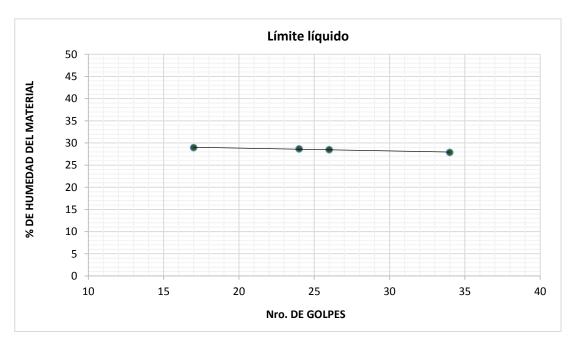
Calicata	: 06	Ubicación	Distrito Picsi	Profundidad	: 2.60 m	
----------	------	-----------	----------------	-------------	----------	--

Estrato	· 01
Lotiato	. 0 1

N.º	Denominación	Unid.		Límit	te líquido		Límite _l	olástico
1	Tara		15-20	20-25	25-30	30-35	Lp 1	Lp 2
2	Nro. de golpes		16	23	29	34		
3	Masa tara	gr	19.56	19.82	28.69	28.74	30.26	19.46
4	Masa muestra húmeda + tara	gr	32.43	33.10	40.51	38.80	36.51	25.29
5	Masa muestra seca + tara	gr	29.34	30.02	37.85	36.60	35.12	23.99
6	Masa del agua	gr	3.09	3.08	2.66	2.20	1.39	1.30
7	Masa muestra seca	gr	9.78	10.20	9.16	7.86	4.86	4.53
8	Contenido de humedad	%	31.60	30.20	29.04	27.99	28.60	28.70
9	Promedio C.H	%	30.00 28.65					.65

Límite líquido:	30.00	Límite plástico:	29.00	Índice de plasticidad:	1.00
-----------------	-------	------------------	-------	------------------------	------

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÍA CIVIL LÍMITE LÍQUIDO, LÍMITE PLÁSTICO E ÍNDICE DE PLASTICIDAD N.T.P. 339.129 / ASTM D-4318


Identificación

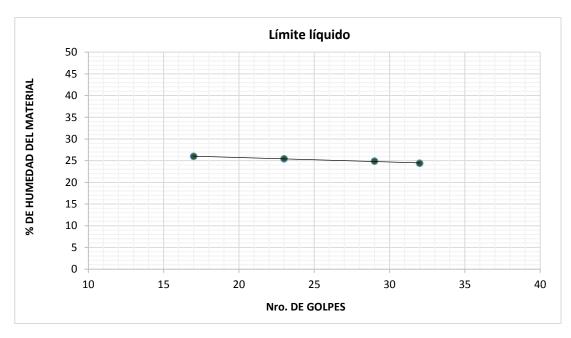
Calicata	: 06	Ubicación	Distrito Picsi	Profundidad	: 2.60 m	
----------	------	-----------	----------------	-------------	----------	--

Recolección de datos y resultados

N.º	Denominación	Unid.		Límit	te líquido		Límite plástico		
1	Tara		15-20	20-25	25-30	30-35	Lp 1	Lp 2	
2	2 Nro. de golpes		17	24	26	34			
3	Masa tara	gr	19.74	19.46	19.76	28.65	8.61	28.05	
4	Masa muestra húmeda + tara	gr	63.62	60.52	51.50	62.68	22.51	41.66	
5	Masa muestra seca + tara	gr	53.77	51.37	44.46	55.26	19.52	38.72	
6	Masa del agua	gr	9.85	9.15	7.04	7.42	2.99	2.94	
7	Masa muestra seca	gr	34.03	31.91	24.70	26.61	10.91	10.67	
8	Contenido de humedad	%	28.95	28.67	28.50	27.88	27.41	27.55	
9	Promedio C.H	%	29.00			27	.48		

Límite líquido:	29.00	Límite plástico:	27.00	Índice de plasticidad:	2.00	1
-----------------	-------	------------------	-------	------------------------	------	---

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL LÍMITE LÍQUIDO, LÍMITE PLÁSTICO E ÍNDICE DE PLASTICIDAD N.T.P. 339.129 / ASTM D-4318


Identificación

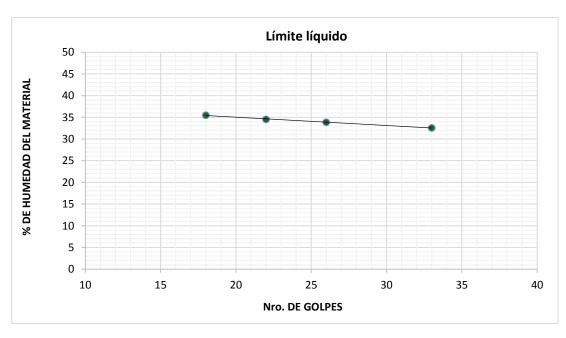
Calicata	: 06	Ubicación	Distrito Picsi	Profundidad	: 2.60 m	
----------	------	-----------	----------------	-------------	----------	--

Recolección de datos y resultados

N.º	Denominación	Unid.		Límit	te líquido		Límite plástico		
1	Tara		15-20	20-25	25-30	30-35	Lp 1	Lp 2	
2	2 Nro. de golpes		17	23	29	32			
3	Masa tara	gr	28.77	28.57	27.42	28.83	29.66	28.08	
4	Masa muestra húmeda + tara	gr	72.79	67.91	71.05	65.52	46.71	46.94	
5	Masa muestra seca + tara	gr	63.71	59.93	62.36	58.32	43.37	43.22	
6	Masa del agua	gr	9.08	7.98	8.69	7.20	3.34	3.72	
7	Masa muestra seca	gr	34.94	31.36	34.94	29.49	13.71	15.14	
8	Contenido de humedad	%	25.99	25.45	24.87	24.42	24.36	24.57	
9	Promedio C.H	%	25.00			24	.47		

Límite líquido:	25.00	Límite plástico:	24.00	Índice de plasticidad:	1.00	1
-----------------	-------	------------------	-------	------------------------	------	---

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL LÍMITE LÍQUIDO, LÍMITE PLÁSTICO E ÍNDICE DE PLASTICIDAD N.T.P. 339.129 / ASTM D-4318


Identificación

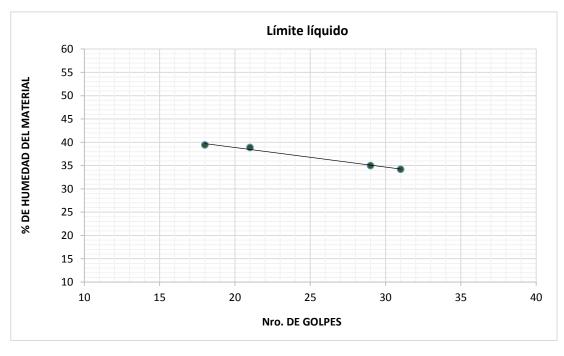
Calicata	: 06	Ubicación	Distrito Picsi	Profundidad	: 2.60 m	
----------	------	-----------	----------------	-------------	----------	--

Estrato	: 04

N.º	Denominación	Unid.		Límit	te líquido		Límite plástico		
1	Tara		15-20	20-25	25-30	30-35	Lp 1	Lp 2	
2	Nro. de golpes		18	22	26	33			
3	Masa tara	gr	19.46	19.74	19.75	30.03	28.64	28.69	
4	Masa muestra húmeda + tara	gr	33.97	39.18	37.81	50.10	37.05	38.82	
5	Masa muestra seca + tara	gr	30.17	34.19	33.24	45.17	35.00	36.35	
6	Masa del agua	gr	3.80	4.99	4.57	4.93	2.05	2.47	
7	Masa muestra seca	gr	10.71	14.45	13.49	15.14	6.36	7.66	
8	Contenido de humedad	%	35.48	34.53	33.88	32.56	32.23	32.25	
9	Promedio C.H	%	34.00			32	.24		

Límite líquido:	34.00	Límite plástico:	32.00	Índice de plasticidad:	2.00
-----------------	-------	------------------	-------	------------------------	------

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL LÍMITE LÍQUIDO, LÍMITE PLÁSTICO E ÍNDICE DE PLASTICIDAD N.T.P. 339.129 / ASTM D-4318


Identificación

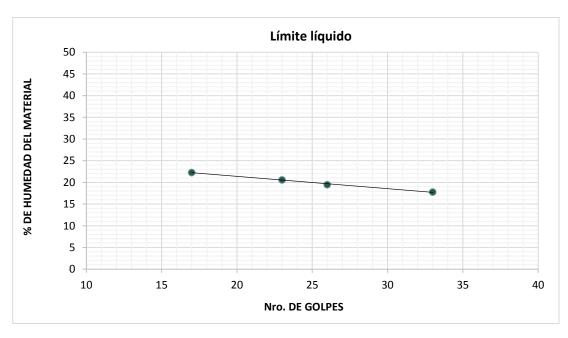
Calicata	: 07	Ubicación	Distrito Pueblo Nuevo	Profundidad	: 3.00 m
----------	------	-----------	-----------------------	-------------	----------

Estrato	: 01
---------	------

N.º	Denominación	Unid.		Lími	te líquido		Límite plástico		
1	Tara		15-20	20-25	25-30	30-35	Lp 1	Lp 2	
2	Nro. de golpes		18	21	29	31			
3	Masa tara	gr	8.65	8.63	13.65	15.80	8.61	13.52	
4	Masa muestra húmeda + tara	gr	29.02	29.60	32.00	35.69	25.53	29.28	
5	Masa muestra seca + tara	gr	23.26	23.73	27.24	30.62	21.42	25.47	
6	Masa del agua	gr	5.76	5.87	4.76	5.07	4.11	3.81	
7	Masa muestra seca	gr	14.61	15.10	13.59	14.82	12.81	11.95	
8	Contenido de humedad	%	39.43	38.87	35.03	34.21	32.08	31.88	
9	Promedio C.H	%		37.00			31	.98	

Límite líquido:	37.00	Límite plástico:	32.00	Índice de plasticidad:	5.00
-----------------	-------	------------------	-------	------------------------	------

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL LÍMITE LÍQUIDO, LÍMITE PLÁSTICO E ÍNDICE DE PLASTICIDAD N.T.P. 339.129 / ASTM D-4318

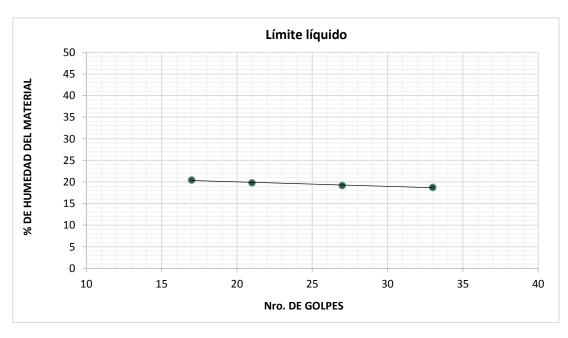

Identificación

Calicata	: 07	Ubicación	Distrito Pueblo Nuevo	Profundidad	: 3.00 m
----------	------	-----------	-----------------------	-------------	----------

Recolección de datos y resultados

N.º	Denominación	Unid.	Límite líquido				Límite plástico		
1	Tara		15-20	20-25	25-30	30-35	Lp 1	Lp 2	
2	Nro. de golpes		17	23	26	33			
3	Masa tara	gr	28.44	19.81	19.76	29.22	30.02	28.84	
4	Masa muestra húmeda + tara	gr	44.90	32.40	34.17	47.63	58.10	56.30	
5	Masa muestra seca + tara	gr	41.90	30.25	31.82	44.85	55.02	53.28	
6	Masa del agua	gr	3.00	2.15	2.35	2.78	3.08	3.02	
7	Masa muestra seca	gr	13.46	10.44	12.06	15.63	25.00	24.44	
8	Contenido de humedad	%	22.29	20.59	19.49	17.79	12.32	12.36	
9	Promedio C.H	%	20.00				12	.34	

Límite líquido:	20.00	Límite plástico:	12.00	Índice de plasticidad:	8.00	1
-----------------	-------	------------------	-------	------------------------	------	---


ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL LÍMITE LÍQUIDO, LÍMITE PLÁSTICO E ÍNDICE DE PLASTICIDAD N.T.P. 339.129 / ASTM D-4318

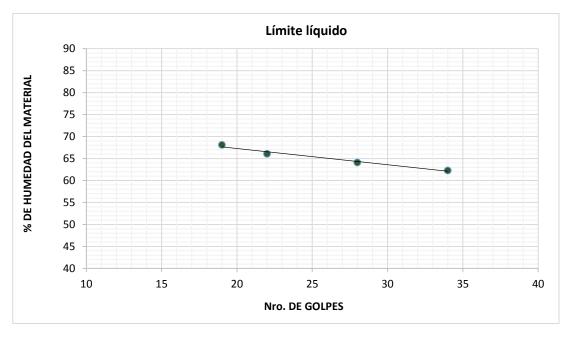
Identificación

Calicata	: 07	Ubicación	Distrito Pueblo Nuevo	Profundidad	: 3.00 m	İ
----------	------	-----------	-----------------------	-------------	----------	---

N.º	Denominación	Unid.		Límit	te líquido		Límite _l	olástico
1	Tara		15-20	20-25	25-30	30-35	Lp 1	Lp 2
2	Nro. de golpes		17	21	27	33		
3	Masa tara	gr	28.57	29.22	28.57	19.76	29.65	29.00
4	Masa muestra húmeda + tara	gr	43.65	62.99	64.85	61.79	51.70	47.11
5	Masa muestra seca + tara	gr	41.09	57.40	59.01	55.15	48.38	44.37
6	Masa del agua	gr	2.56	5.59	5.84	6.64	3.32	2.74
7	Masa muestra seca	gr	12.52	28.18	30.44	35.39	18.73	15.37
8	Contenido de humedad	%	20.45	19.84	19.19	18.76	17.73	17.83
9	Promedio C.H	%	20.00				17	.78

Límite líquido:	20.00	Límite plástico:	18.00	Índice de plasticidad:	2.00
-----------------	-------	------------------	-------	------------------------	------

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL LÍMITE LÍQUIDO, LÍMITE PLÁSTICO E ÍNDICE DE PLASTICIDAD N.T.P. 339.129 / ASTM D-4318


Identificación

Calicata	: 07	Ubicación	Distrito Pueblo Nuevo	Profundidad	: 3.00 m	I
----------	------	-----------	-----------------------	-------------	----------	---

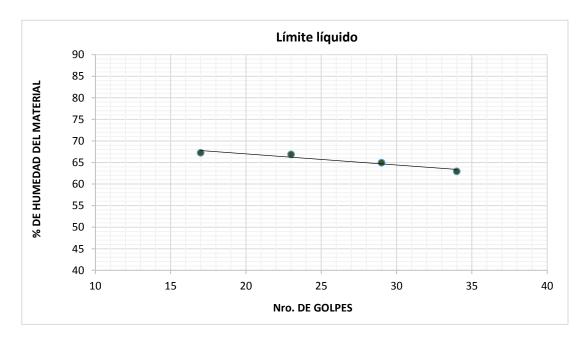
Recolección de datos y resultados

N.º	Denominación	Unid.	Límite líquido				Límite plástico		
1	Tara		15-20	20-25	25-30	30-35	Lp 1	Lp 2	
2	Nro. de golpes		19	22	28	34			
3	Masa tara	gr	29.50	30.22	19.56	22.35	29.66	29.00	
4	Masa muestra húmeda + tara	gr	41.20	42.66	33.15	30.66	57.36	56.69	
5	Masa muestra seca + tara	gr	36.46	37.71	27.84	27.47	50.75	50.10	
6	Masa del agua	gr	4.74	4.95	5.31	3.19	6.61	6.59	
7	Masa muestra seca	gr	6.96	7.49	8.28	5.12	21.09	21.10	
8	Contenido de humedad	%	68.10	66.09	64.13	62.30	31.34	31.23	
9	Promedio C.H	%	65.00				31	.29	

Límite líquido:	65.00	Límite plástico:	31.00	Índice de plasticidad:	34.00	1
-----------------	-------	------------------	-------	------------------------	-------	---

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL LÍMITE LÍQUIDO, LÍMITE PLÁSTICO E ÍNDICE DE PLASTICIDAD N.T.P. 339.129 / ASTM D-4318

Identificación


Calicata	: 07	Ubicación	Distrito Pueblo Nuevo	Profundidad	: 3.00 m	
----------	------	-----------	-----------------------	-------------	----------	--

Recolección de datos y resultados

Estrato	: 05

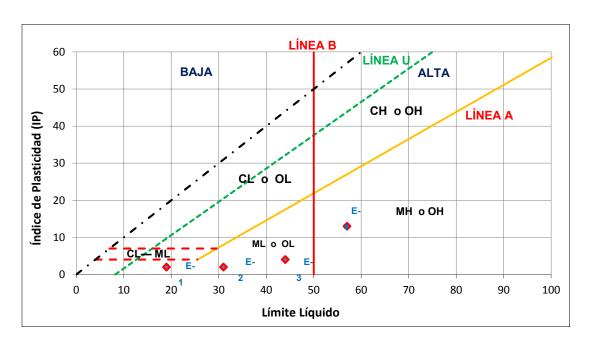
N.º	Denominación	Unid.		Límite líquido				Límite plástico	
1	Tara		15-20	20-25	25-30	30-35	Lp 1	Lp 2	
2	Nro. de golpes		17	23	29	34			
3	Masa tara	gr	8.67	8.63	19.75	19.74	8.61	19.47	
4	Masa muestra húmeda + tara	gr	32.92	29.94	41.87	42.70	24.03	31.66	
5	Masa muestra seca + tara	gr	23.17	21.40	33.16	33.83	20.50	28.76	
6	Masa del agua	gr	9.75	8.54	8.71	8.87	3.53	2.90	
7	Masa muestra seca	gr	14.50	12.77	13.41	14.09	11.89	9.29	
8	Contenido de humedad	%	67.24	66.88	64.95	62.95	29.69	31.22	
9	Promedio C.H	%	66.00			30	.45		

Límite líquido:	66.00	Límite plástico:	30.00	Índice de plasticidad:	36.00	
-----------------	-------	------------------	-------	------------------------	-------	--

Elaborado por: Jhoan Terán Cotrina

Guido Alarcón Pejerrey

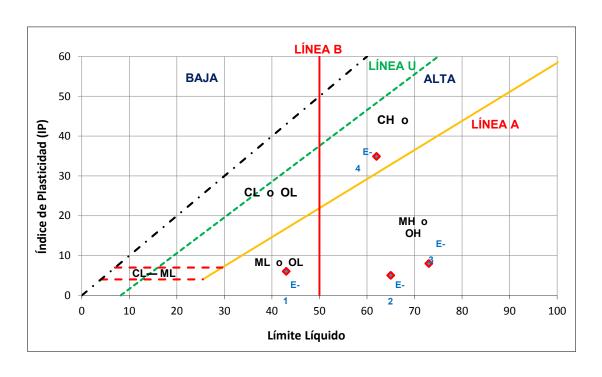
ANEXO 05: CLASIFICACIÓN DE SUELOS (SUCS) EL RESUMEN SE DETALLA EN EL ÍTEM 5.1.4, PÁGINA 102 CAPÍTULO V


ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL <u>MÉTODO PARA CLASIFICACIÓN DE SUELOS SUCS</u> N.T.P. 339.134 / ASTM D-2487

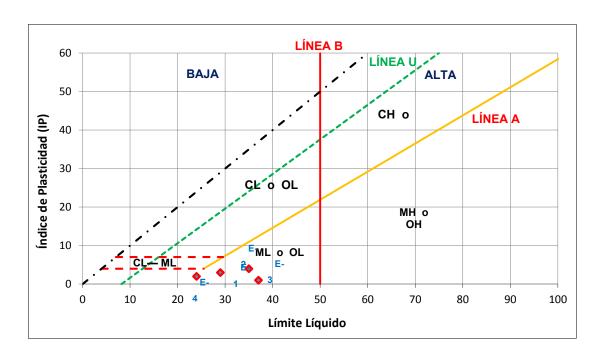
Tesis

Variación de los parámetros de resistencia al corte con diferentes grados de saturación en suelos cohesivos en siete distritos de la región Lambayeque-Perú

CALICATA 1 - DISTRITO PIMENTEL									
	Estrato 1		Estrato 2						
Tamices %Retenido % que Tamices %Retenido				%Retenido	% que				
NTP	Acumulado	Pasa	NTP	Acumulado	Pasa				
N°4	0.00	100.00	N°4	0.00	100.00				
N°200	85.38	14.63	N°200	6.83	93.17				
	SM - Arena limosa		ML -	Limo de baja plastici	idad				


	Estrato 3					Estrato 4			
Tamic	es %R	etenido	% que	Tamio	ces	%Re	tenido	% que	
NTF	Acu	Acumulado		NTP		Acumulado		Pasa	
N°4	N°4		98.73	Nº4	1 0		.00	100.00	
N°20	0 3	31.21	68.8	N°20	00	38.76		61.25	
	ML - Limo de b	aja plastic	idad	MH - Limo de alta plasticidad					
Nom	Límite			Nom		Límite		dice de	
E-1	19.00	2.00		E-3		44.00		4.00	
E-2	31.00		2.00	E-4		57.00		13.00	

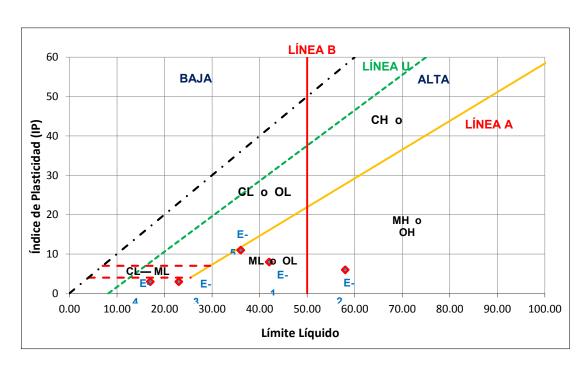
ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÍA CIVIL <u>MÉTODO PARA CLASIFICACIÓN DE SUELOS SUCS</u> N.T.P. 339.134 / ASTM D-2487


		CALIC	ATA 2 - DIS	TRITO LAM	BAYI	EQUE		
	Estra	ito 1		Estrato 2				
Tamices	%Re	etenido	% que	Tamio	ces	es %Retenido		% que
NTP	Acui	mulado	Pasa	NTF	•	Acur	nulado	Pasa
N°4	(0.07	99.94	Nº4	1	C	0.00	100.00
N°200	ę	9.22	90.78	N°20	00	3	3.03	96.98
ML	ML - Limo de baja plasticidad				MH - Limo de alta plasticidad			
	Estra	ito 3		Estrato 4				
Tamices	%Re	etenido	% que	Tamio	nices %Re		tenido	% que
NTP	Acui	mulado	Pasa	NTF	NTP Acui		nulado	Pasa
N°4	(0.00	100.00	Nº4	1	C	0.00	100.00
N°200	().72	99.29	N°20	00	3	3.14	66.86
MH	l - Limo de a	Ita plastic	idad	(CH -	Arcilla de a	lta plastic	idad
Nom	Límite		dice de	Nomb		Límite	Ín	dice de
E-1	43.00		6.00	E-3		73.00	11122	8.00
E-2	65.00		5.00	E-4		62.00		35.00

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÍA CIVIL <u>MÉTODO PARA CLASIFICACIÓN DE SUELOS SUCS</u> N.T.P. 339.134 / ASTM D-2487

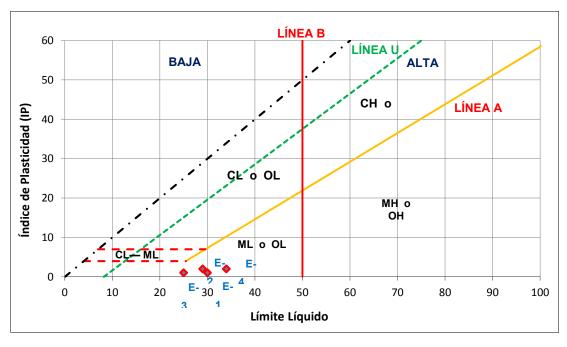

	CALICATA 3 - DISTRITO LA VICTORIA								
	Estra	ito 1		Estrato 2					
Tamice	s %Re	tenido	% que	Tamic	ces	%Re	tenido	% que	
NTP	Acui	mulado	Pasa	NTF	•	Acur	nulado	Pasa	
Nº4	().34	99.67	N°4		6	.02	93.98	
N°200	3	7.45	62.55	N°20	00	19	5.18	84.83	
N	ML - Limo de baja plasticidad					ML - Limo de baja plasticidad			
	Estra	ito 3		Estrato 4					
Tamice	s %Re	tenido	% que	Tamic	Tamices %Re		tenido	% que	
NTP	Acui	mulado	Pasa	NTF	NTP Acu		nulado	Pasa	
Nº4	().86	99.15	N°4		0	.07	99.94	
N°200	1.	2.31	87.69	N°20	00	43	3.91	56.09	
N	IL - Limo de b	aja plastic	idad		ML - I	Limo de ba	ja plastic	idad	
Nom	Límite	Ín	dice de	Nomb	15	Límite	Ín	dice de	
E-1	29.00	11122	3.00	E-3		37.00	1112	1.00	
E-2	35.00		4.00	E-4		24.00		2.00	

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÍA CIVIL <u>MÉTODO PARA CLASIFICACIÓN DE SUELOS SUCS</u> N.T.P. 339.134 / ASTM D-2487


		CALIC	ATA 4 - DIS	TRITO CIUI	DAD ETEN		
	Estra	to 1		Estrato 2			
Tamic	es %Re	tenido	% que	Tamio	ces %	Retenido	% que
NTP	Acur	nulado	Pasa	NTF	P A	cumulado	Pasa
Nº4	С).42	99.58	N°4		0.00	100.00
N°20	0 5	5.37	44.63	N°20	0	34.05	65.95
	SM - Aren	a limosa		ML - Limo de baja plasticidad			
	Estra	to 3					
Tamic	es %Re	tenido	% que				
NTP	Acur	Acumulado					
Nº4	С	0.00	100.00				
N°20	0 4	8.49	51.52				
C	CH - Arcilla de a	lta plastic	idad				
Nom	Límite		dice de	Nom	Límite	j Die	ndice de
E-1	23.00	12100	3.00	E-3	64.00	1312	34.00
E-2	34.00		4.00			•	

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÍA CIVIL <u>MÉTODO PARA CLASIFICACIÓN DE SUELOS SUCS</u> N.T.P. 339.134 / ASTM D-2487

		CALICATA 5	- MONSEFÚ			
	Estrato 1			Estrato 2		
Tamices	%Retenido	% que	Tamices	%Retenido	% que	
NTP	Acumulado	Pasa	NTP	Acumulado	Pasa	
N°4	6.91	93.10	Nº4	2.25	97.75	
N°200	18.65	81.35	N°200	15.00	85.01	
ML -	Limo de baja plastici	dad	MH -	Limo de alta plastici	dad	
	Estrato 3			Estrato 4		
Tamices	%Retenido	% que	Tamices	%Retenido	% que	
NTP	Acumulado	Pasa	NTP	Acumulado	Pasa	
N°4	8.47	91.54	N°4	0.33	99.68	
N°200	37.52	62.49	N°200	25.40	74.60	
ML -	Limo de baja plastici	dad	ML - Limo de baja plasticidad			
	Estrato 5					
Tamices	%Retenido	% que				
NTP	Acumulado	Pasa				
N°4	0.32	99.69				
N°200	11.32	88.68				
ML -	Limo de baja plastici	dad				



ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL <u>MÉTODO PARA CLASIFICACIÓN DE SUELOS SUCS</u> N.T.P. 339.134 / ASTM D-2487

Nom	Límite	Índice de	Nom	Límite	Índice de
E-1	42.00	8.00	E-4	17.00	3.00
E-2	58.00	6.00	E-5	36.00	11.00
E-3	23.00	3.00			

CALICATA 6 - DISTRITO PICSI									
	Estrato 1		Estrato 2						
Tamices	ces %Retenido % que Tamices %Retenido				% que				
NTP	Acumulado	Pasa	NTP	Acumulado	Pasa				
N°4	0.13	99.88	N°4	3.49	96.51				
N°200	29.04	70.96	N°200	25.11	74.90				
ML - L	imo de baja plastici	dad	ML -	Limo de baja plastici	dad				

	Estrato 3		Estrato 4			
Tamices	%Retenido	% que	Tamices	%Retenido	% que	
NTP	Acumulado	Pasa	NTP	Acumulado	Pasa	
N°4	0.00	100.00	N°4	5.31	94.70	
N°200	35.31	64.70	N°200	8.06	91.95	
ML -	Limo de baja plastici	dad	ML - Limo de baja plasticidad			

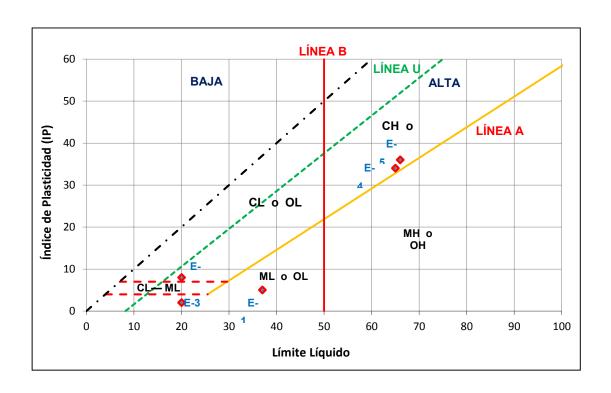
ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÍA CIVIL <u>MÉTODO PARA CLASIFICACIÓN DE SUELOS SUCS</u> N.T.P. 339.134 / ASTM D-2487

Nom	Límite líguido	Índice de Plasticidad	Nom bre	Límite líguido	Índice de
E-1	30.0	1.00	E-3	25.0	1.00
E-2	29.0	2.00	E-4	34.0	2.00

Recolección de datos y resultados

	CALICATA 7 - PUEBLO NUEVO					
	Estrato 1			Estrato 2		
Tamices	Tamices %Retenido % qu		Tamices %Retenido %			
NTP	Acumulado	Pasa	NTP	Acumulado	Pasa	
N°4	0.28	99.73	N°4	2.93	97.08	
N°200	0 91.69		N°200	42.47	57.53	
Cu = 0.19	Cu = 0.19 Cc = 1.75		CL - Ar	cilla de baja plasti	icidad	
SP-SM - Arona no	hremente graduag	la con limos				

SP-SM - Arena pobremente graduada con limos de baja plasticidad


	Estrato 3			Estrato 4	
Tamices	%Retenido	% que	Tamices	%Retenido	% que
NTP	Acumulado	Pasa	NTP	Acumulado	Pasa
N°4	1.42	98.59	N°4	0.00	100.00
N°200	41.85	58.16	N°200 40.07 59.		
ML - L	ML - Limo de baja plasticidad			Arcilla de alta plastic	idad

Estrato 5				
Tamices	%Retenido	% que		
NTP	Acumulado	Pasa		
N°4	0.00	100.00		
N°200 41.38 58.62				
CH - Arcilla de alta plasticidad				

Nom bre	Límite	Índice de	Nom	Límite	Índice de
E-1	37.0	5.00	E-4	65.0	34.00
E-2	20.0	8.00	E-5	66.0	36.00
E-3	20.00	2.00			

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÍA CIVIL <u>MÉTODO PARA CLASIFICACIÓN DE SUELOS SUCS</u> N.T.P. 339.134 / ASTM D-2487

Elaborado por: Jhoan Terán Cotrina

Guido Alarcón Pejerrey

ANEXO 06: FORMATO DE CONTENIDO DE SALES SOLUBLES
EL RESUMEN SE DETALLA EN EL ÍTEM 5.1.5, PÁGINA 104
CAPÍTULO V

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL CONTENIDO DE SALES SOLUBLES TOTALES N.T.P. 339.152 / BS 1377

Variación de los parámetros de resistencia al corte con diferentes grados de Tesis saturación en suelos cohesivos en siete distritos de la región Lambayeque-Perú

Identificación

Calicata : 01	Ubicación	Distrito Pimentel	
---------------	-----------	-------------------	--

Recolección de datos y resultados

N°	Denominación	Und	Estrato 01	Estrato 02
1	Relación de la mezcla suelo - agua destilada (D)		3	3
2	Masa de beaker		56.78	56.56
3	Masa de beaker + solución	g	156.78	156.56
4	Masa de beaker + residuo de sales	g	56.90	56.69
5	Masa de residuo de sales (m2-m1)	g	0.12	0.13
6	Volumen de la solución evaporada (E)	ml	99.88	99.87
7	Total de sales solubles totales (SS)		3604	3905
8	Porcentaje de sales solubles	(%)	0.36	0.39

Ν°	Denominación	Und	Estrato 03	Estrato 04
1	Relación de la mezcla suelo - agua destilada (D)		3	3
2	Masa de beaker		57.81 gr	56.03 gr
3	Masa de beaker + solución	g	157.81	156.03
4	Masa de beaker + residuo de sales	g	57.90	56.14
5	Masa de residuo de sales (m2-m1)	g	0.09	0.11
6	Volumen de la solución evaporada (E)	ml	99.91	99.89
7	Total de sales solubles totales (SS)		2702	3304
8	Porcentaje de sales solubles	(%)	0.27	0.33

Identificación

Calicata	:	02	Ubicación	Distrito Lambayeque
----------	---	----	-----------	---------------------

Nº	Denominación	Und	Estrato 01	Estrato 02
1	Relación de la mezcla suelo - agua destilada (D)		3	3
2	Masa de beaker	g	56.65	56.92
3	Masa de beaker + solución	g	156.65	156.92
4	Masa de beaker + residuo de sales		56.71	57.00
5	Masa de residuo de sales (m2-m1)		0.06	0.08
6	Volumen de la solución evaporada (E)	ml	99.94	99.92
7	Total de sales solubles totales (SS)		1801	2402
8	Porcentaje de sales solubles	(%)	0.18	0.24

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL CONTENIDO DE SALES SOLUBLES TOTALES N.T.P. 339.152 / BS 1377

N.1.P. 339.152 / DS 13//

Nº	Denominación	Und	Estrato 03	Estrato 04
1	Relación de la mezcla suelo - agua destilada (D)		3	3
2	Masa de beaker		56.99	57.73
3	Masa de beaker + solución		156.99	157.73
4	Masa de beaker + residuo de sales		57.06	57.78
5	Masa de residuo de sales (m2-m1)		0.07	0.05
6	Volumen de la solución evaporada (E)	ml	99.93	99.95
7	Total de sales solubles totales (SS)		2101	1501
8	Porcentaje de sales solubles	(%)	0.21	0.15

<u>Identificación</u>

Calicata	: 03	Ubicación	Distrito La Victoria
----------	------	-----------	----------------------

Nº	Denominación	Und	Estrato 01	Estrato 02
1	Relación de la mezcla suelo - agua destilada (D)		3	3
2	Masa de beaker	g	56.35	56.99
3	Masa de beaker + solución	g	156.35	156.99
4	Masa de beaker + residuo de sales	g	56.46	57.13
5	Masa de residuo de sales (m2-m1)	g	0.11	0.14
6	Volumen de la solución evaporada (E)	ml	99.89	99.86
7	Total de sales solubles totales (SS)	ppm	3304	4206
8	Porcentaje de sales solubles	(%)	0.33	0.42

Nº	Denominación	Und	Estrato 03	Estrato 04
1	Relación de la mezcla suelo - agua destilada (D)		3	3
2	Masa de beaker	g	56.56	56.99
3	Masa de beaker + solución	g	156.56	156.99
4	Masa de beaker + residuo de sales	g	56.88	57.13
5	Masa de residuo de sales (m2-m1)	g	0.32	0.14
6	Volumen de la solución evaporada (E)	ml	99.68	99.86
7	Total de sales solubles totales (SS)	ppm	9631	4206
8	Porcentaje de sales solubles	(%)	0.96	0.42

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÍA CIVIL CONTENIDO DE SALES SOLUBLES TOTALES N.T.P. 339.152 / BS 1377

<u>Identificación</u>

Calicata	: 04	Ubicación	Distrito Ciudad Eten
- anouta			

Recolección de datos y resultados

Nº	Denominación	Und	Estrato 01	Estrato 02
1	Relación de la mezcla suelo - agua destilada (D)		3	3
2	Masa de beaker	g	57.06	56.85
3	Masa de beaker + solución	g	157.06	156.85
4	Masa de beaker + residuo de sales	g	57.20	56.97
5	Masa de residuo de sales (m2-m1)	g	0.14	0.12
6	Volumen de la solución evaporada (E)	ml	99.86	99.88
7	Total de sales solubles totales (SS)	ppm	4206	3604
8	Porcentaje de sales solubles	(%)	0.42	0.36

N°	Denominación	Und	Estrato 03
1	Relación de la mezcla suelo - agua destilada (D)		3
2	Masa de beaker	g	56.93
3	Masa de beaker + solución	g	156.93
4	Masa de beaker + residuo de sales	g	57.08
5	Masa de residuo de sales (m2-m1)	g	0.15
6	Volumen de la solución evaporada (E)	ml	99.85
7	Total de sales solubles totales (SS)	ppm	4507
8	Porcentaje de sales solubles	(%)	0.45

Identificación

Calicata	. 05	Ubicación	Distrito Monsefú
Calicata	1: 05	Upicacion	i Distrito Monseiu

N°	Denominación	Und	Estrato 01	Estrato 02
1	Relación de la mezcla suelo - agua destilada (D)		3	3
2	Masa de beaker	g	56.35	56.99
3	Masa de beaker + solución	g	156.35	156.99
4	Masa de beaker + residuo de sales	g	56.52	57.20
5	Masa de residuo de sales (m2-m1)	g	0.17	0.21
6	Volumen de la solución evaporada (E)	ml	99.83	99.79
7	Total de sales solubles totales (SS)	ppm	5109	6313
8	Porcentaje de sales solubles	(%)	0.51	0.63

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÍA CIVIL CONTENIDO DE SALES SOLUBLES TOTALES N.T.P. 339.152 / BS 1377

Nº	Denominación	Und	Estrato 03	Estrato 04
1	Relación de la mezcla suelo - agua destilada (D)		3	3
2	Masa de beaker	g	56.56	56.78
3	Masa de beaker + solución	g	156.56	156.78
4	Masa de beaker + residuo de sales	g	56.74	57.01
5	Masa de residuo de sales (m2-m1)	g	0.18	0.23
6	Volumen de la solución evaporada (E)	ml	99.82	99.77
7	Total de sales solubles totales (SS)	ppm	5410	6916
8	Porcentaje de sales solubles	(%)	0.54	0.69

Nº	Denominación	Und	Estrato 05
1	Relación de la mezcla suelo - agua destilada (D)		3
2	Masa de beaker	g	57.06
3	Masa de beaker + solución	g	157.06
4	Masa de beaker + residuo de sales	g	57.30
5	Masa de residuo de sales (m2-m1)	g	0.24
6	Volumen de la solución evaporada (E)	ml	99.76
7	Total de sales solubles totales (SS)	ppm	7217
8	Porcentaje de sales solubles	(%)	0.72

<u>Identificación</u>

Nº	Denominación	Und	Estrato 01	Estrato 02
1	Relación de la mezcla suelo - agua destilada (D)		3	3
2	Masa de beaker	g	56.65	56.92
3	Masa de beaker + solución	g	156.65	156.92
4	Masa de beaker + residuo de sales	g	56.72	57.01
5	Masa de residuo de sales (m2-m1)	g	0.07	0.09
6	Volumen de la solución evaporada (E)	ml	99.93	99.91
7	Total de sales solubles totales (SS)	ppm	2101	2702
8	Porcentaje de sales solubles	(%)	0.21	0.27

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL CONTENIDO DE SALES SOLUBLES TOTALES N.T.P. 339.152 / BS 1377

N°	Denominación	Und	Estrato 03	Estrato 04
1	Relación de la mezcla suelo - agua destilada (D)		3	3
2	Masa de beaker	g	56.99	57.73
3	Masa de beaker + solución	g	156.99	157.73
4	Masa de beaker + residuo de sales	g	57.09	57.85
5	Masa de residuo de sales (m2-m1)	g	0.10	0.12
6	Volumen de la solución evaporada (E)	ml	99.90	99.88
7	Total de sales solubles totales (SS)	ppm	3003	3604
8	Porcentaje de sales solubles	(%)	0.30	0.36

<u>Identificación</u>

Nº	Denominación	Und	Estrato 01	Estrato 02
1	Relación de la mezcla suelo - agua destilada (D)		3	3
2	Masa de beaker	g	56.35	56.99
3	Masa de beaker + solución	g	156.35	156.99
4	Masa de beaker + residuo de sales	g	56.45	57.11
5	Masa de residuo de sales (m2-m1)	g	0.10	0.12
6	Volumen de la solución evaporada (E)	ml	99.90	99.88
7	Total de sales solubles totales (SS)	ppm	3003	3604
8	Porcentaje de sales solubles	(%)	0.30	0.36

Nº	Denominación	Und	Estrato 03	Estrato 04
1	Relación de la mezcla suelo - agua destilada (D)		3	3
2	Masa de beaker	g	56.56	56.78
3	Masa de beaker + solución	g	156.56	156.78
4	Masa de beaker + residuo de sales	g	56.68	56.93
5	Masa de residuo de sales (m2-m1)	g	0.12	0.15
6	Volumen de la solución evaporada (E)	ml	99.88	99.85
7	Total de sales solubles totales (SS)	ppm	3604	4507
8	Porcentaje de sales solubles	(%)	0.36	0.45

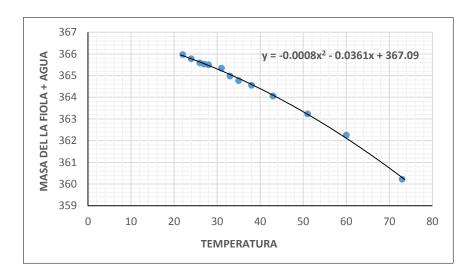
ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÍA CIVIL CONTENIDO DE SALES SOLUBLES TOTALES N.T.P. 339.152 / BS 1377

Ν° Denominación Und Estrato 05 Relación de la mezcla suelo - agua destilada (D) 1 57.06 2 Masa de beaker g 3 Masa de beaker + solución 157.06 g 4 Masa de beaker + residuo de sales 57.24 g 5 Masa de residuo de sales (m2-m1) 0.18 g 99.82 6 Volumen de la solución evaporada (E) ml 7 Total de sales solubles totales (SS) ppm 5410 8 0.54 Porcentaje de sales solubles (%)

Elaborado por: Jhoan Terán Cotrina

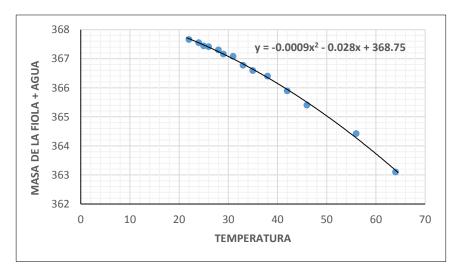
Guido Alarcón Pejerrey

ANEXO 07: FORMATO DE PESO ESPECÍFICO RELATIVO
EL RESUMEN SE DETALLA EN EL ÍTEM 5.1.6, PÁGINA 105
CAPÍTULO V



ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÍA CIVIL PESO ESPECÍFICO RELATIVO DE SÓLIDOS N.T.P. 339.131 / ASTM D-854

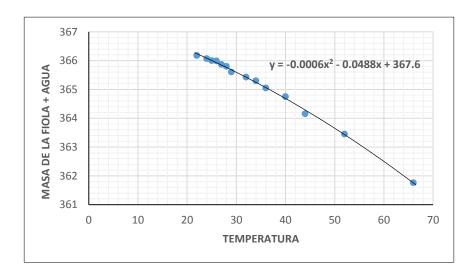
Calibración de picnómetros


			M-01M			
T° 73°C 60°C 51°C 43°C 3					38°C	35°C
Masa	360.22 g	362.26 g	363.23 g	364.06 g	364.55 g	364.77 g

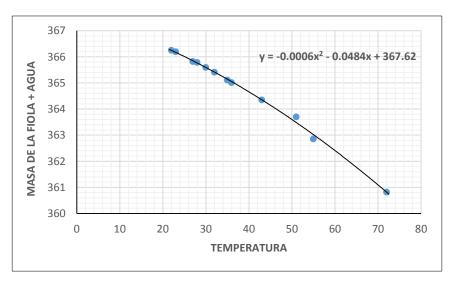
33°C	31°C	28°C	27°C	26°C	24°C	22°C
364.98 g	365.34 g	365.50 g	365.53 g	365.59 g	365.78 g	365.97 g

	M-02M										
T° 64°C 56°C 46°C 42°C 38°C 35°C 33°C											
Masa	363.10 g	364.42 g	365.40 g	365.89 g	366.40 g	366.59 g	366.77 g				

31°C	29°C	28°C	26°C	25°C	24°C	22°C
367.08 g	367.16 g	367.30 g	367.41 g	367.44 g	367.55 g	367.66 g



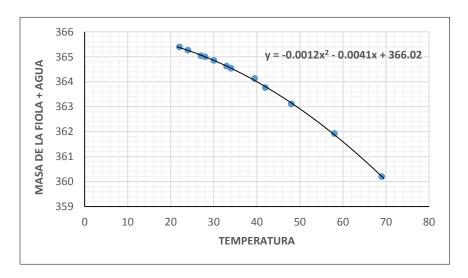
ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL <u>PESO ESPECÍFICO RELATIVO DE SÓLIDOS</u> N.T.P. 339.131 / ASTM D-854


	M-03M										
T° 66°C 52°C 44°C 40°C 36°C 34°C 32°C											
Masa	361.76 g	363.45 g	364.16 g	364.75 g	365.05 g	365.30 g	365.43 g				

29°C	28°C	27°C	26°C	25°C	24°C	22°C
365.61 g	365.80 g	365.87 g	365.99 g	366.00 g	366.07 g	366.18 g

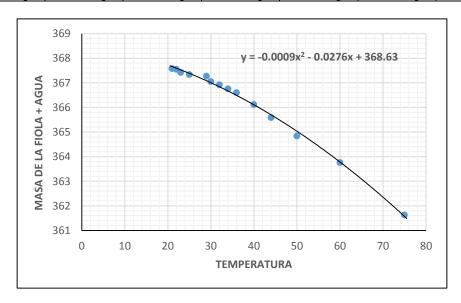
M-04M										
T° 72°C 55°C 51°C 43°C 36°C 35°C										
Masa										

32°C	30°C	28°C	27°C	23°C	22°C
365.41 g	365.59 g	365.78 g	365.82 g	366.19 g	366.25 g



ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL PESO ESPECÍFICO RELATIVO DE SÓLIDOS

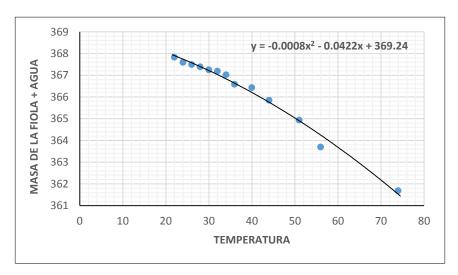
N.T.P. 339.131 / ASTM D-854


			M-05M			
T°	69°C	58°C	48°C	42°C	40°C	34°C
Masa	360.20 g	361.92 g	363.11 g	363.76 g	364.13 g	364.54 g

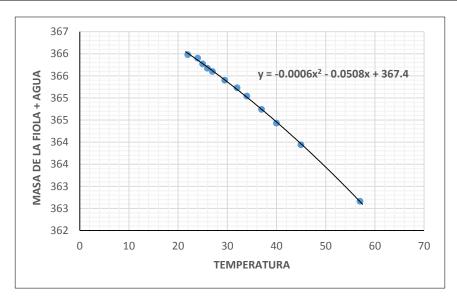
33°C	30°C	28°C	27°C	24°C	22°C
364.62 g	364.85 g	364.99 g	365.04 g	365.26 g	365.39 g

	M-08M							
T°	75°C	60°C	50°C	44°C	40°C	36°C	34°C	
Masa	361.63 g	363.76 g	364.84 g	365.59 g	366.12 g	366.60 g	366.76 g	

32°C	30°C	29°C	25°C	23°C	22°C	21°C
366.92 g	367.05 g	367.27 g	367.34 g	367.42 g	367.55 g	367.58 g



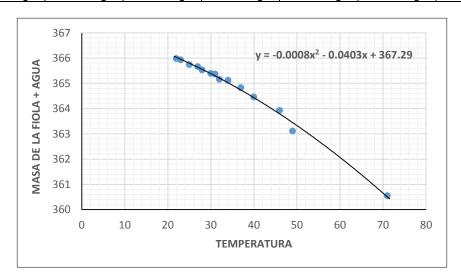
ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL <u>PESO ESPECÍFICO RELATIVO DE SÓLIDOS</u> N.T.P. 339.131 / ASTM D-854


			M-09M			
T°	74°C	56°C	51°C	44°C	40°C	36°C
Masa	361.69 g	363.70 g	364.94 g	365.85 g	366.43 g	366.59 g

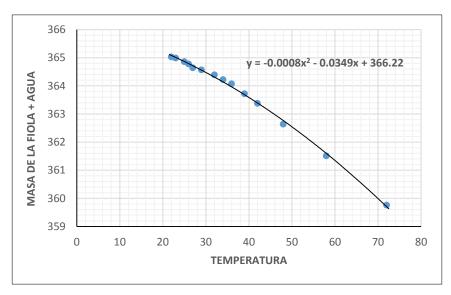
34°C	32°C	30°C	28°C	26°C	24°C	22°C
367.02 g	367.19 g	367.25 g	367.39 g	367.49 g	367.60 g	367.83 g

			M-02Y			
T°	57°C	45°C	40°C	37°C	34°C	32°C
Masa	362.66 g	363.94 g	364.43 g	364.74 g	365.04 g	365.23 g

30°C	27°C	26°C	25°C	24°C	22°C
365.40 g	365.60 g	365.67 g	365.77 g	365.90 g	365.98 g



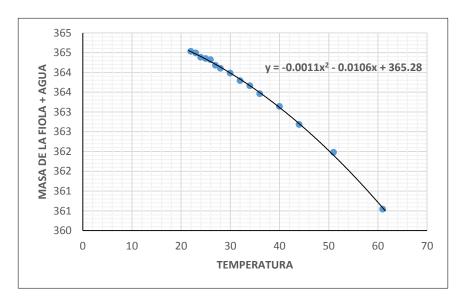
ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL PESO ESPECÍFICO RELATIVO DE SÓLIDOS N.T.P. 339.131 / ASTM D-854


M-05Y								
T°	71°C	49°C	46°C	40°C	37°C	34°C	32°C	
Masa	360.55 g	363.11 a	363.93 a	364.46 a	364.83 g	365.12 g	365.16 g	

31°C	30°C	28°C	27°C	25°C	23°C	22°C
365.37 g	365.39 g	365.53 g	365.66 g	365.74 g	365.93 g	365.98 g

	M-06Y							
T°	72°C	58°C	48°C	42°C	39°C	36°C	34°C	
PESO	359.76 g	361.51 g	362.64 g	363.38 g	363.72 g	364.07 g	364.22 g	

32°C	29°C	27°C	26°C	25°C	23°C	22°C
364.39 g	364.57 g	364.64 g	364.78 g	364.86 g	364.99 g	365.03 g



ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL PESO ESPECÍFICO RELATIVO DE SÓLIDOS N.T.P. 339.131 / ASTM D-854

M-07Y							
T°	61°C	51°C	44°C	40°C	36°C	34°C	32°C
Masa	360.54 g	361.98 g	362.68 g	363.14 g	363.46 g	363.66 g	363.79 g

30°C	28°C	27°C	26°C	25°C	24°C	23°C	22°C
363.98 g	364.10 g	364.18 g	364.32 g	364.35 g	364.38 g	364.49 g	364.53 g

Variación de los parámetros de resistencia al corte con diferentes grados de Tesis saturación en suelos cohesivos en siete distritos de la región Lambayeque-Perú

Nº	Denominación	Unid.	Estrato 01	Estrato 02
IN	Denominación	Oilid.	M-09M	M-08M
1	Masa de la fiola (Mf)	g	118.88	118.76
2	Masa de la muestra de suelo seco (Mo)	g	30.00	30.00
3	Masa de la muestra + fiola + agua (Mb)	g	384.56	384.54
4	Masa de la fiola + agua (Ma)	g	367.60	367.38
5	Temperatura del ensayo (Tx)	C°	24.00	24.00
6	Peso específico relativo de sólidos [Gs (Tx)]		2.30	2.34
7	Factor de corrección (K)		1.00	1.00
8	Peso específico relativo de sólidos a 20°C (Gs)		2.30	2.34

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÍA CIVIL PESO ESPECÍFICO RELATIVO DE SÓLIDOS N.T.P. 339.131 / ASTM D-854

Nº	Denominación	Unid.	Estrato 03	Estrato 04
IN	Denominación		M-06Y	M-04M
1	Masa de la fiola (Mf)	g	115.93	117.05
2	Masa de la muestra de suelo seco (Mo)	g	30.00	30.00
3	Masa de la muestra + fiola + agua (Mb)	g	383.68	384.98
4	Masa de la fiola + agua (Ma)	g	364.93	366.10
5	Temperatura del ensayo (Tx)	C°	24.00	24.00
6	Peso específico relativo de sólidos [Gs (Tx)]		2.67	2.70
7	Factor de corrección (K)		1.00	1.00
8	Peso específico relativo de sólidos a 20°C (Gs)		2.67	2.70

Calicata : 02 UI	icación : Lambayeque
------------------	----------------------

Nº	Denominación	Unid.	Estrato 01	Estrato 02
IN	Denominación		M-02M	M-02Y
1	Masa de la fiola (Mf)	g	118.88	116.92
2	Masa de la muestra de suelo seco (Mo)	g	30.00	30.00
3	Masa de la muestra + fiola + agua (Mb)	g	386.19	384.42
4	Masa de la fiola + agua (Ma)	g	367.55	365.90
5	Temperatura del ensayo (Tx)	C°	24.00	24.00
6	Peso específico relativo de sólidos [Gs (Tx)]		2.64	2.61
7	Factor de corrección (K)		1.00	1.00
8	Peso específico relativo de sólidos a 20°C (Gs)		2.64	2.61

Nº	Denominación	Unid.	Estrato 03	Estrato 04
14	Denominación	Oilla.	M-03M	M-07Y
1	Masa de la fiola (Mf)	g	117.15	115.37
2	Masa de la muestra de suelo seco (Mo)	g	30.00	30.00
3	Masa de la muestra + fiola + agua (Mb)	g	384.59	383.31
4	Masa de la fiola + agua (Ma)	g	366.07	364.38
5	Temperatura del ensayo (Tx)	C°	24.00	24.00
6	Peso específico relativo de sólidos [Gs (Tx)]		2.61	2.71
7	Factor de corrección (K)		1.00	1.00
8	Peso específico relativo de sólidos a 20°C (Gs)		2.61	2.71

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÍA CIVIL PESO ESPECÍFICO RELATIVO DE SÓLIDOS N.T.P. 339.131 / ASTM D-854

Recolección de datos y resultados

Nº	Denominación	Unid.	Estrato 01	Estrato 02
IN	Denominación	Offid.	M-05Y	M-07Y
1	Masa de la fiola (Mf)	g	116.85	115.37
2	Masa de la muestra de suelo seco (Mo)	g	30.00	30.00
3	Masa de la muestra + fiola + agua (Mb)	g	384.76	383.22
4	Masa de la fiola + agua (Ma)	g	365.84	364.38
5	Temperatura del ensayo (Tx)	C°	24.00	24.00
6	Peso específico relativo de sólidos [Gs (Tx)]		2.71	2.69
7	Factor de corrección (K)		1.00	1.00
8	Peso específico relativo de sólidos a 20°C (Gs)		2.71	2.69

N°	Denominación	Unid.	Estrato 03	Estrato 04
IN	Denominación		M-08M	M-04M
1	Masa de la fiola (Mf)	g	118.76	117.05
2	Masa de la muestra de suelo seco (Mo)	g	30.00	30.00
3	Masa de la muestra + fiola + agua (Mb)	g	384.40	385.46
4	Masa de la fiola + agua (Ma)	g	367.38	366.10
5	Temperatura del ensayo (Tx)	C°	24.00	24.00
6	Peso específico relativo de sólidos [Gs (Tx)]		2.31	2.82
7	Factor de corrección (K)		1.00	1.00
8	Peso específico relativo de sólidos a 20°C (Gs)		2.31	2.82

Nº	Denominación	Unid.	Estrato 01	Estrato 02
IN			M-05Y	M-01M
1	Masa de la fiola (Mf)	g	116.85	116.89
2	Masa de la muestra de suelo seco (Mo)	g	30.00	30.00
3	Masa de la muestra + fiola + agua (Mb)	g	384.61	384.55
4	Masa de la fiola + agua (Ma)	g	365.84	365.78
5	Temperatura del ensayo (Tx)	C°	24.00	24.00
6	Peso específico relativo de sólidos [Gs (Tx)]		2.67	2.67
7	Factor de corrección (K)		1.00	1.00
8	Peso específico relativo de sólidos a 20°C (Gs)		2.67	2.67

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÍA CIVIL PESO ESPECÍFICO RELATIVO DE SÓLIDOS N.T.P. 339.131 / ASTM D-854

Nº	Denominación	Unid.	Estrato 03
IN	Denominación	Ollid.	M-05M
1	Masa de la fiola (Mf)	g	116.31
2	Masa de la muestra de suelo seco (Mo)	g	30.00
3	Masa de la muestra + fiola + agua (Mb)	g	384.27
4	Masa de la fiola + agua (Ma)	g	365.26
5	Temperatura del ensayo (Tx)	C°	24.00
6	Peso específico relativo de sólidos [Gs (Tx)]		2.73
7	Factor de corrección (K)		1.00
8	Peso específico relativo de sólidos a 20°C (Gs)		2.73

Calicata : 05 Ubicación : Monsefú	
-----------------------------------	--

Nº	Denominación	Unid.	Estrato 01	Estrato 02
IN.		Onia.	M-02Y	M-02M
1	Masa de la fiola (Mf)	g	116.92	118.54
2	Masa de la muestra de suelo seco (Mo)	g	30.00	30.00
3	Masa de la muestra + fiola + agua (Mb)	g	384.87	386.63
4	Masa de la fiola + agua (Ma)	g	365.90	367.55
5	Temperatura del ensayo (Tx)	C°	24.00	24.00
6	Peso específico relativo de sólidos [Gs (Tx)]		2.72	2.65
7	Factor de corrección (K)		1.00	1.00
8	Peso específico relativo de sólidos a 20°C (Gs)		2.72	2.65

Nº	Denominación	Unid.	Estrato 03	Estrato 04
IN.			M-05M	M-03M
1	Masa de la fiola (Mf)	g	116.31	117.15
2	Masa de la muestra de suelo seco (Mo)	g	30.00	30.00
3	Masa de la muestra + fiola + agua (Mb)	g	384.23	384.99
4	Masa de la fiola + agua (Ma)	g	365.26	366.07
5	Temperatura del ensayo (Tx)	C°	24.00	24.00
6	Peso específico relativo de sólidos [Gs (Tx)]		2.72	2.71
7	Factor de corrección (K)		1.00	1.00
8	Peso específico relativo de sólidos a 20°C (Gs)		2.72	2.71

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÍA CIVIL PESO ESPECÍFICO RELATIVO DE SÓLIDOS N.T.P. 339.131 / ASTM D-854

Nº	Denominación	Unid.	Estrato 05
IN	Denominación	Office.	M-09M
1	Masa de la fiola (Mf)	g	118.88
2	Masa de la muestra de suelo seco (Mo)	g	30.00
3	Masa de la muestra + fiola + agua (Mb)	g	384.31
4	Masa de la fiola + agua (Ma)	g	365.10
5	Temperatura del ensayo (Tx)	C°	24.00
6	Peso específico relativo de sólidos [Gs (Tx)]		2.78
7	Factor de corrección (K)		1.00
8	Peso específico relativo de sólidos a 20°C (Gs)		2.78

Nº	Denominación	Unid.	Estrato 01	Estrato 02
IN.			M-04M	M-07Y
1	Masa de la fiola (Mf)	g	117.05	115.37
2	Masa de la muestra de suelo seco (Mo)	g	30.00	30.00
3	Masa de la muestra + fiola + agua (Mb)	g	384.80	382.83
4	Masa de la fiola + agua (Ma)	g	366.10	364.38
5	Temperatura del ensayo (Tx)	C°	24.00	24.00
6	Peso específico relativo de sólidos [Gs (Tx)]		2.65	2.60
7	Factor de corrección (K)		1.00	1.00
8	Peso específico relativo de sólidos a 20°C (Gs)		2.65	2.60

Nº	Denominación	Unid.	Estrato 03	Estrato 04
IN.			M-06Y	M-05Y
1	Masa de la fiola (Mf)	g	115.93	116.85
2	Masa de la muestra de suelo seco (Mo)	g	30.00	30.00
3	Masa de la muestra + fiola + agua (Mb)	g	383.59	384.65
4	Masa de la fiola + agua (Ma)	g	364.93	365.84
5	Temperatura del ensayo (Tx)	C°	24.00	24.00
6	Peso específico relativo de sólidos [Gs (Tx)]		2.65	2.68
7	Factor de corrección (K)		1.00	1.00
8	Peso específico relativo de sólidos a 20°C (Gs)		2.65	2.68

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÍA CIVIL PESO ESPECÍFICO RELATIVO DE SÓLIDOS N.T.P. 339.131 / ASTM D-854

Recolección de datos y resultados

Calicata : 07	Ubicación	: Pueblo Nuevo
---------------	-----------	----------------

Nº	Denominación	Unid.	Estrato 01	Estrato 02
IN.		Oilia.	M-05M	M-02Y
1	Masa de la fiola (Mf)	g	116.31	116.92
2	Masa de la muestra de suelo seco (Mo)	g	30.00	30.00
3	Masa de la muestra + fiola + agua (Mb)	g	384.35	384.58
4	Masa de la fiola + agua (Ma)	g	365.26	365.90
5	Temperatura del ensayo (Tx)	C°	24.00	24.00
6	Peso específico relativo de sólidos [Gs (Tx)]		2.75	2.65
7	Factor de corrección (K)		1.00	1.00
8	Peso específico relativo de sólidos a 20°C (Gs)		2.75	2.65

Nº	Denominación	Unid.	Estrato 03	Estrato 04
IN.			M-09M	M-03M
1	Masa de la fiola (Mf)	g	118.88	117.15
2	Masa de la muestra de suelo seco (Mo)	g	30.00	30.00
3	Masa de la muestra + fiola + agua (Mb)	g	384.47	384.76
4	Masa de la fiola + agua (Ma)	g	367.60	366.07
5	Temperatura del ensayo (Tx)	C°	24.00	24.00
6	Peso específico relativo de sólidos [Gs (Tx)]		2.28	2.65
7	Factor de corrección (K)		1.00	1.00
8	Peso específico relativo de sólidos a 20°C (Gs)		2.28	2.65

Nº	Denominación	Unid.	Estrato 05
14	Denominación		M-01M
1	Masa de la fiola (Mf)	g	116.89
2	Masa de la muestra de suelo seco (Mo)	g	30.00
3	Masa de la muestra + fiola + agua (Mb)	g	384.60
4	Masa de la fiola + agua (Ma)	g	365.78
5	Temperatura del ensayo (Tx)	C°	24.00
6	Peso específico relativo de sólidos [Gs (Tx)]		2.68
7	Factor de corrección (K)		1.00
8	Peso específico relativo de sólidos a 20°C (Gs)		2.68

Elaborado por: Jhoan Terán Cotrina

Guido Alarcón Pejerrey

ANEXO 08: FORMATO DE PESO ESPECÍFICO VOLUMÉTRICO EL RESUMEN SE DETALLA EN EL ÍTEM 5.1.7, PÁGINA 107 CAPÍTULO V

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÍA CIVIL PESO VOLUMÉTRICO DE UN SUELO COHESIVO N.T.P. 339.139 / BS 1377

Variación de los parámetros de resistencia al corte con diferentes grados de saturación en suelos cohesivos en siete distritos de la región Lambayeque-Perú

Calicata : 01 Ubicación	Distrito Pimentel
-------------------------	-------------------

Muestra : Inalterada	Profundidad	: 2.30 m
----------------------	-------------	----------

N°	Denominación	Und.	Muestra 1	Muestra 2	Muestra 3	Muestra 4	Muestra 5
1	Masa del suelo húmedo	g	43.00	39.01	40.90	39.80	39.50
2	Masa del suelo húmedo + parafina	g	43.53	40.20	42.45	40.96	40.93
3	Masa de la parafina	g	0.53	1.19	1.55	1.16	1.43
4	Densidad de la parafina	g/cm ³	0.87	0.87	0.87	0.87	0.87
5	Volumen de la parafina	cm ³	0.61	1.37	1.78	1.33	1.64

N°	Denominación	Und.	Muestra 1	Muestra 2	Muestra 3	Muestra 4	Muestra 5
1	Masa de la Tara	g	27.47	27.69	27.91	28.13	28.35
2	Masa de la tara + muestra húmeda	g	59.01	51.61	44.56	36.31	39.31
3	Masa de la tara + muestra seca	g	53.65	47.35	41.66	34.87	37.44
4	Masa del agua	g	5.36	4.26	2.90	1.44	1.87
5	Masa de la muestra seca	g	26.18	19.66	13.75	6.74	9.09
6	Contenido de humedad	%	20.47	21.67	21.09	21.36	20.57
7	Promedio contenido humedad	%			21.03		

N°	Denominación	Und.	Muestra 1	Muestra 2	Muestra 3	Muestra 4	Muestra 5
1	Volumen inicial en la probeta	cm ³	800.00	800.00	800.00	800.00	800.00
2	Volumen + masa	cm³	826.00	825.00	826.00	825.00	826.00
3	Volumen desplazado	cm ³	26.00	25.00	26.00	25.00	26.00
4	Volumen muestra húmeda	cm ³	25.39	23.63	24.22	23.67	24.36
5	Densidad húmeda	g/cm³	1.69	1.65	1.69	1.68	1.62
6	Promedio densidad húmeda	g/cm³			1.67		
7	Densidad seca	g/cm³	1.40	1.36	1.40	1.39	1.34
8	Promedio densidad seca	g/cm³			1.38		

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL PESO VOLUMÉTRICO DE UN SUELO COHESIVO N.T.P. 339.139 / BS 1377

Calicata : 02	Ubicación	Distrito Lambayeque
---------------	-----------	---------------------

Muestra	: Inalterada	Profundidad	: 2.30 m
---------	--------------	-------------	----------

N°	Denominación	Und.	Muestra 1	Muestra 2	Muestra 3	Muestra 4	Muestra 5
1	Masa del suelo húmedo	g	47.65	45.57	43.49	47.41	48.33
2	Masa del suelo húmedo + parafina	g	50.18	48.35	46.12	49.89	50.86
3	Masa de la parafina	g	2.53	2.78	2.63	2.48	2.53
4	Densidad de la parafina	g/cm ³	0.87	0.87	0.87	0.87	0.87
5	Volumen de la parafina	cm ³	2.91	3.20	3.02	2.85	2.91

N°	Denominación	Und.	Muestra 1	Muestra 2	Muestra 3	Muestra 4	Muestra 5
1	Masa de la Tara	g	26.20	27.00	27.68	27.89	28.00
2	Masa de la tara + muestra húmeda	g	50.79	59.61	54.42	56.51	59.53
3	Masa de la tara + muestra seca	g	45.67	52.81	48.87	50.56	52.90
4	Masa del agua	g	5.12	6.80	5.55	5.95	6.63
5	Masa de la muestra seca	g	19.47	25.81	21.19	22.67	24.90
6	Contenido de humedad	%	26.30	26.35	26.19	26.25	26.63
7	Promedio contenido humedad	%			26.34		

N°	Denominación	Und.	Muestra 1	Muestra 2	Muestra 3	Muestra 4	Muestra 5
1	Volumen inicial en la probeta	cm³	800.00	800.00	800.00	800.00	800.00
2	Volumen + masa	cm³	830.00	829.00	827.00	830.00	829.00
3	Volumen desplazado	cm ³	30.00	29.00	27.00	30.00	29.00
4	Volumen muestra húmeda	cm ³	27.09	25.80	23.98	27.15	26.09
5	Densidad húmeda	g/cm³	1.76	1.77	1.81	1.75	1.85
6	Promedio densidad húmeda	g/cm³			1.79		
7	Densidad seca	g/cm³	1.39	1.40	1.44	1.38	1.47
8	Promedio densidad seca	g/cm³			1.41		

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL PESO VOLUMÉTRICO DE UN SUELO COHESIVO N.T.P. 339.139 / BS 1377

Calicata :	03	Ubicación	Distrito La Victoria
------------	----	-----------	----------------------

Muestra : Ir	nalterada	Profundidad	: 2.30 m
macsua	laitelada		. =.00 :::

N°	Denominación	Und.	Muestra 1	Muestra 2	Muestra 3	Muestra 4	Muestra 5
1	Masa del suelo húmedo	g	39.98	39.01	40.04	39.07	40.10
2	Masa del suelo húmedo + parafina	g	42.17	41.10	42.10	41.20	42.19
3	Masa de la parafina	g	2.19	2.09	2.06	2.13	2.09
4	Densidad de la parafina	g/cm ³	0.87	0.87	0.87	0.87	0.87
5	Volumen de la parafina	cm ³	2.52	2.40	2.37	2.45	2.40

N°	Denominación	Und.	Muestra 1	Muestra 2	Muestra 3	Muestra 4	Muestra 5
1	Masa de la Tara	g	53.40	53.56	44.26	46.30	49.21
2	Masa de la tara + muestra húmeda	g	50.01	50.05	41.89	43.70	46.24
3	Masa de la tara + muestra seca	g	3.39	3.51	2.37	2.60	2.97
4	Masa del agua	g	19.93	20.87	13.98	15.57	17.89
5	Masa de la muestra seca	g	17.01	16.82	16.95	16.70	16.60
6	Contenido de humedad	%	53.40	53.56	44.26	46.30	49.21
7	Promedio contenido humedad	%			16.82		

N°	Denominación	Und.	Muestra 1	Muestra 2	Muestra 3	Muestra 4	Muestra 5
1	Volumen inicial en la probeta	cm³	800.00	800.00	800.00	800.00	800.00
2	Volumen + masa	cm³	824.00	824.00	823.00	823.00	823.00
3	Volumen desplazado	cm ³	24.00	24.00	23.00	23.00	23.00
4	Volumen muestra húmeda	cm ³	21.48	21.60	20.63	20.55	20.60
5	Densidad húmeda	g/cm ³	1.86	1.81	1.94	1.90	1.95
6	Promedio densidad húmeda	g/cm³			1.89		
7	Densidad seca	g/cm³	1.59	1.55	1.66	1.63	1.67
8	Promedio densidad seca	g/cm³			1.62		

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÍA CIVIL PESO VOLUMÉTRICO DE UN SUELO COHESIVO N.T.P. 339.139 / BS 1377

Recolección de datos y resultados

Calicata : 04 Ubicación Distrito Ciudad Eten

Muestra	: Inalterada	Profundidad	: 2.30 m

	1						
N°	Denominación	Und.	Muestra 1	Muestra 2	Muestra 3	Muestra 4	Muestra 5
1	Masa del suelo húmedo	g	60.45	60.21	62.34	58.28	59.45
2	Masa del suelo húmedo + parafina	g	70.83	70.72	72.72	68.82	69.75
3	Masa de la parafina	g	10.38	10.51	10.38	10.54	10.30
4	Densidad de la parafina	g/cm³	0.87	0.87	0.87	0.87	0.87
5	Volumen de la parafina	cm ³	11.93	12.08	11.93	12.11	11.84

N°	Denominación	Und.	Muestra 1	Muestra 2	Muestra 3	Muestra 4	Muestra 5
1	Masa de la Tara	g	28.53	29.09	29.65	30.21	31.21
2	Masa de la tara + muestra húmeda	g	53.18	47.84	42.50	37.16	37.52
3	Masa de la tara + muestra seca	g	49.01	44.59	40.21	35.99	36.42
4	Masa del agua	g	4.17	3.25	2.29	1.17	1.10
5	Masa de la muestra seca	g	20.48	15.50	10.56	5.78	5.21
6	Contenido de humedad	%	20.36	20.97	21.69	20.24	21.11
7	Promedio contenido humedad	%			20.87		

N°	Denominación	Und.	Muestra 1	Muestra 2	Muestra 3	Muestra 4	Muestra 5
1	Volumen inicial en la probeta	cm³	800.00	800.00	800.00	800.00	800.00
2	Volumen + masa	cm ³	844.00	844.00	845.00	843.00	843.00
3	Volumen desplazado	cm³	44.00	44.00	45.00	43.00	43.00
4	Volumen muestra húmeda	cm ³	32.07	31.92	33.07	30.89	31.16
5	Densidad húmeda	g/cm ³	1.89	1.89	1.89	1.89	1.91
6	Promedio densidad húmeda	g/cm³			1.89		
7	Densidad seca	g/cm³	1.56	1.56	1.56	1.56	1.58
8	Promedio densidad seca	g/cm³			1.56		

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL PESO VOLUMÉTRICO DE UN SUELO COHESIVO N.T.P. 339.139 / BS 1377

Calicata	: 05	Ubicación	Distrito Monsefú
----------	------	-----------	------------------

Muestra : Ir	nalterada	Profundidad	: 2.30 m
macsua	laitelada		. =.00 :::

N°	Denominación	Und.	Muestra 1	Muestra 2	Muestra 3	Muestra 4	Muestra 5
1	Masa del suelo húmedo	g	54.19	53.08	51.97	50.86	49.75
2	Masa del suelo húmedo + parafina	g	67.94	66.58	65.25	64.13	63.12
3	Masa de la parafina	g	13.75	13.50	13.28	13.27	13.37
4	Densidad de la parafina	g/cm ³	0.87	0.87	0.87	0.87	0.87
5	Volumen de la parafina	cm ³	15.80	15.52	15.26	15.25	15.37

N°	Denominación	Und.	Muestra 1	Muestra 2	Muestra 3	Muestra 4	Muestra 5
1	Masa de la Tara	g	28.53	30.28	32.03	33.78	35.53
2	Masa de la tara + muestra húmeda	g	49.89	51.03	51.59	53.67	55.43
3	Masa de la tara + muestra seca	g	46.67	47.87	48.61	50.63	52.40
4	Masa del agua	g	3.22	3.16	2.98	3.04	3.03
5	Masa de la muestra seca	g	18.14	17.59	16.58	16.85	16.87
6	Contenido de humedad	%	17.75	17.96	17.97	18.04	17.96
7	Promedio contenido humedad	%			17.94		

N°	Denominación	Und.	Muestra 1	Muestra 2	Muestra 3	Muestra 4	Muestra 5
1	Volumen inicial en la probeta	cm³	800.00	800.00	800.00	800.00	800.00
2	Volumen + masa	cm³	845.00	845.00	843.00	843.00	842.00
3	Volumen desplazado	cm³	45.00	45.00	43.00	43.00	42.00
4	Volumen muestra húmeda	cm ³	29.20	29.48	27.74	27.75	26.63
5	Densidad húmeda	g/cm ³	1.86	1.80	1.87	1.83	1.87
6	Promedio densidad húmeda	g/cm³			1.85		
7	Densidad seca	g/cm ³	1.57	1.53	1.59	1.55	1.58
8	Promedio densidad seca	g/cm³			1.57		

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL PESO VOLUMÉTRICO DE UN SUELO COHESIVO N.T.P. 339.139 / BS 1377

Calicata : 06 L	Jbicación	Distrito Picsi
-----------------	-----------	----------------

Muestra	: Inalterada	Profundidad	: 2.30 m
Mucsuu	. IIIaitciada		

N°	Denominación	Und.	Muestra 1	Muestra 2	Muestra 3	Muestra 4	Muestra 5
1	Masa del suelo húmedo	g	58.14	57.08	57.02	56.75	56.37
2	Masa del suelo húmedo + parafina	g	70.08	68.75	68.81	68.50	68.15
3	Masa de la parafina	g	11.94	11.67	11.79	11.75	11.78
4	Densidad de la parafina	g/cm ³	0.87	0.87	0.87	0.87	0.87
5	Volumen de la parafina	cm ³	13.72	13.41	13.55	13.51	13.54

N°	Denominación	Und.	Muestra 1	Muestra 2	Muestra 3	Muestra 4	Muestra 5
1	Masa de la Tara	g	22.35	28.80	32.03	33.78	35.53
2	Masa de la tara + muestra húmeda	g	47.21	65.39	52.40	53.61	55.10
3	Masa de la tara + muestra seca	g	42.92	58.98	48.87	50.17	51.71
4	Masa del agua	g	4.29	6.41	3.53	3.44	3.39
5	Masa de la muestra seca	g	20.57	30.18	16.84	16.39	16.18
6	Contenido de humedad	%	20.86	21.24	20.96	20.99	20.95
7	Promedio contenido humedad	%			21.00		

N°	Denominación	Und.	Muestra 1	Muestra 2	Muestra 3	Muestra 4	Muestra 5
1	Volumen inicial en la probeta	cm³	800.00	800.00	800.00	800.00	800.00
2	Volumen + masa	cm³	846.00	845.00	846.00	845.00	845.00
3	Volumen desplazado	cm³	46.00	45.00	46.00	45.00	45.00
4	Volumen muestra húmeda	cm ³	32.28	31.59	32.45	31.49	31.46
5	Densidad húmeda	g/cm³	1.80	1.81	1.76	1.80	1.79
6	Promedio densidad húmeda	g/cm³			1.79		
7	Densidad seca	g/cm³	1.49	1.49	1.45	1.49	1.48
8	Promedio densidad seca	g/cm³			1.48		

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÍA CIVIL PESO VOLUMÉTRICO DE UN SUELO COHESIVO N.T.P. 339.139 / BS 1377

Recolección de datos y resultados

Calicata : 07 Ubicación Distrito Pueblo Nuevo

Muestra : Inalterada Profundidad : 2.30 m

N°	Denominación	Und.	Muestra 1	Muestra 2	Muestra 3	Muestra 4	Muestra 5
1	Masa del suelo húmedo	g	58.14	53.08	51.97	50.86	49.75
2	Masa del suelo húmedo + parafina	g	69.88	64.86	63.93	63.10	61.56
3	Masa de la parafina	g	11.74	11.78	11.96	12.24	11.81
4	Densidad de la parafina	g/cm ³	0.87	0.87	0.87	0.87	0.87
5	Volumen de la parafina	cm ³	13.49	13.54	13.75	14.07	13.57

N°	Denominación	Und.	Muestra 1	Muestra 2	Muestra 3	Muestra 4	Muestra 5
1	Masa de la Tara	g	30.06	28.93	27.80	26.67	25.54
2	Masa de la tara + muestra húmeda	g	49.72	52.90	55.84	59.15	61.99
3	Masa de la tara + muestra seca	g	46.20	48.69	50.85	53.12	55.25
4	Masa del agua	g	3.52	4.21	4.99	6.03	6.74
5	Masa de la muestra seca	g	16.14	19.76	23.05	26.45	29.71
6	Contenido de humedad	%	21.81	21.31	21.65	22.80	22.69
7	Promedio contenido humedad	%			22.05		

N°	Denominación	Und.	Muestra 1	Muestra 2	Muestra 3	Muestra 4	Muestra 5	
1	Volumen inicial en la	cm ³	800.00	800.00	800.00	900.00	800.00	
-	probeta	CIII	600.00	800.00	600.00	800.00	800.00	
2	Volumen + masa	cm³	845.00	842.00	842.00	842.00	841.00	
3	Volumen desplazado	cm ³	45.00	42.00	42.00	42.00	41.00	
4	Volumen muestra húmeda	cm ³	31.51	28.46	28.25	27.93	27.43	
5	Densidad húmeda	g/cm³	1.85	1.87	1.84	1.82	1.81	
6	Promedio densidad húmeda	g/cm³	1.84					
7	Densidad seca	g/cm ³	1.51	1.53	1.51	1.49	1.49	
8	Promedio densidad seca	g/cm³	1.51					

Elaborado por: Jhoan Terán Cotrina

Guido Alarcón Pejerrey

ANEXO 09: FORMATO DE CORTE DIRECTO EL RESUMEN SE DETALLA EN EL ÍTEM 5.2 y 5.3, PÁGINA 108 y 119 CAPÍTULO V

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL <u>MÉTODO PARA EL CORTE DIRECTO</u> N.T.P. 339.171 / ASTM D-3080

Tesis

Variación de los parámetros de resistencia al corte con diferentes grados de saturación en suelos cohesivos en siete distritos de la región Lambayeque-Perú

Calicata	01	Ubio	icación Distrito Pimentel		Estado	0	horas	
(Caracterís	ticas de	la muestra	a inalterada		Fuerza norm	al	0.50 kg
Área	36.00	cm2	Pes	o humedad na	atural (g)	-		
Altura	Altura 2.00 cm			después del d	119.19			
Volumen	72.00	cm3		Peso seco	(g)	98.57	N	IUESTRA 1
				Peso agua	(g)	20.62		
Velocidad	0.25 m	m/min	Hui	medad	20.90 %	Peso específi	со	2.70
Tiempo	9.00	min	Sati	uración	58%	Relación vací	os	0.97
Desplazamiento	2.250	mm	Densida	ad húmeda	1.66 g/cm3	Densidad se	са	1.37 g/cm3
			Volume	n del sólido	36.51 cm3	Volumen de va	cíos	35.49 cm3
Corrección d	ial horizon	ital	1.00 >	c + 0.001	Factor	celda de carga	0.9	996 x + 0.652
				ENSA	YO 1		_	
Tiempo	Dia Horiza (mi	ontal		cción dial ntal (mm)	Dial de carga (kg)	Corrección dia carga (kg)		Esfuerzo de orte (kg/cm2)
00'00"	0.0	00	0	.000	0	0.000		0.000
30"	0.1	05	0	.106	1	1.648		0.046
01'00"	0.2	30	0	.231	4	4.636		0.129
30"	0.3	55	0	.356	5	5.632		0.156
02'00"	0.4	80	0	.481	6	6.628		0.184
30"	0.6	05	0	.606	8	8.620		0.239
03'00"	0.7	30	0	.731	8	8.620		0.239
30"	0.8	55	0	.856	10	10.612		0.295
04'00"	0.9	80	0	.981	10	10.612		0.295
30"	1.1	05	1	.106	11	11.608		0.322
05'00"	1.2	30	1	.231	12	12.604		0.350
30"	1.3	55	1	.356	12	12.604		0.350
06'00"	1.4	80	1	.481	12	12.604		0.350
30"	1.6	05	1	.606	13	13.600		0.378
07'00"	1.7	30	1	.731	13	13.600		0.378
30"	1.8	55	1	.856	14	14.596		0.405
08'00"	1.9	80	1	.981	15	15.592		0.433
30"	2.1	05	2	.106	15	15.592		0.433
09'00"	2.2	30	2	.231	16	16.588		0.461
Esfuerzo no	rmal (kg/c	:m2)	(0.500	Esfuerzo	cortante (kg/cm	2)	0.461

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL <u>MÉTODO PARA EL CORTE DIRECTO</u> N.T.P. 339.171 / ASTM D-3080

	Características de	la muestra inalterada		Fuerza normal	1.00 kg	
Área	36.00 cm2	Peso satura	do (g)	-		
Altura	2.00 cm	Peso después del	ensayo (g)	118.93		
Volumen	72.00 cm3	Peso seco) (g)	98.29	MUESTRA 2	
		Peso agua	a (g)	20.64		
Velocidad	0.25 mm/min	Humedad	21.00 %	Peso específico	2.70	
Tiempo	9.50 min	Saturación 58%		Relación vacíos	0.98	
Desplazamiento	2.375 mm	Densidad húmeda	1.65 g/cm3	Densidad seca	1.37 g/cm3	
		Volumen del sólido	36.40 cm3	Volumen de	35.60 cm3	
Corrección o	lial horizontal	1.00 x + 0.001	Factor ce	vacíos elda de carga	0.996 x + 0.65	
00110001011	nai nonzontai	ENSAYO		naa ao oalga	0.000 X * 0.00	
Tiomno	Dial Horizontal					
Tiempo	(mm)	horizontal (mm)	(kg)	de carga (kg)	corte (kg/cm2	
00'00"	0.000	0.000	0	0.000	0.000	
30"	0.105	0.106	4	4.636	0.129	
01'00"	0.230	0.231	6	6.628	0.184	
30"	0.355	0.356	8	8.620	0.239	
02'00"	0.480	0.481	9	9.616	0.267	
30"	0.605	0.606	10	10.612	0.295	
03'00"	0.730	0.731	11	11.608	0.322	
30"	0.855	0.856	12	12.604	0.350	
04'00"	0.980	0.981	13	13.600	0.378	
30"	1.105	1.106	14	14.596	0.405	
05'00"	1.230	1.231	14	14.596	0.405	
30"	1.355	1.356	15	15.592	0.433	
06'00"	1.480	1.481	15	15.592	0.433	
30"	1.605	1.606	15	15.592	0.433	
07'00"	1.730	1.731	16	16.588	0.461	
30"	1.855	1.856	16	16.588	0.461	
08'00"	1.980	1.981	17	17.584	0.488	
30"	2.105	2.106	17	17.584	0.488	
09'00"	2.230	2.231	18	18.58	0.516	
30"	2.355	2.356	18	18.580	0.516	

Esfuerzo cortante (kg/cm2)

0.516

1.000

Esfuerzo normal (kg/cm2)

Esfuerzo normal (kg/cm2)

UNIVERSIDAD SAN MARTIN DE PORRES

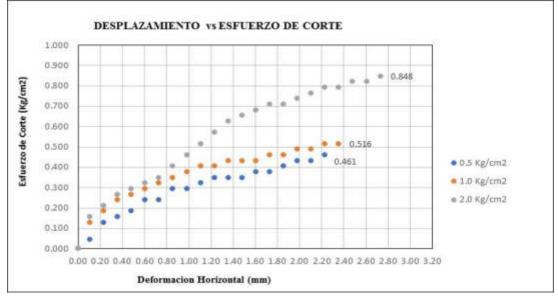
ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL <u>MÉTODO PARA EL CORTE DIRECTO</u> N.T.P. 339.171 / ASTM D-3080

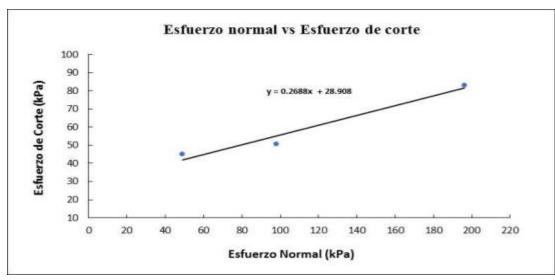
	Características de	e la muestra inalterada	1	Fuerza normal	2.00 kg	
Área	36.00 cm2	Peso satura	ado (g)	-		
Altura	2.00 cm	Peso después de	el ensayo (g)	118.81		
Volumen	72.00 cm3	Peso sec	o (g)	98.12	MUESTRA 3	
		Peso agu	a (g)	20.69		
Velocidad	0.25 mm/min	Humedad	21.10 %	Peso específico	2.70	
Tiempo	11.00 min	Saturación	58%	Relación vacíos	0.98	
Desplazamiento	2.750 mm	Densidad húmeda	1.65 g/cm3	Densidad seca	1.36 g/cm3	
		Volumen del sólido	36.34 cm3	Volumen de vacíos	35.66 cm3	
Corrección	dial horizontal	1.00 x + 0.001	Factor ce	elda de carga	0.996 x + 0.652	
		ENS	SAYO 3			
Tiempo	Dial Horizontal (mm)	Corrección dial horizontal (mm)	Dial de carga (kg)	Corrección dial de carga (kg)	Esfuerzo de corte (kg/cm2)	
00'00"	0.000	0.000	0	0.000	0.000	
30"	0.105	0.106	5	5.632	0.156	
01'00"	0.230	0.231	7	7.624	0.212	
30"	0.355	0.356	9	9.616	0.267	
02'00"	0.480	0.481	10	10.612	0.295	
30"	0.605	0.606	11	11.608	0.322	
03'00"	0.730	0.731	12	12.604	0.350	
30"	0.855	0.856	14	14.596	0.405	
04'00"	0.980	0.981	16	16.588	0.461	
30"	1.105	1.106	18	18.580	0.516	
05'00"	1.230	1.231	20	20.572	0.571	
30"	1.355	1.356	22	22.564	0.627	
06'00"	1.480	1.481	23	23.560	0.654	
30"	1.605	1.606	24	24.556	0.682	
07'00"	1.730	1.731	25	25.552	0.710	
30"	1.855	1.856	25	25.552	0.710	
08'00"	1.980	1.981	26	26.548	0.737	
30"	2.105	2.106	27	27.544	0.765	
09'00"	2.230	2.231	28	28.540	0.793	
30"	2.355	2.356	28	28.540	0.793	
10'00"	2.480	2.481	29	29.536	0.820	
30"	2.605	2.606	29	29.536	0.820	
11'00"	2.730	2.731	30	30.532	0.848	

Esfuerzo cortante (kg/cm2)

0.848

2.000




ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL MÉTODO PARA EL CORTE DIRECTO

N.T.P. 339.171 / ASTM D-3080

Ensayo	Esfuerzo normal kg/cm2	Esfuerzo de corte kg/cm2	Esfuerzo normal kPa	Esfuerzo de corte kPa
1	0.500	0.461	49.033	45.187
2	1.000	0.516	98.067	50.613
3	2.000	0.848	196.133	83.171
	•			•

Resultados de ensayo	
Cohesión (kPa) = C	28.91
Ángulo de fricción interna = Φ	15.04

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL MÉTODO PARA EL CORTE DIRECTO N.T.P. 339.171 / ASTM D-3080

Recolección de datos y resultados

Esfuerzo normal (kg/cm2)

Calicata	01	Ubicació	cación Distrito Pimentel		Estado	3 horas
	Característ	icas de la m	nuestra inalterada	1	Fuerza nor	mal 0.50 kg
Área	36.00 (cm2	Peso humedad	I natural (g)	124.37	
Altura	2.00 (cm	Peso después d	el ensayo (g)	122.69	MUESTRA 1
Volumen	72.00 (cm3	Peso sec	co (g)	98.57	
			Peso ago	ua (g)	24.12	
Velocidad	0.25 mm	n/min	Humedad	24.50 %	Peso espec	cífico 2.70
Tiempo	9.00 n	nin	Saturación	68%	Relación va	acíos 0.97
Desplazamiento	2.250	mm D	Densidad húmeda	1.70 g/cm3		J
		V	olumen del sólido	36.51 cm3	Volumen vacíos	de 35.49 cm3
Corrección d	ial horizonta	al	1.00 x + 0.001	Facto	or celda de carga	0.996 x + 0.65
			ENSA	NYO 1		
Tiempo	Dia Horizo (mm	ntal	Corrección dial horizontal (mm)	Dial de carç (kg)	ga Corrección de carga (
00'00"	0.00	0	0.000	0	0.000	0.000
30"	0.10	5	0.106	1	1.648	0.046
01'00"	0.23	0	0.231	2	2.644	0.073
30"	0.35	5	0.356	2	2.644	0.073
02'00"	0.48	0	0.481	3	3.640	0.101
30"	0.60	5	0.606	3	3.640	0.101
03'00"	0.73	0	0.731	4	4.636	0.129
30"	0.85	5	0.856	5	5.632	0.156
04'00"	0.98	0	0.981	7	7.624	0.212
30"	1.10	5	1.106	8	8.620	0.239
05'00"	1.23	0	1.231	9	9.616	0.267
30"	1.35	5	1.356	11	11.608	0.322
06'00"	1.48	0	1.481	12	12.604	0.350
30"	1.60	5	1.606	12	12.604	0.350
07'00"	1.73	0	1.731	13	13.600	0.378
30"	1.85	5	1.856	13	13.600	0.378
08'00"	1.98	0	1.981	14	14.596	0.405
30"	2.10	5	2.106	14	14.596	0.405
09'00"	2.23	0	2.231	14	14.596	0.405
		T		T		
		•	0 = 0 0			

Esfuerzo cortante (kg/cm2)

0.405

0.500

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL MÉTODO PARA EL CORTE DIRECTO N.T.P. 339.171 / ASTM D-3080

	Características de	la muestra inalterada		Fuerza normal	1.00 kg
Área	36.00 cm2	Peso satura	do (g)	124.21	
Altura	2.00 cm	Peso después del	ensayo (g)	122.50	
Volumen	72.00 cm3	Peso seco (g)		98.35	MUESTRA 2
		Peso agua	ı (g)	24.15	
Velocidad	0.25 mm/min	Humedad	24.60 %	Peso específico	2.70
Tiempo	9.50 min	Saturación	68%	Relación vacíos	0.98
Desplazamiento	2.375 mm	Densidad húmeda	1.70 g/cm3	Densidad seca	1.37 g/cm3
		Volumen del sólido	36.43 cm3	Volumen de vacíos	35.57 cm3
Corrección o	l dial horizontal	1.00 x + 0.001	Factor ce	lda de carga	0.996 x + 0.652
		ENSAYO	2		
Tiempo	Dial Horizontal (mm)	Corrección dial horizontal (mm)	Dial de carga (kg)	Corrección dial de carga (kg)	Esfuerzo de corte (kg/cm2)
00'00"	0.000	0.000	0	0.000	0.000
30"	0.105	0.106	3	3.640	0.101
01'00"	0.230	0.231	3	3.640	0.101
30"	0.355	0.356	4	4.636	0.129
02'00"	0.480	0.481	5	5.632	0.156
30"	0.605	0.606	5	5.632	0.156
03'00"	0.730	0.731	6	6.628	0.184
30"	0.855	0.856	8	8.620	0.239
04'00"	0.980	0.981	9	9.616	0.267
30"	1.105	1.106	11	11.608	0.322
05'00"	1.230	1.231	12	12.604	0.350
30"	1.355	1.356	13	13.600	0.378
06'00"	1.480	1.481	14	14.596	0.405
30"	1.605	1.606	15	15.592	0.433
07'00"	1.730	1.731	15	15.592	0.433
30"	1.855	1.856	16	16.588	0.461
08'00"	1.980	1.981	16	16.588	0.461
30"	2.105	2.106	17	17.584	0.488
09'00"	2.230	2.231	17	17.584	0.488
30"	2.355	2.356	17	17.584	0.488

Esfuerzo cortante (kg/cm2)

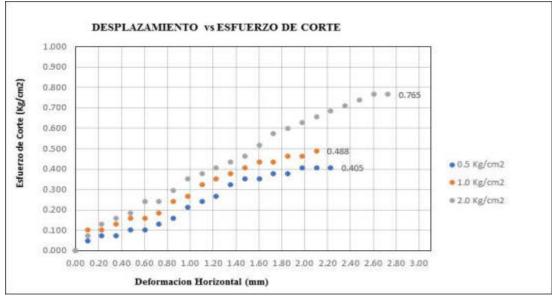
0.488

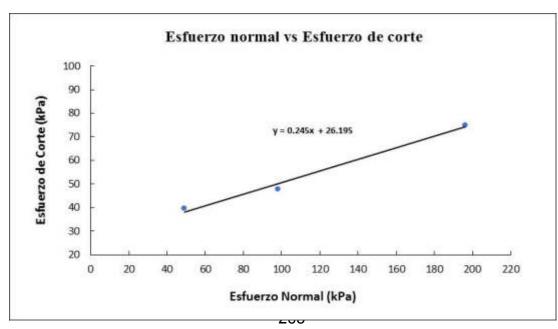
1.000

Esfuerzo normal (kg/cm2)

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL MÉTODO PARA EL CORTE DIRECTO N.T.P. 339.171 / ASTM D-3080

	Características de	la muestra inalterada		Fuerza normal	2.00 kg	
Área	36.00 cm2	Peso satura		124.07		
Altura	2.00 cm	Peso después de		122.36		
Volumen	72.00 cm3	Peso sec		98.12	MUESTRA 3	
	12.00	Peso agua (g)		24.24		
Velocidad	0.25 mm/min	Humedad 24.70 %		Peso específico	2.70	
Tiempo	11.00 min	Saturación	68%	Relación vacíos	0.98	
Desplazamient	2.750 mm	Densidad húmeda	1.70 g/cm3	Densidad seca	1.36 g/cm3	
0		Volumen del sólido	36.34 cm3	Volumen de	35.66 cm3	
0 1/				vacíos		
Corrección d	lial horizontal	1.00 x + 0.001		lda de carga	0.996 x + 0.652	
	T	ENS	AYO 3		T	
Tiempo	Dial Horizontal (mm)	Corrección dial horizontal (mm)	Dial de carga (kg)	Corrección dial de carga (kg)	Esfuerzo de corte (kg/cm2)	
00'00"	0.000	0.000	0	0.000	0.000	
30"	0.105	0.106	2	2.644	0.073	
01'00"	0.230	0.231	4	4.636	0.129	
30"	0.355	0.356	5	5.632	0.156	
02'00"	0.480	0.481	6	6.628	0.184	
30"	0.605	0.606	8	8.620	0.239	
03'00"	0.730	0.731	8	8.620	0.239	
30"	0.855	0.856	10	10.612	0.295	
04'00"	0.980	0.981	12	12.604	0.350	
30"	1.105	1.106	13	13.600	0.378	
05'00"	1.230	1.231	14	14.596	0.405	
30"	1.355	1.356	15	15.592	0.433	
06'00"	1.480	1.481	16	16.588	0.461	
30"	1.605	1.606	18	18.580	0.516	
07'00"	1.730	1.731	20	20.572	0.571	
30"	1.855	1.856	21	21.568	0.599	
08'00"	1.980	1.981	22	22.564	0.627	
30"	2.105	2.106	23	23.560	0.654	
09'00"	2.230	2.231	24	24.556	0.682	
30"	2.355	2.356	25	25.552	0.710	
10'00"	2.480	2.481	26	26.548	0.737	
30"	2.605	2.606	27	27.544	0.765	
11'00"	2.730	2.731	27	27.544	0.765	


Esfuerzo normal (kg/cm2) 2.000	Esfuerzo cortante (kg/cm2)	0.765
--------------------------------	----------------------------	-------



ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÍA CIVIL <u>MÉTODO PARA EL CORTE DIRECTO</u> N.T.P. 339.171 / ASTM D-3080

Ensayo	Esfuerzo normal kg/cm2	Esfuerzo de corte kg/cm2	Esfuerzo normal kPa	Esfuerzo de corte kPa
1	0.500	0.405	49.033	39.761
2	1.000	0.488	98.067	47.900
3	2.000	0.765	196.133	75.032

Resultados de ensayo	
Cohesión (kPa) = C	26.19
Ángulo de fricción interna = Φ	13.77

30"

2.105

UNIVERSIDAD SAN MARTIN DE PORRES

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL MÉTODO PARA EL CORTE DIRECTO N.T.P. 339.171 / ASTM D-3080

Recolección de datos y resultados

Calicata	01	Ubicación	Distrito Pimentel	Estado	8 horas
----------	----	-----------	-------------------	--------	---------

(Características de	la muestra inalterada		Fuerza normal	0.50 kg	
Área	36.00 cm2	Peso humedad r	natural (g)	128.32		
Altura	2.00 cm	Peso después del	ensayo (g)	126.98	MUESTRA 1	
Volumen	72.00 cm3	Peso seco (g)		98.59	MUESTRAT	
		Peso agua	a (g) 28.39			
Velocidad	0.25 mm/min	Humedad	28.80 %	Peso específico	2.70	
Tiempo	8.50 min	Saturación	80%	Relación vacíos	0.97	
Desplazamiento	2.125 mm	Densidad húmeda	1.76 g/cm3	Densidad seca	1.37 g/cm3	
		Volumen del sólido	36.51 cm3	Volumen de vacíos	35.49 cm3	
Corrección d	ial horizontal	1.00 x + 0.001	Factor c	elda de carga	0.996 x + 0.652	
		ENSAY	′ 0 1			
Tiempo	Dial Horizontal (mm)	Corrección dial horizontal (mm)	Dial de carga (kg) Corrección dial de carga (kg)		Esfuerzo de corte (kg/cm2)	
00'00"	0.000	0.000	0	0.000	0.000	
30"	0.105	0.106	1	1.648	0.046	
01'00"	0.230	0.231	1	1.648	0.046	
30"	0.355	0.356	2	2.644	0.073	
02'00"	0.480	0.481	2	2.644	0.073	
30"	0.605	0.606	2	2.644	0.073	
03'00"	0.730	0.731	3	3.640	0.101	
30"	0.855	0.856	5	5.632	0.156	
04'00"	0.980	0.981	7	7.624	0.212	
30"	1.105	1.106	8	8.620	0.239	
05'00"	1.230	1.231	9	9.616	0.267	
30"	1.355	1.356	9	9.616	0.267	
06'00"	1.480	1.481	10	10.612	0.295	
30"	1.605	1.606	11	11.608	0.322	
07'00"	1.730	1.731	11	11.608	0.322	
30"	1.855	1.856	12	12.604	0.350	
08'00"	1.980	1.981	12	12.604	0.350	

Esfuerzo normal (kg/cm2) 0.500	Esfuerzo cortante (kg/cm2)	0.378
--------------------------------	----------------------------	-------

13

13.600

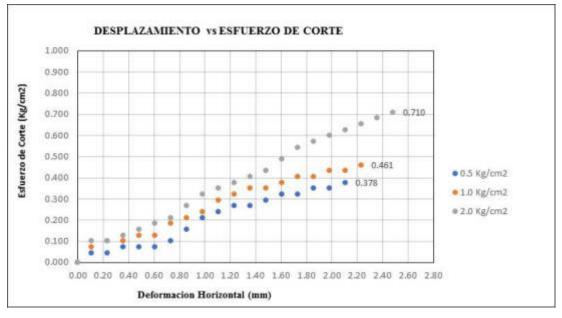
0.378

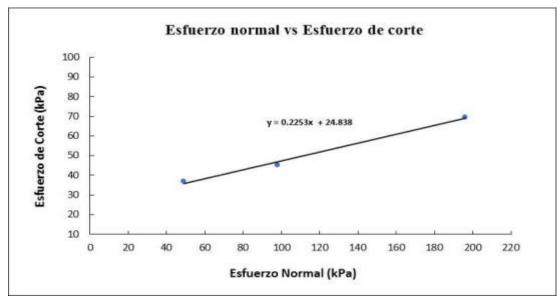
2.106

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL MÉTODO PARA EL CORTE DIRECTO N.T.P. 339.171 / ASTM D-3080

	Características de	la muestra inalterada		Fuerza normal	1.00 kg
Área	36.00 cm2	Peso satura	do (g)	128.22	
Altura	2.00 cm	Peso después de	l ensayo (g)	126.81	
Volumen	72.00 cm3	Peso seco) (g)	98.37	MUESTRA 2
		Peso agua	a (g)	28.44	
Velocidad	0.25 mm/min	Humedad	28.90 %	Peso específico	2.70
Tiempo	9.00 min	Saturación	80%	Relación vacíos	0.98
Desplazamiento	2.250 mm	Densidad húmeda	1.76 g/cm3	Densidad seca	1.37 g/cm3
		Volumen del sólido	36.43 cm3	Volumen de vacíos	35.57 cm3
Corrección dial horizontal 1.00 x + 0.001 Factor celda de carga				lda de carga	0.996 x + 0.652
		ENSAYO	2		
Tiempo	Dial Horizontal (mm)	Corrección dial horizontal (mm)	Dial de carga (kg)	Corrección dial de carga (kg)	Esfuerzo de corte (kg/cm2)
00'00"	0.000	0.000	0	0.000	0.000
30"	0.105	0.106	2	2.644	0.073
01'00"	0.230	0.231	3	3.640	0.101
30"	0.355	0.356	3	3.640	0.101
02'00"	0.480	0.481	4	4.636	0.129
30"	0.605	0.606	4	4.636	0.129
03'00"	0.730	0.731	6	6.628	0.184
30"	0.855	0.856	7	7.624	0.212
04'00"	0.980	0.981	8	8.620	0.239
30"	1.105	1.106	10	10.612	0.295
05'00"	1.230	1.231	11	11.608	0.322
30"	1.355	1.356	12	12.604	0.350
06'00"	1.480	1.481	12	12.604	0.350
30"	1.605	1.606	13	13.600	0.378
07'00"	1.730	1.731	14	14.596	0.405
30"	1.855	1.856	14	14.596	0.405
08'00"	1.980	1.981	15	15.592	0.433
30"	2.105	2.106	15	15.592	0.433
09'00"	2.230	2.231	16	16.588	0.461

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÍA CIVIL MÉTODO PARA EL CORTE DIRECTO N.T.P. 339.171 / ASTM D-3080


		Características de	la muestra inalte	rada		
Área	36.00 cm2	Peso saturado (g) Peso después del ensayo (g)		128.22		
Altura	2.00 cm			126.83	MUECTDA 2	
Volumen	72.00 cm3	Peso seco (g)		98.41	MUESTRA 3	
		Peso agu	a (g)	28.42		
Velocidad	0.25 mm/min	Humedad	28.90 %	Peso específico	2.70	
Tiempo	10.00 min	Saturación	80%	Relación vacíos	0.98	
Desplazamiento	2.500 mm	Densidad húmeda	1.76 g/cm3	Densidad seca	1.37 g/cm3	
		Volumen del sólido	36.45 cm3	Volumen de vacíos	35.55 cm3	
Corrección	dial horizontal	1.00 x + 0.001	Factor ce	lda de carga	0.996 x + 0.652	
		ENS	SAYO 3			
Tiempo	Dial Horizontal (mm)	Corrección dial horizontal (mm)	Dial de carga (kg)	Corrección dial de carga (kg)	Esfuerzo de corte (kg/cm2)	
00'00"	0.000	0.000	0	0.000	0.000	
30"	0.105	0.106	3	3.640	0.101	
01'00"	0.230	0.231	3	3.640	0.101	
30"	0.355	0.356	4	4.636	0.129	
02'00"	0.480	0.481	5	5.632	0.156	
30"	0.605	0.606	6	6.628	0.184	
03'00"	0.730	0.731	7	7.624	0.212	
30"	0.855	0.856	9	9.616	0.267	
04'00"	0.980	0.981	11	11.608	0.322	
30"	1.105	1.106	12	12.604	0.350	
05'00"	1.230	1.231	13	13.600	0.378	
30"	1.355	1.356	14	14.596	0.405	
06'00"	1.480	1.481	15	15.592	0.433	
30"	1.605	1.606	17	17.584	0.488	
07'00"	1.730	1.731	19	19.576	0.544	
30" 1.855		1.856	20	20.572	0.571	
08'00"	1.980	1.981	21	21.568	0.599	
30"	2.105	2.106	22	22.564	0.627	
09'00"	2.230	2.231	23	23.560	0.654	
30"	2.355	2.356	24	24.556	0.682	
10'00"	2.480	2.481	25	25.552	0.710	
Esfuerzo noi	rmal (kg/cm2)	2.000	Esfuerzo cor	tante (kg/cm2)	0.710	



ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÍA CIVIL <u>MÉTODO PARA EL CORTE DIRECTO</u> N.T.P. 339.171 / ASTM D-3080

Ensayo	Esfuerzo normal kg/cm2	Esfuerzo de corte kg/cm2	Esfuerzo normal kPa	Esfuerzo de corte kPa
1	0.500	0.378	49.033	37.047
2	1.000	0.461	98.067	45.187
3	2.000	0.710	196.133	69.605

Resultados de ensayo				
Cohesión (kPa) = C	24.84			
Ángulo de fricción interna = Φ	12.70			

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL MÉTODO PARA EL CORTE DIRECTO N.T.P. 339.171 / ASTM D-3080

Calicata	01	Ubicación	Distrito Pimentel	Estado	15 horas

,	T	Características de la			T
Área	36.00 cm2	Peso humedad r	natural (g)	132.49	
Altura	2.00 cm	Peso después del ensayo (g) Peso seco (g)		130.85	MUESTRA 1
Volumen	72.00 cm3			98.53	
		Peso agua	ı (g)	32.32	
Velocidad	0.25 mm/min	Humedad	32.80 %	Peso específico	2.70
Tiempo	8.50 min	Saturación	91%	Relación vacíos	0.97
Desplazamiento	2.125 mm	Densidad húmeda	1.82 g/cm3	Densidad seca	1.37 g/cm3
		Volumen del sólido	36.49 cm3	Volumen de vacíos	35.51 cm3
Corrección d	ial horizontal	1.00 x + 0.001	Factor co	elda de carga	0.996 x + 0.652
		ENSA	7 0 1		
Tiempo	Dial Horizontal (mm)	Corrección dial horizontal (mm)	Dial de carga (kg)	Corrección dial de carga (kg)	Esfuerzo de corte (kg/cm2)
00'00"	0.000	0.000	0	0.000	0.000
30"	0.105	0.106	1	1.648	0.046
01'00"	0.230	0.231	1	1.648	0.046
30"	0.355	0.356	1	1.648	0.046
02'00"	0.480	0.481	2	2.644	0.073
30"	0.605	0.606	2	2.644	0.073
03'00"	0.730	0.731	2	2.644	0.073
30"	0.855	0.856	3	3.640	0.101
04'00"	0.980	0.981	5	5.632	0.156
30"	1.105	1.106	6	6.628	0.184
05'00"	1.230	1.231	7	7.624	0.212
30"	1.355	1.356	7	7.624	0.212
06'00"	1.480	1.481	8	8.620	0.239
30"	1.605	1.606	8	8.620	0.239
07'00"	1.730	1.731	9	9.616	0.267
30"	1.855	1.856	9	9.616	0.267
08'00"	1.980	1.981	10	10.612	0.295
30"	2.105	2.106	11	11.608	0.322

Esfuerzo normal (kg/cm2)	0.500	Esfuerzo cortante (kg/cm2)	0.322
--------------------------	-------	----------------------------	-------

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL MÉTODO PARA EL CORTE DIRECTO N.T.P. 339.171 / ASTM D-3080

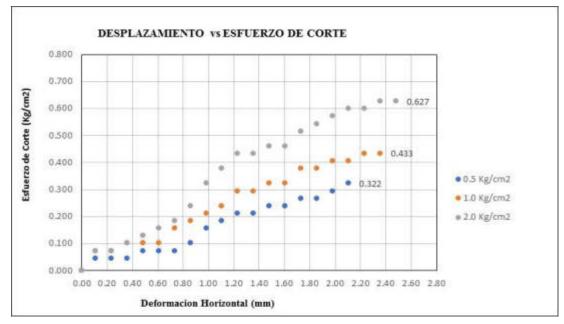
		Características de la m	uestra inalterada		
Área	36.00 cm2	Peso satura	do (g)	131.98	
Altura	2.00 cm	Peso después del ensayo (g)		130.37	
Volumen	72.00 cm3	Peso seco	(g)	98.32	MUESTRA 2
		Peso agua (g)		32.05	
Velocidad	0.25 mm/min	Humedad	32.60 %	Peso específico	2.70
Tiempo	9.50 min	Saturación	90%	Relación vacíos	0.98
Desplazamiento	2.375 mm	Densidad húmeda	1.81 g/cm3	Densidad seca	1.37 g/cm3
		Volumen del sólido	36.41 cm3	Volumen de vacíos	35.59 cm3
Corrección o	l dial horizontal	1.00 x + 0.001	Factor ce	lda de carga	0.996 x + 0.652
		ENSAYO	2	-	
Tiempo	Dial Horizontal (mm)	Corrección dial horizontal (mm)	Dial de carga (kg)	Corrección dial de carga (kg)	Esfuerzo de corte (kg/cm2)
00'00"	0.000	0.000	0	0.000	0.000
30"	0.105	0.106	2	2.644	0.073
01'00"	0.230	0.231	2	2.644	0.073
30"	0.355	0.356	3	3.640	0.101
02'00"	0.480	0.481	3	3.640	0.101
30"	0.605	0.606	3	3.640	0.101
03'00"	0.730	0.731	5	5.632	0.156
30"	0.855	0.856	6	6.628	0.184
04'00"	0.980	0.981	7	7.624	0.212
30"	1.105	1.106	8	8.620	0.239
05'00"	1.230	1.231	10	10.612	0.295
30"	1.355	1.356	10	10.612	0.295
06'00"	1.480	1.481	11	11.608	0.322
30"	1.605	1.606	11	11.608	0.322
07'00"	1.730	1.731	13	13.600	0.378
30"	1.855	1.856	13	13.600	0.378
08'00"	1.980	1.981	14	14.596	0.405
30"	2.105	2.106	14	14.596	0.405
09'00"	2.230	2.231	15	15.592	0.433
30"	2.355	2.356	15	15.592	0.433

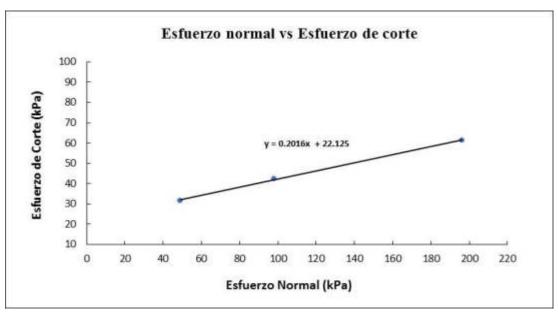
Esfuerzo cortante (kg/cm2)

0.433

1.000

Esfuerzo normal (kg/cm2)


	Г	Características de l	a muestra inalter		Т
Área	36.00 cm2	Peso satura		132.49	
Altura	2.00 cm	Peso después de	el ensayo (g)	130.80	MUESTRA 3
Volumen	72.00 cm3	Peso sec	o (g)	98.39	
		Peso agua (g)		32.41	
Velocidad	0.25 mm/min	Humedad	32.90 %	Peso específico	2.70
Tiempo	10.00 min	Saturación	91%	Relación vacíos	0.98
Desplazamient o	2.500 mm	Densidad húmeda	1.82 g/cm3	Densidad seca	1.37 g/cm3
		Volumen del sólido	36.44 cm3	Volumen de vacíos	35.56 cm3
Corrección d	lial horizontal	1.00 x + 0.001	Factor ce	lda de carga	0.996 x + 0.652
		ENS	AYO 3		
Tiempo	Dial Horizontal (mm)	Corrección dial horizontal (mm)	Dial de carga (kg)	Corrección dial de carga (kg)	Esfuerzo de corte (kg/cm2)
00'00"	0.000	0.000	0	0.000	0.000
30"	0.105	0.106	2	2.644	0.073
01'00"	0.230	0.231	2	2.644	0.073
30"	0.355	0.356	3	3.640	0.101
02'00"	0.480	0.481	4	4.636	0.129
30"	0.605	0.606	5	5.632	0.156
03'00"	0.730	0.731	6	6.628	0.184
30"	0.855	0.856	8	8.620	0.239
04'00"	0.980	0.981	11	11.608	0.322
30"	1.105	1.106	13	13.600	0.378
05'00"	1.230	1.231	15	15.592	0.433
30"	1.355	1.356	15	15.592	0.433
06'00"	1.480	1.481	16	16.588	0.461
30"	1.605	1.606	16	16.588	0.461
07'00"	1.730	1.731	18	18.580	0.516
30"	1.855	1.856	19	19.576	0.544
08'00"	1.980	1.981	20	20.572	0.571
30"	2.105	2.106	21	21.568	0.599
09'00"	2.230	2.231	21	21.568	0.599
30"	2.355	2.356	22	22.564	0.627
10'00"	2.480	2.481	22	22.564	0.627
	i				


Esfuerzo normal (kg/cm2) 2.000	Esfuerzo cortante (kg/cm2)	0.627
--------------------------------	----------------------------	-------

Ensayo	Esfuerzo normal kg/cm2	Esfuerzo de corte kg/cm2	Esfuerzo normal kPa	Esfuerzo de corte kPa
1	0.500	0.322	49.033	31.621
2	1.000	0.433	98.067	42.474
3	2.000	0.627	196.133	61.466

Resultados de ensayo	
Cohesión (kPa) = C	22.12
Ángulo de fricción interna = Φ	11.40

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL MÉTODO PARA EL CORTE DIRECTO N.T.P. 339.171 / ASTM D-3080

Recolección de datos y resultados

Calicata 01 Ubicación	Distrito Pimentel	Estado	1 semana
-----------------------	-------------------	--------	----------

		Características de la	muestra inaltera	da		
Área	36.00 cm2	Peso humedad r	natural (g)	133.72		
Altura	2.00 cm	Peso después del	ensayo (g)	131.98	1	
Volumen	72.00 cm3	Peso seco (g)		96.48	MUESTRA 1	
		Peso agua	Peso agua (g)			
Velocidad	0.25 mm/min	Humedad 36.80 %		Peso específico	2.70	
Tiempo	8.50 min	Saturación	98%	Relación vacíos	1.01	
Desplazamiento	2.125 mm	Densidad húmeda	1.83 g/cm3	Densidad seca	1.34 g/cm3	
		Volumen del sólido	35.73 cm3	Volumen de vacíos	36.27 cm3	
Corrección di	al horizontal	1.00 x + 0.001	Factor co	elda de carga	0.996 x + 0.652	
		ENSA	(0 1			
Tiempo	Dial Horizontal (mm)	Corrección dial horizontal (mm)	Dial de carga (kg)	Corrección dial de carga (kg)	Esfuerzo de corte (kg/cm2)	
00'00"	0.000	0.000	0	0.000	0.000	
30"	0.105	0.106	1	1.648	0.046	
01'00"	0.230	0.231	1	1.648	0.046	
30"	0.355	0.356	1	1.648	0.046	
02'00"	0.480	0.481	2	2.644	0.073	
30"	0.605	0.606	2	2.644	0.073	
03'00"	0.730	0.731	2	2.644	0.073	
30"	0.855	0.856	3	3.640	0.101	
04'00"	0.980	0.981	4	4.636	0.129	
30"	1.105	1.106	5	5.632	0.156	
05'00"	1.230	1.231	5	5.632	0.156	
30"	1.355	1.356	6	6.628	0.184	
06'00"	1.480	1.481	6	6.628	0.184	
30"	1.605	1.606	7	7.624	0.212	
07'00"	1.730	1.731	7	7.624	0.212	
30"	1.855	1.856	8	8.620	0.239	
08'00"	1.980	1.981	8	8.620	0.239	
30"	2.105	2.106	10	10.612	0.295	

Esfuerzo normal (kg/cm2)	0.500	Esfuerzo cortante (kg/cm2)	0.295
--------------------------	-------	----------------------------	-------

		Características de la mi	uestra inalterada		
Área	36.00 cm2	Peso satura		133.69	
Altura	2.00 cm	Peso después del	ensayo (g)	131.98	
Volumen	72.00 cm3	Peso seco (g)		96.48	MUESTRA 2
		Peso agua (g)		35.50	
Velocidad	0.25 mm/min	Humedad	36.80 %	Peso específico	2.70
Tiempo	9.00 min	Saturación	98%	Relación vacíos	1.01
Desplazamiento	2.250 mm	Densidad húmeda	1.83 g/cm3	Densidad seca	1.34 g/cm3
		Volumen del sólido	35.73 cm3	Volumen de vacíos	36.27 cm3
Corrección o	dial horizontal	1.00 x + 0.001	Factor ce	lda de carga	0.996 x + 0.652
		ENSAYO	2		L
Tiempo	Dial Horizontal (mm)	Corrección dial horizontal (mm)	Dial de carga (kg)	Corrección dial de carga (kg)	Esfuerzo de corte (kg/cm2)
00'00"	0.000	0.000	0	0.000	0.000
30"	0.105	0.106	1	1.648	0.046
01'00"	0.230	0.231	1	1.648	0.046
30"	0.355	0.356	2	2.644	0.073
02'00"	0.480	0.481	2	2.644	0.073
30"	0.605	0.606	2	2.644	0.073
03'00"	0.730	0.731	4	4.636	0.129
30"	0.855	0.856	5	5.632	0.156
04'00"	0.980	0.981	6	6.628	0.184
30"	1.105	1.106	7	7.624	0.212
05'00"	1.230	1.231	9	9.616	0.267
30"	1.355	1.356	10	10.612	0.295
06'00"	1.480	1.481	10	10.612	0.295
30"	1.605	1.606	10	10.612	0.295
07'00"	1.730	1.731	12	12.604	0.350
30"	1.855	1.856	12	12.604	0.350
08'00"	1.980	1.981	12	12.604	0.350
30"	2.105	2.106	13	13.600	0.378
09'00"	2.230	2.231	14	14.596	0.405

Esfuerzo normal (kg/cm2)	1.000	Esfuerzo cortante (kg/cm2)	0.405
--------------------------	-------	----------------------------	-------

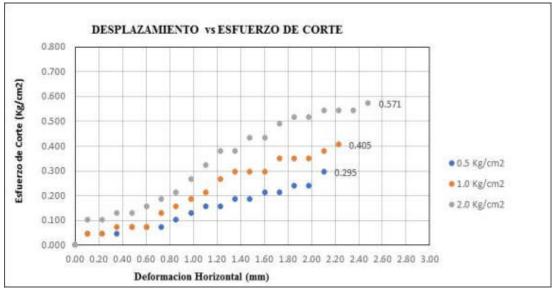
Esfuerzo normal (kg/cm2)

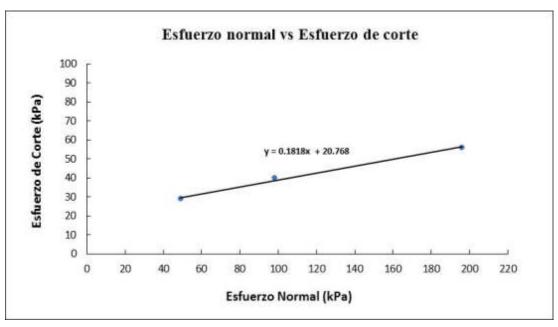
UNIVERSIDAD SAN MARTIN DE PORRES

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL <u>MÉTODO PARA EL CORTE DIRECTO</u> N.T.P. 339.171 / ASTM D-3080

	Características de	la muestra inalterada	1	Fuerza normal	2.00 kg
Área	36.00 cm2	Peso satura	ado (g)	133.25	
Altura	2.00 cm	Peso después de	el ensayo (g)	131.54	
Volumen	72.00 cm3	Peso sec	o (g)	95.76	MUESTRA 3
	l	Peso agua (g)		35.78	
Velocidad	0.25 mm/min	Humedad	37.40 %	Peso específico	2.70
Tiempo	10.00 min	Saturación	98%	Relación vacíos	1.03
Desplazamien to	2.500 mm	Densidad húmeda	1.83 g/cm3	Densidad seca	1.33 g/cm3
		Volumen del sólido	35.47 cm3	Volumen de vacíos	36.53 cm3
Corrección	dial horizontal	1.00 x + 0.001	Factor ce	lda de carga	0.996 x + 0.652
		ENS	AYO 3		
Tiempo	Dial Horizontal (mm)	Corrección dial horizontal (mm)	Dial de carga (kg)	Corrección dial de carga (kg)	Esfuerzo de corte (kg/cm2)
00'00"	0.000	0.000	0	0.000	0.000
30"	0.105	0.106	3	3.640	0.101
01'00"	0.230	0.231	3	3.640	0.101
30"	0.355	0.356	4	4.636	0.129
02'00"	0.480	0.481	4	4.636	0.129
30"	0.605	0.606	5	5.632	0.156
03'00"	0.730	0.731	6	6.628	0.184
30"	0.855	0.856	7	7.624	0.212
04'00"	0.980	0.981	9	9.616	0.267
30"	1.105	1.106	11	11.608	0.322
05'00"	1.230	1.231	13	13.600	0.378
30"	1.355	1.356	13	13.600	0.378
06'00"	1.480	1.481	15	15.592	0.433
30"	1.605	1.606	15	15.592	0.433
07'00"	1.730	1.731	17	17.584	0.488
30"	1.855	1.856	18	18.580	0.516
08'00"	1.980	1.981	18	18.580	0.516
30"	2.105	2.106	19	19.576	0.544
09'00"	2.230	2.231	19	19.576	0.544
30"	2.355	2.356	19	19.576	0.544
10'00"	2.480	2.481	20	20.572	0.571

Esfuerzo cortante (kg/cm2)


0.571


2.000

Ensayo	Esfuerzo normal kg/cm2	Esfuerzo de corte kg/cm2	Esfuerzo normal kPa	Esfuerzo de corte kPa
1	0.500	0.295	49.033	28.908
2	1.000	0.405	98.067	39.761
3	2.000	0.571	196.133	56.040

Resultados de ensayo	
Cohesión (kPa) = C	20.77
Ángulo de fricción interna = Φ	10.30

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÍA CIVIL MÉTODO PARA EL CORTE DIRECTO N.T.P. 339.171 / ASTM D-3080

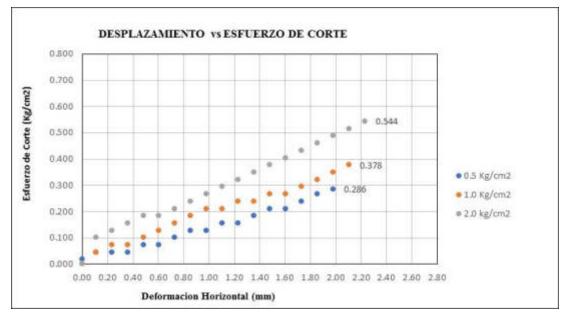
Recolección de datos y resultados

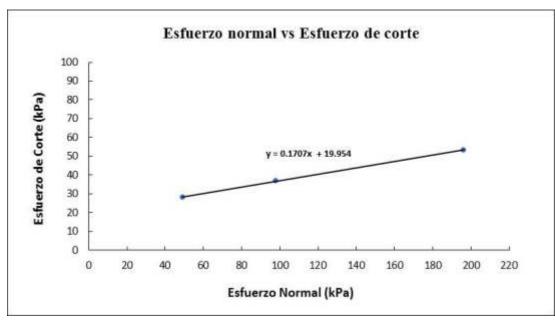
Calicata	01	Ubica	ación	Distrito P	imentel	Estado		1 mes		
	Caracter	ísticas de	la muest	ra inalterada		Fue	erza nor	mal	0.50 kg	
Área	36.0	0 cm2	Р	eso humedad r	natural (g)		133.16			
Altura	2.00	0 cm	Pes	so después del	ensayo (g)		131.42		MUEOTDA	
Volumen	72.00	0 cm3		Peso seco	(g)		95.04		MUESTRA 1	ı
	1			Peso agua	ı (g)		36.38			
Velocidad	0.25 n	nm/min	Hı	umedad	38.30 %	Pes	o espec	ífico	2.70	
Tiempo	8.00) min	Sa	turación	99%	Rela	ación va	cíos	1.05	
Desplazamiento	2.00	0 mm	Densid	dad húmeda	1.83 g/cm3	3 De	nsidad s	eca	1.32 g/cm3	
			Volume	en del sólido	35.20 cm3	3 V	olumen o	de	36.80 cm3	
Corrección	dial horizo	ntal	1.00	x + 0.001	Fact	or celda de	carga		0.996 x + 0.65	52
				ENSA	(0 1					
Tiempo	Horiz	ial zontal nm)		ección dial ontal (mm)	Dial de care (kg)		rección carga (l		Esfuerzo de corte (kg/cm	-
00'00"	0.0	000		0.000	0		0.652		0.018	
30"	0.	105		0.106	1		1.648		0.046	
01'00"	0.2	230		0.231	1		1.648		0.046	
30"	0.3	355		0.356	1		1.648		0.046	
02'00"	0.4	480		0.481	2		2.644		0.073	
30"	0.0	605		0.606	2		2.644		0.073	
03'00"	0.1	730		0.731	3		3.640		0.101	
30"	0.8	855		0.856	4		4.636		0.129	
04'00"	0.9	980		0.981	4		4.636		0.129	
30"	1.	105		1.106	5		5.632		0.156	
05'00"	1.3	230		1.231	5		5.632		0.156	
30"	1.3	355		1.356	6		6.628		0.184	
06'00"	1.4	480		1.481	7		7.624		0.212	
30"	1.0	605		1.606	7		7.624		0.212	
07'00"	1.3	730		1.731	8		8.620		0.239	
30"	1.8	855		1.856	9		9.616		0.267	
08'00"	1.9	980		1.981	10		10.313		0.286	
						<u> </u>				
Esfuerzo no	ormal (kg/c	:m2)	(0.014	Esfuerzo	cortante	(kg/cm2	2)	0.286	

		Características de la mi	uestra inalterada		
Área	36.00 cm2	Peso satura	do (g)	132.72	
Altura	2.00 cm	Peso después del ensayo (g)		131.01	
Volumen	72.00 cm3	Peso seco	Peso seco (g)		MUESTRA 2
		Peso agua	ı (g)	36.69	
Velocidad	0.25 mm/min	Humedad	38.90 %	Peso específico	2.70
Tiempo	8.50 min	Saturación	99%	Relación vacíos	1.06
Desplazamiento	2.125 mm	Densidad húmeda	1.82 g/cm3	Densidad seca	1.31 g/cm3
		Volumen del sólido	34.93 cm3	Volumen de vacíos	37.07 cm3
Corrección o	dial horizontal	1.00 x + 0.001	Factor ce	lda de carga	0.996 x + 0.652
		ENSAYO	2		
Tiempo	Dial Horizontal (mm)	Corrección dial horizontal (mm)	Dial de carga (kg)	Corrección dial de carga (kg)	Esfuerzo de corte (kg/cm2)
00'00"	0.000	0.000	0	0.000	0.000
30"	0.105	0.106	1	1.648	0.046
01'00"	0.230	0.231	2	2.644	0.073
30"	0.355	0.356	2	2.644	0.073
02'00"	0.480	0.481	3	3.640	0.101
30"	0.605	0.606	4	4.636	0.129
03'00"	0.730	0.731	5	5.632	0.156
30"	0.855	0.856	6	6.628	0.184
04'00"	0.980	0.981	7	7.624	0.212
30"	1.105	1.106	7	7.624	0.212
05'00"	1.230	1.231	8	8.620	0.239
30"	1.355	1.356	8	8.620	0.239
06'00"	1.480	1.481	9	9.616	0.267
30"	1.605	1.606	9	9.616	0.267
07'00"	1.730	1.731	10	10.612	0.295
30"	1.855	1.856	11	11.608	0.322
08'00"	1.980	1.981	12	12.604	0.350
30"	2.105	2.106	13	13.600	0.378

Esfuerzo normal (kg/cm2)	0.028	Esfuerzo cortante (kg/cm2)	0.378
--------------------------	-------	----------------------------	-------

Cara	cterísticas de	e la muestra inalte	rada	Fuerza	2.00 kg
	1	1		normal	2.00 kg
Área	36.00 cm2	Peso satu		133.23	_
Altura	2.00 cm	Peso después		131.44 95.05	MUESTRA 3
Volumen	72.00 cm3		Peso seco (g)		
	T	Peso a	gua (g)	36.39	
Velocidad	0.25 mm/min	Humedad	38.30 %	Peso específico	2.70
Tiempo	6.00 min	Saturación	99%	Relación vacíos	1.05
Desplazamie nto	1.50 mm	Densidad húmeda	1.83 g/cm3	Densidad seca	1.32 g/cm3
		Volumen del sólido	35.20 cm3	Volumen de vacíos	36.80 cm3
Corrección di	ial horizontal	1.00 x + 0.001	Factor ce	lda de carga	0.996 x + 0.652
		ENS	SAYO 3		
Tiempo	Dial Horizontal (mm)	Corrección dial horizontal (mm)	Dial de carga (kg)	Corrección dial de carga (kg)	Esfuerzo de corte (kg/cm2)
00'00"	0.000	0.000	0	0.000	0.000
30"	0.105	0.106	3	3.640	0.101
01'00"	0.230	0.231	4	4.636	0.129
30"	0.355	0.356	5	5.632	0.156
02'00"	0.480	0.481	6	6.628	0.184
30"	0.605	0.606	6	6.628	0.184
03'00"	0.730	0.731	7	7.624	0.212
30"	0.855	0.856	8	8.620	0.239
04'00"	0.980	0.981	9	9.616	0.267
30"	1.105	1.106	10	10.612	0.295
05'00"	1.230	1.231	11	11.608	0.322
30"	1.355	1.356	12	12.604	0.350
06'00"	1.480	1.481	13	13.600	0.378
30"	1.605	1.606	14	14.596	0.405
07'00"	1.730	1.731	15	15.592	0.433
30"	1.855	1.856	16	16.588	0.461
08'00"	1.980	1.981	17	17.584	0.488
30"	2.105	2.106	18	18.580	0.516
09'00"	2.230	2.231	19	19.576	0.544
Esfuerzo norm	al (kg/cm2)	0.056	Esfuerzo cort	tante (kg/cm2)	0.544




ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÍA CIVIL MÉTODO PARA EL CORTE DIRECTO

N.T.P. 339.171 / ASTM D-3080

Ensayo	Esfuerzo normal kg/cm2	Esfuerzo de corte kg/cm2	Esfuerzo normal kPa	Esfuerzo de corte kPa
1	0.500	0.286	49.033	28.094
2	1.000	0.378	98.067	37.047
3	2.000	0.544	196.133	53.326

Resultados de ensayo	
Cohesión (kPa) = C	19.95
Ángulo de fricción interna = Φ	9.69

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÍA CIVIL MÉTODO PARA EL CORTE DIRECTO N.T.P. 339.171 / ASTM D-3080

Recolección de datos y resultados

Esfuerzo normal (kg/cm2)

Calicata	02 U b	icación	cación Distrito Lamba		Estado		0 horas
		Caract	erísticas de la	ı muestra inaltei	rada		
Área	36.00 cm2	1	eso humedad r		_		
Altura	1.95 cm	_	o después del		125.60		
Volumen	70.20 cm3	1	Peso seco	, , , ,	99.43		MUESTRA 1
			Peso agua		26.17		
Velocidad	0.25 mm/min	Hu	ımedad	26.30 %	Peso específ	fico	2.71
Tiempo	7.50 min	Sa	turación	78%	Relación vac		0.91
Desplazamient	1.875 mm		lad húmeda	1.79 g/cm3	Densidad se		1.42 g/cm3
0	1.075 111111			-			
0 '' 1			en del sólido	36.69 cm3	Volumen de va	acios	33.51 cm3
Corrección d	iai norizontai	1.00	x + 0.001		celda de carga		0.996 x + 0.652
		1	ENSA	1401	1	I	
Tiempo	Dial Horizontal (mm)		ección dial ontal (mm)	Dial de carga (kg)	Corrección di carga (kg		Esfuerzo de corte (kg/cm2)
00'00"	0.000		0.000	0	0.000		0.000
30"	0.105	(0.106	1	1.648		0.046
01'00"	0.230	(0.231	3	3.640		0.101
30"	0.355	(0.356	3	3.640		0.101
02'00"	0.480	(0.481	5	5.632		0.156
30"	0.605	(0.606	6	6.628		0.184
03'00"	0.730	(0.731	8	8.620		0.239
30"	0.855	(0.856	8	8.620		0.239
04'00"	0.980	(0.981	9	9.616		0.267
30"	1.105		1.106	10	10.612		0.295
05'00"	1.230		1.231	11	11.608		0.322
30"	1.355		1.356	12	12.604		0.350
06'00"	1.480		1.481	13	13.600		0.378
30"	1.605		1.606	14	14.596		0.405
	1.730		1 701	15	15.592		0.433
07'00"	1.730		1.731				

Esfuerzo cortante (kg/cm2)

0.461

0.500

,	Т	Características de la		ada	
Área	36.00 cm2	Peso humedad r	natural (g)	-	
Altura	1.95 cm	Peso después del ensayo (g)		125.89	MUESTRA 2
Volumen	70.20 cm3	Peso seco	(g)	99.87	
		Peso agua	(g)	26.02	
Velocidad	0.25 mm/min	Humedad	26.00 %	Peso específico	2.71
Tiempo	8.00 min	Saturación	78%	Relación vacíos	0.90
Desplazamient o	2.000 mm	Densidad húmeda	1.79 g/cm3	Densidad seca	1.42 g/cm3
		Volumen del sólido	36.85 cm3	Volumen de vacíos	33.35 cm3
Corrección o	dial horizontal	1.00 x + 0.001	Factor	celda de carga	0.996 x + 0.652
		ENSA	(O 2		
Tiempo	Dial Horizontal (mm)	Corrección dial horizontal (mm)	Dial de carga (kg)		
00'00"	0.000	0.000	0	0.000	0.000
30"	0.105	0.106	4	4.636	0.129
01'00"	0.230	0.231	5	5.632	0.156
30"	0.355	0.356	6	6.628	0.184
02'00"	0.480	0.481	8	8.620	0.239
30"	0.605	0.606	9	9.616	0.267
03'00"	0.730	0.731	10	10.612	0.295
30"	0.855	0.856	11	11.608	0.322
04'00"	0.980	0.981	11	11.608	0.322
30"	1.105	1.106	12	12.604	0.350
05'00"	1.230	1.231	13	13.600	0.378
30"	1.355	1.356	14	14.596	0.405
06'00"	1.480	1.481	16	16.588	0.461
30"	1.605	1.606	16	16.588	0.461
07'00"	1.730	1.731	17	17.584	0.488
30"	1.855	1.856	18	18.580	0.516
08'00"	1.980	1.981	19	19.576	0.544

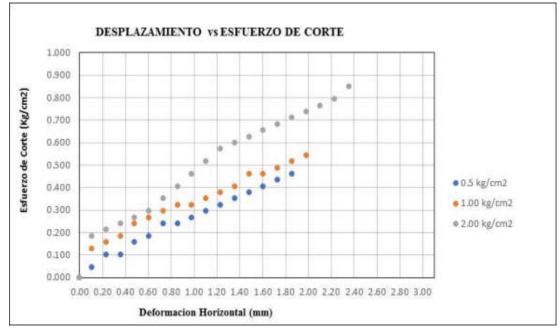
Esfuerzo normal (kg/cm2)

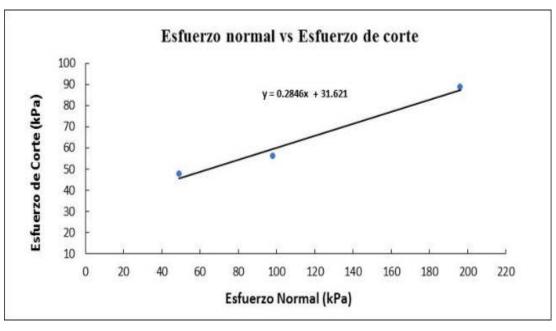
UNIVERSIDAD SAN MARTIN DE PORRES

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL MÉTODO PARA EL CORTE DIRECTO N.T.P. 339.171 / ASTM D-3080

ı		Características de	la muestra inaltera	ıda	T
Área	36.00 cm2	Peso humedad	natural (g)	-	
Altura	1.95 cm	Peso después del ensayo (g)		125.75	MUESTRA 3
Volumen	70.20 cm3	Peso sec	o (g)	99.61	
		Peso agu	a (g)	26.14	
Velocidad	0.25 mm/min	Humedad	26.20 %	Peso específico	2.71
Tiempo	9.50 min	Saturación	78%	Relación vacíos	0.91
Desplazamient o	2.375 mm	Densidad húmeda	1.79 g/cm3	Densidad seca	1.42 g/cm3
		Volumen del sólido	36.75 cm3	Volumen de vacíos	33.45 cm3
Corrección o	dial horizontal	1.00 x + 0.001	Factor ce	lda de carga	0.996 x + 0.652
		ENS	SAYO 3		
Tiempo	Dial Horizontal (mm)	Corrección dial horizontal (mm)	Dial de carga (kg)	Corrección dial de carga (kg)	Esfuerzo de corte (kg/cm2)
00'00"	0.000	0.000	0	0.000	0.000
30"	0.105	0.106	6	6.628	0.184
01'00"	0.230	0.231	7	7.624	0.212
30"	0.355	0.356	8	8.620	0.239
02'00"	0.480	0.481	9	9.616	0.267
30"	0.605	0.606	10	10.612	0.295
03'00"	0.730	0.731	12	12.604	0.350
30"	0.855	0.856	14	14.596	0.405
04'00"	0.980	0.981	16	16.588	0.461
30"	1.105	1.106	18	18.580	0.516
05'00"	1.230	1.231	20	20.572	0.571
30"	1.355	1.356	21	21.568	0.599
06'00"	1.480	1.481	22	22.564	0.627
30"	1.605	1.606	23	23.560	0.654
07'00"	1.730	1.731	24	24.556	0.682
30"	1.855	1.856	25	25.552	0.710
08'00"	1.980	1.981	26	26.548	0.737
30"	2.105	2.106	27	27.544	0.765
09'00"	2.230	2.231	28	28.540	0.793
30"	2.355	2.356	30	30.532	0.848

Esfuerzo cortante (kg/cm2)


0.848


2.000

Ensayo	Esfuerzo normal kg/cm2	Esfuerzo de corte kg/cm2	Esfuerzo normal kPa	Esfuerzo de corte kPa
1	0.500	0.488	49.033	47.900
2	1.000	0.571	98.067	56.040
3	2.000	0.903	196.133	88.598

Resultados de ensayo	
Cohesión (kPa) = C	31.62
Ángulo de fricción interna = Φ	15.88

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL MÉTODO PARA EL CORTE DIRECTO N.T.P. 339.171 / ASTM D-3080

Recolección de datos y resultados

Calicata	02	Ubic	Distrito Lambayeque		Estado		3 horas		
,			1		muestra inalter	1			
Área		36.00 cm2 Peso humedad				129.60			
Altura	1.95		Pes	o después del		127.93		MUESTRA 1	
Volumen	70.20	cm3		Peso seco		99.40			
	ı			Peso agua	ı (g)	28.53			
Velocidad	0.25 m	m/min	Hu	medad	28.70 %	Peso especí	fico	2.71	
Tiempo	7.50	min	Sat	turación	85%	Relación vac	cíos	0.91	
Desplazamient o	1.875	mm	Densid	ad húmeda	1.82 g/cm3	Densidad se	eca	1.42 g/cm3	
			Volume	n del sólido	36.68 cm3	Volumen de va	acíos	33.52 cm3	
Corrección o	lial horizon	tal	1.00	x + 0.001	Factor	celda de carga		0.996 x + 0.652	
				ENSA	YO 1				
Tiempo	Dia Horiza (mi	ontal		cción dial ontal (mm)	Dial de carga (kg)	Corrección di carga (kg		Esfuerzo de corte (kg/cm2)	
00'00"	0.0	00	(0.000	0	0.000		0.000	
30"	0.1	05	(0.106	1	1.648		0.046	
01'00"	0.2	30	().231	2	2.644		0.073	
30"	0.3	55	().356	3	3.640		0.101	
02'00"	0.4	80	().481	4	4.636		0.129	
30"	0.6	05	(0.606	5	5.632		0.156	
03'00"	0.73	30	().731	5	5.632		0.156	
30"	0.8	55	().856	6	6.628		0.184	
04'00"	0.9	80	().981	7	7.624		0.212	
30"	1.1	05		1.106	8	8.620		0.239	
05'00"	1.2	30		1.231	9	9.616		0.267	
30"	1.3	55		1.356	11	11.608		0.322	
06'00"	1.4	80		1.481	12	12.604		0.350	
30"	1.6	05		1.606	13	13.600		0.378	
07'00"	1.73	30		1.731	14	14.596		0.405	
30"	1.8	55		1.856	15	15.592		0.433	
Esfuerzo no	rmal (kg/c	m2)		0.500	Esfuerzo	cortante (kg/cm	2)	0.433	

Esfuerzo normal (kg/cm2)

UNIVERSIDAD SAN MARTIN DE PORRES

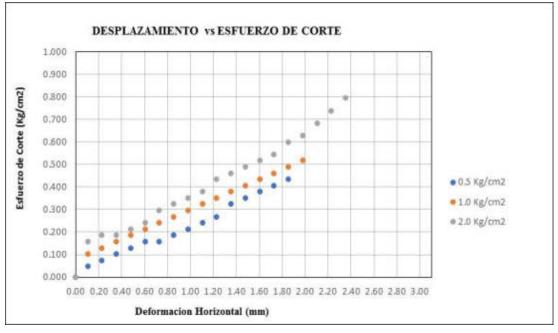
ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL MÉTODO PARA EL CORTE DIRECTO N.T.P. 339.171 / ASTM D-3080

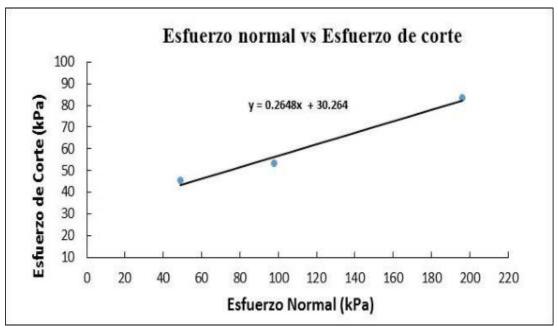
		Características de la	muestra inaltera	ada	
Área	36.00 cm2	Peso satura	do (g)	128.89	
Altura	1.95 cm	Peso después del ensayo (g)		127.27	
Volumen	70.20 cm3	Peso seco	(g)	98.98	MUESTRA 2
	•	Peso agua	ı (g)	28.29	
Velocidad	0.25 mm/min	Humedad	28.60 %	Peso específico	2.71
Tiempo	8.00 min	Saturación	84%	Relación vacíos	0.92
Desplazamient o	2.000 mm	Densidad húmeda	1.81 g/cm3	Densidad seca	1.41 g/cm3
		Volumen del sólido	36.52 cm3	Volumen de vacíos	33.68 cm3
Corrección	dial horizontal	1.00 x + 0.001	Factor	celda de carga	0.996 x + 0.652
		ENSA	(O 2		
Tiempo	Dial Horizontal (mm)	Corrección dial horizontal (mm)	Dial de carga (kg)	Corrección dial de carga (kg)	Esfuerzo de corte (kg/cm2)
00'00"	0.000	0.000	0	0.000	0.000
30"	0.105	0.106	3	3.640	0.101
01'00"	0.230	0.231	4	4.636	0.129
30"	0.355	0.356	5	5.632	0.156
02'00"	0.480	0.481	6	6.628	0.184
30"	0.605	0.606	7	7.624	0.212
03'00"	0.730	0.731	8	8.620	0.239
30"	0.855	0.856	9	9.616	0.267
04'00"	0.980	0.981	10	10.612	0.295
30"	1.105	1.106	11	11.608	0.322
05'00"	1.230	1.231	12	12.604	0.350
30"	1.355	1.356	13	13.600	0.378
06'00"	1.480	1.481	14	14.596	0.405
30"	1.605	1.606	15	15.592	0.433
07'00"	1.730	1.731	16	16.588	0.461
30"	1.855	1.856	17	17.584	0.488

Esfuerzo cortante (kg/cm2)

0.516

1.000




		Características de	la muestra inalter	ada	
Área	36.00 cm2	Peso satur	ado (g)	129.78	
Altura	1.95 cm	Peso después del ensayo (g)		128.08	MUEOTRA
Volumen	70.20 cm3	Peso sec	o (g)	99.68	MUESTRA 3
		Peso agu	ıa (g)	28.40	
Velocidad	0.25 mm/min	Humedad	28.50 %	Peso específico	2.71
Tiempo	9.50 min	Saturación	85%	Relación vacíos	0.91
Desplazamien to	2.375 mm	Densidad húmeda	1.82 g/cm3	Densidad seca	1.42 g/cm3
		Volumen del sólido	36.78 cm3	Volumen de vacíos	33.42 cm3
Corrección	dial horizontal	1.00 x + 0.001	Factor ce	Ida de carga	0.996 x + 0.652
		ENS	SAYO 3		
Tiempo	Dial Horizontal (mm)	Corrección dial horizontal (mm)	Dial de carga (kg)	Corrección dial de carga (kg)	Esfuerzo de corte (kg/cm2)
00'00"	0.000	0.000	0	0.000	0.000
30"	0.105	0.106	5	5.632	0.156
01'00"	0.230	0.231	6	6.628	0.184
30"	0.355	0.356	6	6.628	0.184
02'00"	0.480	0.481	7	7.624	0.212
30"	0.605	0.606	8	8.620	0.239
03'00"	0.730	0.731	10	10.612	0.295
30"	0.855	0.856	11	11.608	0.322
04'00"	0.980	0.981	12	12.604	0.350
30"	1.105	1.106	13	13.600	0.378
05'00"	1.230	1.231	15	15.592	0.433
30"	1.355	1.356	16	16.588	0.461
06'00"	1.480	1.481	17	17.584	0.488
30"	1.605	1.606	18	18.580	0.516
07'00"	1.730	1.731	19	19.576	0.544
30"	1.855	1.856	21	21.568	0.599
08'00"	1.980	1.981	22	22.564	0.627
30"	2.105	2.106	24	24.556	0.682
09'00"	2.230	2.231	26	26.548	0.737
30"	2.355	2.356	28	28.540	0.793
Esfuerzo noi	rmal (kg/cm2)	2.000	Esfuerzo cor	tante (kg/cm2)	0.793

Ensayo	Esfuerzo normal kg/cm2	Esfuerzo de corte kg/cm2	Esfuerzo normal kPa	Esfuerzo de corte kPa
1	0.500	0.461	49.033	45.187
2	1.000	0.544	98.067	53.326
3	2.000	0.848	196.133	83.171

Resultados de ensayo				
Cohesión (kPa) = C	30.26			
Ángulo de fricción interna = Φ	14.83			

07'00"

1.730

UNIVERSIDAD SAN MARTIN DE PORRES

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL MÉTODO PARA EL CORTE DIRECTO N.T.P. 339.171 / ASTM D-3080

Recolección de datos y resultados

Calicata	02	Ubicación	Distrito Lambayeque	Estado	8 horas
----------	----	-----------	---------------------	--------	---------

		Características de la	muestra inalter	ada	
Área	36.00 cm2	Peso humedad natural (g) 132.11			
Altura	1.95 cm	Peso después del	ensayo (g)	130.60	MUESTRA 1
Volumen	70.20 cm3	Peso seco	(g)	99.45	MUESIKAT
		Peso agua	ı (g)	31.15	
Velocidad	0.25 mm/min	Humedad	31.30 %	Peso específico	2.71
Tiempo	7.00 min	Saturación	93%	Relación vacíos	0.91
Desplazamiento	1.750 mm	Densidad húmeda	1.86 g/cm3	Densidad seca	1.42 g/cm3
		Volumen del sólido	36.70 cm3	Volumen de vacíos	33.50 cm3
Corrección d	ial horizontal	1.00 x + 0.001	Factor	celda de carga	0.996 x + 0.65
		ENSA	YO 1		
Tiempo	Dial Horizontal (mm)	Corrección dial horizontal (mm)	Dial de carga (kg)	Corrección dial de carga (kg)	Esfuerzo de corte (kg/cm2
00'00"	0.000	0.000	0	0.000	0.000
30"	0.105	0.106	1	1.648	0.046
01'00"	0.230	0.231	2	2.644	0.073
30"	0.355	0.356	2	2.644	0.073
02'00"	0.480	0.481	3	3.640	0.101
30"	0.605	0.606	4	4.636	0.129
03'00"	0.730	0.731	5	5.632	0.156
30"	0.855	0.856	6	6.628	0.184
04'00"	0.980	0.981	7	7.624	0.212
30"	1.105	1.106	8	8.620	0.239
05'00"	1.230	1.231	8	8.620	0.239
30"	1.355	1.356	9	9.616	0.267
06'00"	1.480	1.481	10	10.612	0.295
30"	1.605	1.606	11	11.608	0.322

Esfuerzo normal (kg/cm2)	0.500	Esfuerzo cortante (kg/cm2)	0.350

12.604

0.350

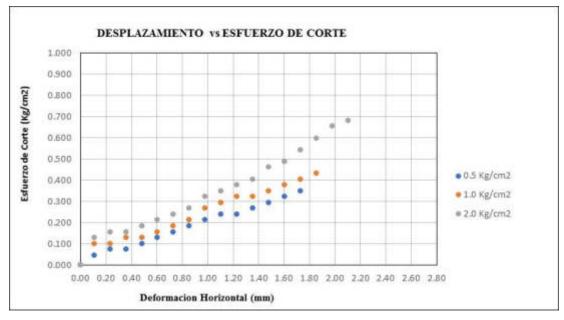
1.731

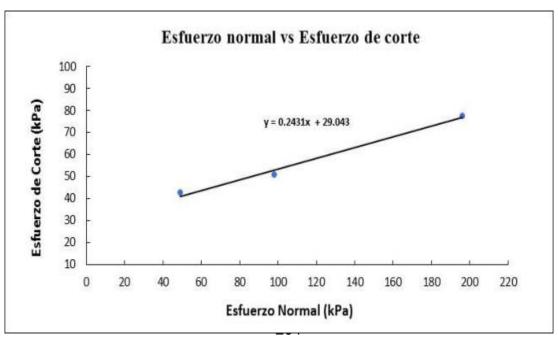
		Características de la	muestra inalter	ada		
Área	36.00 cm2	Peso saturado (g)		132.42		
Altura	1.95 cm	Peso después del	ensayo (g)	130.91	MUESTRA 2	
Volumen	70.20 cm3	Peso seco) (g)	99.83	MUESTRA 2	
		Peso agua	a (g)	31.08		
Velocidad	0.25 mm/min	Humedad	31.10 %	Peso específico	2.71	
Tiempo	7.50 min	Saturación	93%	Relación vacíos	0.91	
Desplazamiento	1.875 mm	Densidad húmeda	1.86 g/cm3	Densidad seca	1.42 g/cm3	
		Volumen del sólido	36.84 cm3	Volumen de vacíos	33.36 cm3	
Corrección o	dial horizontal	1.00 x + 0.001 Factor		celda de carga	0.996 x + 0.65	
		ENSA	YO 2			
Tiempo	Dial Horizontal (mm)	Corrección dial horizontal (mm)	Dial de carga (kg)	Corrección dial de carga (kg)	Esfuerzo de corte (kg/cm2	
00'00"	0.000	0.000	0	0.000	0.000	
30"	0.105	0.106	3	3.640	0.101	
01'00"	0.230	0.231	3	3.640	0.101	
30"	0.355	0.356	4	4.636	0.129	
ດວ່າດດ	0.480	0.481	4	4 636	0.120	

Tiempo	(mm)	horizontal (mm)	carga (kg)	de carga (kg)	corte (kg/cm2)
00'00"	0.000	0.000	0	0.000	0.000
30"	0.105	0.106	3	3.640	0.101
01'00"	0.230	0.231	3	3.640	0.101
30"	0.355	0.356	4	4.636	0.129
02'00"	0.480	0.481	4	4.636	0.129
30"	0.605	0.606	5	5.632	0.156
03'00"	0.730	0.731	6	6.628	0.184
30"	0.855	0.856	7	7.624	0.212
04'00"	0.980	0.981	9	9.616	0.267
30"	1.105	1.106	10	10.612	0.295
05'00"	1.230	1.231	11	11.608	0.322
30"	1.355	1.356	11	11.608	0.322
06'00"	1.480	1.481	12	12.604	0.350
30"	1.605	1.606	13	13.600	0.378
07'00"	1.730	1.731	14	14.596	0.405
30"	1.855	1.856	15	15.592	0.433

Esfuerzo normal (kg/cm2)	1.000	Esfuerzo cortante (kg/cm2)	0.433	
--------------------------	-------	----------------------------	-------	--

		Características de	la muestra inalter	ada	
Área	36.00 cm2	Peso satura	ado (g)	132.49	
Altura	1.95 cm	Peso después del ensayo (g)		130.92	
Volumen	70.20 cm3	Peso sec	o (g)	99.91	MUESTRA 3
	I	Peso agu	a (g)	31.01	
Velocidad	0.25 mm/min	Humedad	31.00 %	Peso específico	2.71
Tiempo	8.50 min	Saturación	93%	Relación vacíos	0.90
Desplazamiento	2.125 mm	Densidad húmeda	1.87 g/cm3	Densidad seca	1.42 g/cm3
		Volumen del sólido	36.87 cm3	Volumen de vacíos	33.33 cm3
Corrección	dial horizontal	1.00 x + 0.001	Factor ce	lda de carga	0.996 x + 0.652
		ENS	AYO 3		
Tiempo	Dial Horizontal (mm)	Corrección dial horizontal (mm)	Dial de carga (kg)	Corrección dial de carga (kg)	Esfuerzo de corte (kg/cm2)
00'00"	0.000	0.000	0	0.000	0.000
30"	0.105	0.106	4	4.636	0.129
01'00"	0.230	0.231	5	5.632	0.156
30"	0.355	0.356	5	5.632	0.156
02'00"	0.480	0.481	6	6.628	0.184
30"	0.605	0.606	7	7.624	0.212
03'00"	0.730	0.731	8	8.620	0.239
30"	0.855	0.856	9	9.616	0.267
04'00"	0.980	0.981	11	11.608	0.322
30"	1.105	1.106	12	12.604	0.350
05'00"	1.230	1.231	13	13.600	0.378
30"	1.355	1.356	14	14.596	0.405
06'00"	1.480	1.481	16	16.588	0.461
30"	1.605	1.606	17	17.584	0.488
07'00"	1.730	1.731	19	19.576	0.544
30"	1.855	1.856	21	21.568	0.599
08'00"	1.980	1.981	23	23.560	0.654
30"	2.105	2.106	24	24.556	0.682
Esfuerzo nor	mal (kg/cm2)	2.000	Esfuerzo cor	tante (kg/cm2)	0.682




ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL <u>MÉTODO PARA EL CORTE DIRECTO</u>

N.T.P. 339.171 / ASTM D-3080

Ensayo	Esfuerzo normal kg/cm2	Esfuerzo de corte kg/cm2	Esfuerzo normal kPa	Esfuerzo de corte kPa
1	0.500	0.433	49.033	42.474
2	1.000	0.516	98.067	50.613
3	2.000	0.790	196.133	77.474
3	2.000	0.790	196.133	77.474

Resultados de ensayo	
Cohesión (kPa) = C	29.04
Ángulo de fricción interna = Φ	13.66

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÍA CIVIL MÉTODO PARA EL CORTE DIRECTO N.T.P. 339.171 / ASTM D-3080

Recolección de datos y resultados

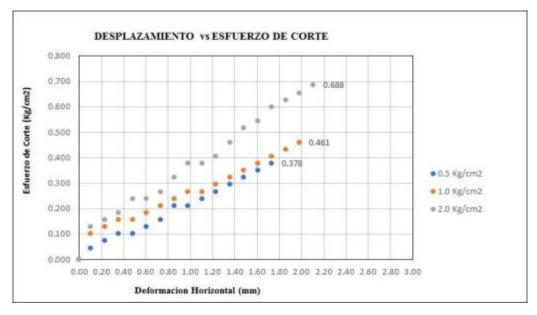
Calicata	02	Ubic	ación	Distrito La	mbayeque	Estado		15 horas
			Caract	erísticas de la	a muestra inalt	erada		
Área	36.00	cm2	Pe	eso humedad i	natural (g)	133.36		
Altura	1.95	5 cm	Pes	o después del	ensayo (g)	131.75		MUESTRA 1
Volumen	70.20) cm3		Peso seco) (g)	98.64		
				Peso agua	a (g)	33.11		
Velocidad	0.25 m	nm/min	Hu	ımedad	33.60 %	Peso espec	cífico	2.71
Tiempo	7.00	min	Sat	turación	98%	Relación va	icíos	0.93
Desplazamiento	1.750) mm	Densid	lad húmeda	1.88 g/cm3	Densidad s	seca	1.41 g/cm3
			Volume	en del sólido	36.40 cm3	Volumen de v	vacíos	33.80 cm3
Corrección o	dial horizoi	ntal	1.00	x + 0.001	Facto	or celda de carga		0.996 x + 0.65
				ENSA	YO 1			
Tiempo	Horiz	ial contal m)		ección dial ontal (mm)	Dial de carga (kg)	Corrección c carga (k		Esfuerzo de corte (kg/cm2
00'00"	0.0	000	(0.000	0	0.000		0.000
30"	0.1	105	(0.106	1	1.648		0.046
01'00"	0.2	230	(0.231	2	2.644		0.073
30"	0.3	355	(0.356	3	3.640		0.101
02'00"	0.4	180	(0.481	3	3.640		0.101
30"	0.6	605	(0.606	4	4.636		0.129
03'00"	0.7	730	(0.731	5	5.632		0.156
30"	0.0	355	(0.856	7	7.624		0.212
04'00"	0.9	980	(0.981	7	7.624		0.212
30"	1.1	105	,	1.106	8	8.620		0.239
05'00"	1.2	230		1.231	9	9.616		0.267
30"	1.3	355		1.356	10	10.612		0.295
06'00"	1.4	180		1.481	11	11.608		0.322
30"	1.6	605		1.606	12	12.604		0.350
30						-		

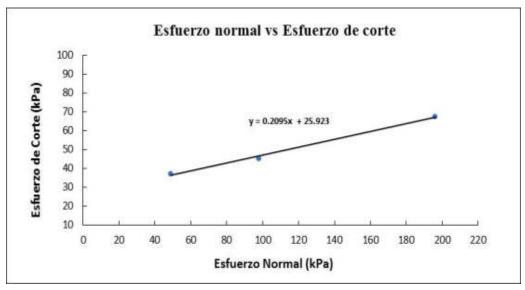
Esfuerzo normal (kg/cm2)	0.500	Esfuerzo cortante (kg/cm2)	0.378
--------------------------	-------	----------------------------	-------

		Características de la	muestra inalter	ada	
Área	36.00 cm2	Peso satura	do (g)	133.54	
Altura	1.95 cm	Peso después del	ensayo (g)	131.93	MUESTRA 2
Volumen	70.20 cm3	Peso seco	(g)	98.98	
		Peso agua	a (g)	32.95	
Velocidad	0.25 mm/min	Humedad	33.30 %	Peso específico	2.71
Tiempo	8.00 min	Saturación	98%	Relación vacíos	0.92
Desplazamiento	2.000 mm	Densidad húmeda	1.88 g/cm3	Densidad seca	1.41 g/cm3
		Volumen del sólido	36.52 cm3	Volumen de vacíos	33.68 cm3
Corrección dial horizontal		1.00 x + 0.001 Factor		celda de carga	0.996 x + 0.652
		ENSA	YO 2		
	Dial Horizontal	Corrección dial	Dial de	Corrección dial	Esfuerzo de
Tiempo	(mm)	horizontal (mm)	carga (kg)	de carga (kg)	corte (kg/cm2
00'00"	0.000	0.000	0	0.000	0.000
30"	0.105	0.106	3	3.640	0.101
01'00"	0.230	0.231	4	4.636	0.129
30"	0.355	0.356	5	5.632	0.156
02'00"	0.480	0.481	5	5.632	0.156
02 00					
30"	0.605	0.606	6	6.628	0.184

00 00	0.000	0.000		0.000	0.000
30"	0.105	0.106	3	3.640	0.101
01'00"	0.230	0.231	4	4.636	0.129
30"	0.355	0.356	5	5.632	0.156
02'00"	0.480	0.481	5	5.632	0.156
30"	0.605	0.606	6	6.628	0.184
03'00"	0.730	0.731	7	7.624	0.212
30"	0.855	0.856	8	8.620	0.239
04'00"	0.980	0.981	9	9.616	0.267
30"	1.105	1.106	9	9.616	0.267
05'00"	1.230	1.231	10	10.612	0.295
30"	1.355	1.356	11	11.608	0.322
06'00"	1.480	1.481	12	12.604	0.350
30"	1.605	1.606	13	13.600	0.378
07'00"	1.730	1.731	14	14.596	0.405
30"	1.855	1.856	15	15.592	0.433
08'00"	1.980	1.981	16	16.588	0.461

Esfuerzo normal (kg/cm2)	1.000	Esfuerzo cortante (kg/cm2)	0.461
--------------------------	-------	----------------------------	-------


		Características de	la muestra inalter	ada	
Área	36.00 cm2	Peso satura	ado (g)	133.15	
Altura	1.95 cm	Peso después del ensayo (g)		131.48	
Volumen	70.20 cm3	Peso sec	Peso seco (g)		MUESTRA 3
	<u>l</u>	Peso agu	a (g)	32.98	
Velocidad	0.25 mm/min	Humedad	33.50 %	Peso específico	2.71
Tiempo	8.50 min	Saturación	97%	Relación vacíos	0.93
Desplazamiento	2.125 mm	Densidad húmeda	1.87 g/cm3	Densidad seca	1.40 g/cm3
		Volumen del sólido	36.35 cm3	Volumen de vacíos	33.85 cm3
Corrección	dial horizontal	1.00 x + 0.001	Factor ce	lda de carga	0.996 x + 0.652
		ENS	AYO 3		
	Dial Horizontal	Corrección dial	Dial de carga	Corrección dial	Esfuerzo de corte
Tiempo	(mm)	horizontal (mm)	(kg)	de carga (kg)	(kg/cm2)
00'00"	0.000	0.000	0	0.000	0.000
30"	0.105	0.106	4	4.636	0.129
01'00"	0.230	0.231	5	5.632	0.156
30"	0.355	0.356	6	6.628	0.184
02'00"	0.480	0.481	8	8.620	0.239
30"	0.605	0.606	8	8.620	0.239
03'00"	0.730	0.731	9	9.616	0.267
30"	0.855	0.856	11	11.608	0.322
04'00"	0.980	0.981	13	13.600	0.378
30"	1.105	1.106	13	13.600	0.378
05'00"	1.230	1.231	14	14.596	0.405
30"	1.355	1.356	16	16.588	0.461
06'00"	1.480	1.481	18	18.580	0.516
30"	1.605	1.606	19	19.576	0.544
07'00"	1.730	1.731	21	21.568	0.599
30"	1.855	1.856	22	22.564	0.627
08'00"	1.980	1.981	23	23.560	0.654
30"	2.105	2.106	24	24.755	0.688


Esfuerzo normal (kg/cm2)	2.000	Esfuerzo cortante (kg/cm2)	0.688
--------------------------	-------	----------------------------	-------

Ensayo	Esfuerzo normal kg/cm2	Esfuerzo de corte kg/cm2	Esfuerzo normal kPa	Esfuerzo de corte kPa
1	0.500	0.378	49.033	37.047
2	1.000	0.461	98.067	45.187
3	2.000	0.688	196.133	67.435
	1			

Resultados de ensayo	
Cohesión (kPa) = C	25.92
Ángulo de fricción interna = Φ	11.83

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL MÉTODO PARA EL CORTE DIRECTO N.T.P. 339.171 / ASTM D-3080

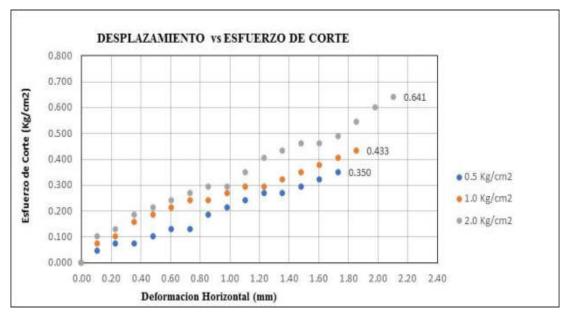
Recolección de datos y resultados

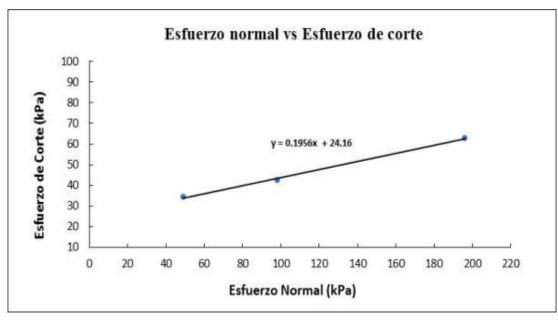
		Características de la	muestra inalter	rada		
Área	36.00 cm2	Peso humedad natural (g) 133.46				
Altura	1.95 cm	Peso después del	Peso después del ensayo (g)		MUESTRA 1	
Volumen	70.20 cm3	Peso seco	Peso seco (g)		MOESTRAT	
		Peso agua	ı (g)	33.47		
Velocidad	0.25 mm/min	Humedad	34.10 %	Peso específico	2.71	
Tiempo	7.00 min	Saturación	99%	Relación vacíos	0.94	
Desplazamiento	1.750 mm	Densidad húmeda	1.88 g/cm3	Densidad seca	1.40 g/cm3	
		Volumen del sólido	36.27 cm3	Volumen de vacíos	33.93 cm3	
Corrección d	ial horizontal	1.00 x + 0.001	Factor	celda de carga	0.996 x + 0.652	
		ENSA	YO 1			
Tiempo	Dial Horizontal	Corrección dial	Dial de	Corrección dial de	Esfuerzo de	
·	(mm)	horizontal (mm)	carga (kg)	carga (kg)	corte (kg/cm2)	
00'00"	0.000	0.000	0	0.000	0.000	
30"	0.105	0.106	1	1.648	0.046	
01'00"	0.230	0.231	2	2.644	0.073	
30"	0.355	0.356	2	2.644	0.073	
02'00"	0.480	0.481	3	3.640	0.101	
30"	0.605	0.606	4	4.636	0.129	
03'00"	0.730	0.731	4	4.636	0.129	
30"	0.855	0.856	6	6.628	0.184	
04'00"	0.980	0.981	7	7.624	0.212	
30"	1.105	1.106	8	8.620	0.239	
05'00"	1.230	1.231	9	9.616	0.267	
30"	1.355	1.356	9	9.616	0.267	
06'00"	1.480	1.481	10	10.612	0.295	
30"	1.605	1.606	11	11.608	0.322	
07'00"	1.730	1.731	12	12.604	0.350	

Esfuerzo normal (kg/cm2)	0.500	Esfuerzo cortante (kg/cm2)	0.350	
--------------------------	-------	----------------------------	-------	--

		Características de la	muestra inaltera	ada	
Área	36.00 cm2	Peso satura	do (g)	133.26	
Altura	1.95 cm	Peso después del	ensayo (g)	131.48	
Volumen	70.20 cm3	Peso seco (g)		97.93	MUESTRA 2
	<u>l</u>	Peso agua	ı (g)	33.55	
Velocidad	0.25 mm/min	Humedad	34.30 %	Peso específico	2.71
Tiempo	7.50 min	Saturación	99%	Relación vacíos	0.94
Desplazamiento	1.875 mm	Densidad húmeda	1.87 g/cm3	Densidad seca	1.40 g/cm3
		Volumen del sólido	36.14 cm3	Volumen de vacíos	34.06 cm3
Corrección	dial horizontal	1.00 x + 0.001	Factor	celda de carga	0.996 x + 0.652
		ENSA	YO 2		
	Dial Horizontal	Corrección dial	Dial de Corrección dial		Esfuerzo de
Tiempo	(mm)	horizontal (mm)	carga (kg)	de carga (kg)	corte (kg/cm2)
	(,	nonzontar (mm)	ourgu (ng)	uo oui gu (lig)	oorto (ng.omz)
00'00"	0.000	0.000	0	0.000	0.000
30"	0.105	0.106	2	2.644	0.073
01'00"	0.230	0.231	3	3.640	0.101
30"	0.355	0.356	5	5.632	0.156
02'00"	0.480	0.481	6	6.628	0.184
30"	0.605	0.606	7	7.624	0.212
03'00"	0.730	0.731	8	8.620	0.239
30"	0.855	0.856	8	8.620	0.239
04'00"	0.980	0.981	9	9.616	0.267
30"	1.105	1.106	10	10.612	0.295
05'00"	1.230	1.231	10	10.612	0.295
30"	1.355	1.356	11	11.608	0.322
06'00"	1.480	1.481	12	12.604	0.350
30"	1.605	1.606	13	13.600	0.378
07'00"	1.730	1.731	14	14.596	0.405
30"	1.855	1.856	15	15.592	0.433

Esfuerzo normal (kg/cm2) 1.000 Esfuerzo cortante (kg/cm2) 0.433


		Características de	la muestra inalter	ada		
Área	36.00 cm2	Peso satura	ado (g)	133.63		
Altura	1.95 cm	Peso después de	el ensayo (g)	131.82	MUESTRA 3	
Volumen	70.20 cm3	Peso seo	o (g)	98.40	02011810	
		Peso agu	ıa (g)	33.42		
Velocidad	0.25 mm/min	Humedad	34.00 %	Peso específico	2.71	
Tiempo	8.50 min	Saturación	99%	Relación vacíos	0.93	
Desplazamiento	2.125 mm	Densidad húmeda	1.88 g/cm3	Densidad seca	1.40 g/cm3	
		Volumen del sólido	36.31 cm3	Volumen de vacíos	33.89 cm3	
Corrección	dial horizontal	1.00 x + 0.001	Factor ce	lda de carga	0.996 x + 0.652	
		ENS	SAYO 3		•	
	Dial Horizontal	Corrección dial	Dial de carga	Corrección dial	Esfuerzo de corte	
Tiempo	(mm)	horizontal (mm)	(kg)	de carga (kg)	(kg/cm2)	
	(,	,	(9)	as sarga (ng)	(119/01112)	
00'00"	0.000	0.000	0	0.000	0.000	
30"	0.105	0.106	3	3.640	0.101	
01'00"	0.230	0.231	4	4.636	0.129	
30"	0.355	0.356	6	6.628	0.184	
02'00"	0.480	0.481	7	7.624	0.212	
30"	0.605	0.606	8	8.620	0.239	
03'00"	0.730	0.731	9	9.616	0.267	
30"	0.855	0.856	10	10.612	0.295	
04'00"	0.980	0.981	10	10.612	0.295	
30"	1.105	1.106	12	12.604	0.350	
05'00"	1.230	1.231	14	14.596	0.405	
30"	1.355	1.356	15	15.592	0.433	
06'00"	1.480	1.481	16	16.588	0.461	
30"	1.605	1.606	16	16.588	0.461	
07'00"	1.730	1.731	17	17.584	0.488	
30"	1.855	1.856	19	19.576	0.544	
08'00"	1.980	1.981	21	21.568	0.599	
30"	2.105	2.106	23	23.062	0.641	


Esfuerzo normal (kg/cm2)	2.000	Esfuerzo cortante (kg/cm2)	0.641

Ensayo	Esfuerzo normal kg/cm2	Esfuerzo de corte kg/cm2	Esfuerzo normal kPa	Esfuerzo de corte kPa
1	0.500	0.350	49.033	34.334
2	1.000	0.433	98.067	42.474
3	2.000	0.641	196.133	62.822
	I.			

Resultados de ensayo	
Cohesión (kPa) = C	24.16
Ángulo de fricción interna = Φ	11.07

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL MÉTODO PARA EL CORTE DIRECTO N.T.P. 339.171 / ASTM D-3080

Recolección de datos y resultados

Calicata 02 Ubicaci	n Distrito Lambayeque	Estado	1 mes
---------------------	-----------------------	--------	-------

		Características de la	muestra inaltei	ada	
Área	36.00 cm2	Peso humedad r	natural (g)	133.06	
Altura	1.95 cm	Peso después del	Peso después del ensayo (g)		MUESTRA 1
Volumen	70.20 cm3	Peso seco	Peso seco (g)		
		Peso agua	(g)	34.19	
Velocidad	0.25 mm/min	Humedad	35.20 %	Peso específico	2.71
Tiempo	6.50 min	Saturación	99%	Relación vacíos	0.96
Desplazamiento	1.625 mm	Densidad húmeda	1.87 g/cm3	Densidad seca	1.38 g/cm3
		Volumen del sólido	35.80 cm3	Volumen de vacíos	34.40 cm3
Corrección d	ial horizontal	1.00 x + 0.001	Factor	celda de carga	0.996 x + 0.652
		ENSA	YO 1		
Tiempo	Dial Horizontal (mm)	Corrección dial horizontal (mm)	Dial de carga (kg)	Corrección dial de carga (kg)	Esfuerzo de corte (kg/cm2)
00'00"	0.000	0.000	0	0.652	0.018
30"	0.105	0.106	1	1.648	0.046
01'00"	0.230	0.231	1	1.648	0.046
30"	0.355	0.356	2	2.644	0.073
02'00"	0.480	0.481	2	2.644	0.073
30"	0.605	0.606	3	3.640	0.101
03'00"	0.730	0.731	4	4.636	0.129
30"	0.855	0.856	5	5.632	0.156
04'00"	0.980	0.981	6	6.628	0.184
30"	1.105	1.106	7	7.624	0.212
05'00"	1.230	1.231	8	8.620	0.239
30"	1.355	1.356	9	9.616	0.267
06'00"	1.480	1.481	9	9.616	0.267
30"	1.605	1.606	11	11.608	0.322

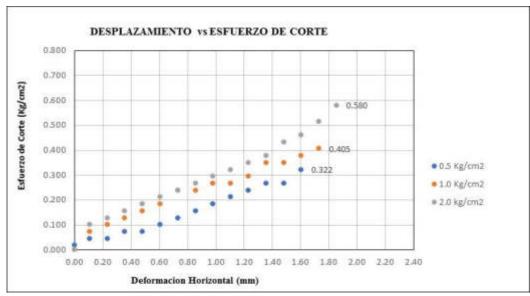
Esfuerzo normal (kg/cm2)	0.500	Esfuerzo cortante (kg/cm2)	0.322

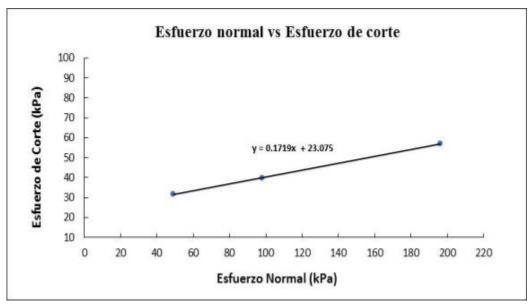
	,	Características de la	muestra inaltera		
Área	36.00 cm2	Peso satura	do (g)	132.83	
Altura	1.95 cm	Peso después del	ensayo (g)	130.95	MUESTRA 2
Volumen	70.20 cm3	Peso seco	Peso seco (g)		
		Peso agua (g)		34.26	
Velocidad	0.25 mm/min	Humedad	35.40 %	Peso específico	2.71
Tiempo	7.00 min	Saturación	99%	Relación vacíos	0.97
Desplazamiento	1.750 mm	Densidad húmeda	1.87 g/cm3	Densidad seca	1.38 g/cm3
		Volumen del sólido	35.68 cm3	Volumen de vacíos	34.52 cm3
Corrección o	dial horizontal	1.00 x + 0.001	Factor	celda de carga	0.996 x + 0.652
		ENSA	YO 2		
	Dial Horizontal	Corrección dial	Dial de	Corrección dial	Esfuerzo de
Tiempo	(mm)	horizontal (mm)	carga (kg)	de carga (kg)	corte (kg/cm2)
	()	nonzontar (mm)	ourgu (ng)	uo ourgu (ng)	corto (ngromz)
00'00"	0.000	0.000	0	0.000	0.000
30"	0.105	0.106	2	2.644	0.073
01'00"	0.230	0.231	3	3.640	0.101
30"	0.355	0.356	4	4.636	0.129
02'00"	0.480	0.481	5	5.632	0.156
30"	0.605	0.606	6	6.628	0.184
03'00"	0.730	0.731	8	8.620	0.239
30"	0.855	0.856	8	8.620	0.239
04'00"	0.980	0.981	9	9.616	0.267
30"	1.105	1.106	9	9.616	0.267
05'00"	1.230	1.231	10	10.612	0.295
30"	1.355	1.356	12	12.604	0.350
06'00"	1.480	1.481	12	12.604	0.350
30"	1.605	1.606	13	13.600	0.378
07'00"	1.730	1.731	14	14.596	0.405

Esfuerzo normal (kg/cm2)	1.000	Esfuerzo cortante (kg/cm2)	0.405
--------------------------	-------	----------------------------	-------

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL MÉTODO PARA EL CORTE DIRECTO N.T.P. 339.171 / ASTM D-3080

N.1.P. 339.1717 ASTM D-3080


		Características de	la muestra inalter	ada	
Área	36.00 cm2	Peso satura	ado (g)	133.35	
Altura	1.95 cm	Peso después de	el ensayo (g)	131.46	MUESTRA 3
Volumen	70.20 cm3	Peso sec	o (g)	97.58	MUESTRAS
		Peso agu	a (g)	33.88	
Velocidad	0.25 mm/min	Humedad	34.70 %	Peso específico	2.71
Tiempo	7.50 min	Saturación	99%	Relación vacíos	0.95
Desplazamiento	1.875 mm	Densidad húmeda	1.87 g/cm3	Densidad seca	1.39 g/cm3
		Volumen del sólido	36.01 cm3	Volumen de vacíos	34.19 cm3
Corrección	dial horizontal	1.00 x + 0.001	Factor ce	lda de carga	0.996 x + 0.652
		ENS	AYO 3		
	Dial Horizontal	Corrección dial	Dial de carga	Corrección dial	Esfuerzo de cor
Tiempo	(mm)	horizontal (mm)	(kg)	de carga (kg)	(kg/cm2)
		,	(3)	3. (3,	(3,)
00'00"	0.000	0.000	0	0.000	0.000
30"	0.105	0.106	3	3.640	0.101
01'00"	0.230	0.231	4	4.636	0.129
30"	0.355	0.356	5	5.632	0.156
02'00"	0.480	0.481	6	6.628	0.184
30"	0.605	0.606	7	7.624	0.212
03'00"	0.730	0.731	8	8.620	0.239
30"	0.855	0.856	9	9.616	0.267
04'00"	0.980	0.981	10	10.612	0.295
30"	1.105	1.106	11	11.608	0.322
05'00"	1.230	1.231	12	12.604	0.350
30"	1.355	1.356	13	13.600	0.378
06'00"	1.480	1.481	15	15.592	0.433
30"	1.605	1.606	16	16.588	0.461
07'00"	1.730	1.731	18	18.580	0.516
30"	1.855	1.856	20	20.871	0.580


Esfuerzo normal (kg/cm2)	2.000	Esfuerzo cortante (kg/cm2)	0.580
--------------------------	-------	----------------------------	-------

Ensayo	Esfuerzo normal kg/cm2	Esfuerzo de corte kg/cm2	Esfuerzo normal kPa	Esfuerzo de corte kPa
1	0.500	0.322	49.033	31.621
2	1.000	0.405	98.067	39.761
3	2.000	0.580	196.133	56.854

Resultados de ensayo	
Cohesión (kPa) = C	23.07
Ángulo de fricción interna = Φ	9.76

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL MÉTODO PARA EL CORTE DIRECTO N.T.P. 339.171 / ASTM D-3080

Recolección de datos y resultados

Calicata 03 Ubicación [Distrito Lambayeque Estado	0 horas
-------------------------	----------------------------	---------

		Características de la	muestra inaltei	rada	
Área	36.00 cm2	Peso humedad r	natural (g)	-	
Altura	2.00 cm	Peso después del	ensayo (g)	134.87	MUEOTDA 4
Volumen	72.00 cm3	Peso seco	(g)	115.63	MUESTRA 1
		Peso agua	(g)	19.24	
Velocidad	0.25 mm/min	Humedad	16.60 %	Peso específico	2.82
Tiempo	6.00 min	Saturación	62%	Relación vacíos	0.76
Desplazamiento	1.50 mm	Densidad húmeda	1.87 g/cm3	Densidad seca	1.61 g/cm3
		Volumen del sólido	41.00 cm3	Volumen de vacíos	31.00 cm3
Corrección d	ial horizontal	1.00 x + 0.001	Factor	celda de carga	0.996 x + 0.65
		ENSA	YO 1		
	Dial				
Tiempo	Horizontal	Corrección dial	Dial de	Corrección dial de	Esfuerzo de
•	(mm)	horizontal (mm)	carga (kg)	carga (kg)	corte (kg/cm2
00'00"	0.000	0.000	0	0.000	0.000
30"	0.105	0.106	1	1.648	0.046
01'00"	0.230	0.231	4	4.636	0.129
30"	0.355	0.356	5	5.632	0.156
02'00"	0.480	0.481	5	5.632	0.156
30"	0.605	0.606	6	6.628	0.184
03'00"	0.730	0.731	6	6.628	0.184
30"	0.855	0.856	7	7.624	0.212
04'00"	0.980	0.981	8	8.620	0.239
30"	1.105	1.106	9	9.616	0.267
05'00"	1.230	1.231	9	9.616	0.267
30"	1.355	1.356	10	10.612	0.295
06'00"	1.480	1.481	11	11.608	0.322
30"	1.605	1.606	11	11.608	0.322
07'00"	1.730	1.731	12	12.604	0.350
30"	1.855	1.856	12	12.604	0.350
08'00"	1.980	1.981	13	13.600	0.378
30"	2.105	2.106	13	13.600	0.378

Esfuerzo normal (kg/cm2) 0.500 Esfuerzo cortante (kg/cm2)	
---	--

Corrección dial horizontal		Factor	celda de carga	0.996 x + 0.652	
	Volumen del sólido	40.87 cm3	Volumen de vacíos	31.13 cm3	
1.63 mm	Densidad húmeda	1.87 g/cm3	Densidad seca	1.60 g/cm3	
6.50 min	Saturación	62%	Relación vacíos	0.76	
0.25 mm/min	Humedad	16.70 %	Peso específico	2.82	
	Peso agua (g)		19.23		
72.00 cm3	Peso después del ensayo (g) Peso seco (g)		115.25	MOLOTIVAL	
2.00 cm			134.48	MUESTRA 2	
36.00 cm2	Peso satura				
	2.00 cm 72.00 cm3 0.25 mm/min 6.50 min 1.63 mm	36.00 cm2 Peso saturad 2.00 cm Peso después del 72.00 cm3 Peso seco Peso agua 0.25 mm/min Humedad 6.50 min Saturación 1.63 mm Densidad húmeda Volumen del sólido	36.00 cm2 Peso saturado (g) 2.00 cm Peso después del ensayo (g) 72.00 cm3 Peso seco (g) Peso agua (g) 0.25 mm/min Humedad 16.70 % 6.50 min Saturación 62% 1.63 mm Densidad húmeda 1.87 g/cm3 Volumen del sólido 40.87 cm3	2.00 cm Peso después del ensayo (g) 134.48 72.00 cm3 Peso seco (g) 115.25 Peso agua (g) 19.23 0.25 mm/min Humedad 16.70 % Peso específico 6.50 min Saturación 62% Relación vacíos 1.63 mm Densidad húmeda 1.87 g/cm3 Densidad seca Volumen del sólido 40.87 cm3 Volumen de vacíos	

Tiempo	Dial Horizontal (mm)	Corrección dial horizontal (mm)	Dial de carga (kg)	Corrección dial de carga (kg)	Esfuerzo de corte (kg/cm2)
00'00"	0.000	0.000	0	0.000	0.000
30"	0.105	0.106	4	4.636	0.129
01'00"	0.230	0.231	6	6.628	0.184
30"	0.355	0.356	7	7.624	0.212
02'00"	0.480	0.481	8	8.620	0.239
30"	0.605	0.606	9	9.616	0.267
03'00"	0.730	0.731	10	10.612	0.295
30"	0.855	0.856	12	12.604	0.350
04'00"	0.980	0.981	13	13.600	0.378
30"	1.105	1.106	14	14.596	0.405
05'00"	1.230	1.231	15	15.592	0.433
30"	1.355	1.356	16	16.588	0.461
06'00"	1.480	1.481	18	18.580	0.516
30"	1.605	1.606	19	19.576	0.544
07'00"	1.730	1.731	20	20.572	0.571
30"	1.855	1.856	21	21.568	0.599
08'00"	1.980	1.981	22	22.564	0.627
30"	2.105	2.106	23	23.560	0.654
09'00"	2.230	2.231	24	24.556	0.682

Esfuerzo normal (kg/cm2) 1.000 Esfuerzo cortante (kg/cm2) 0.6	82
---	----

30"

10'00"

30"

2.355

2.480

2.605

UNIVERSIDAD SAN MARTIN DE PORRES

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL MÉTODO PARA EL CORTE DIRECTO N.T.P. 339.171 / ASTM D-3080

		Características de	la muestra inalte	rada	
Área	36.00 cm2	Peso satura	ado (g)	-	
Altura	2.00 cm	Peso después de	el ensayo (g)	134.34	MUESTRA 3
Volumen	72.00 cm3	Peso sec	:o (g)	114.95	MUESTRA 3
		Peso agua (g)		19.39	
Velocidad	0.25 mm/min	Humedad 16.90 %		Peso específico	2.82
Tiempo	7.00 min	Saturación	62%	Relación vacíos	0.77
Desplazamiento	1.75 mm	Densidad húmeda	1.87 g/cm3	Densidad seca	1.60 g/cm3
		Volumen del sólido	40.76 cm3	Volumen de vacíos	31.24 cm3
Corrección	dial horizontal	1.00 x + 0.001	Factor ce	elda de carga	0.996 x + 0.652
		ENS	SAYO 3		
	Dial Horizontal	Corrección dial	Dial de carga	Corrección dial	Esfuerzo de corte
Tiempo	(mm)	horizontal (mm)	(kg)	de carga (kg)	(kg/cm2)
	(,	,	(3)	g (g,	(3)
00'00"	0.000	0.000	0	0.000	0.000
30"	0.105	0.106	6	6.628	0.184
01'00"	0.230	0.231	8	8.620	0.239
30"	0.355	0.356	10	10.612	0.295
02'00"	0.480	0.481	10	10.612	0.295
30"	0.605	0.606	11	11.608	0.322
03'00"	0.730	0.731	12	12.604	0.350
30"	0.855	0.856	14	14.596	0.405
04'00"	0.980	0.981	16	16.588	0.461
30"	1.105	1.106	18	18.580	0.516
05'00"	1.230	1.231	19	19.576	0.544
30"	1.355	1.356	20	20.572	0.571
06'00"	1.480	1.481	21	21.568	0.599
30"	1.605	1.606	22	22.564	0.627
07'00"	1.730	1.731	22	22.564	0.627
30"	1.855	1.856	24	24.556	0.682
08'00"	1.980	1.981	26	26.548	0.737
30"	2.105	2.106	27	27.544	0.765
09'00"	2.230	2.231	28	28.540	0.793

Esfuerzo normal (kg/cm2)	2.000	Esfuerzo cortante (kg/cm2)	0.903
--------------------------	-------	----------------------------	-------

2.356

2.481

2.606

28

30

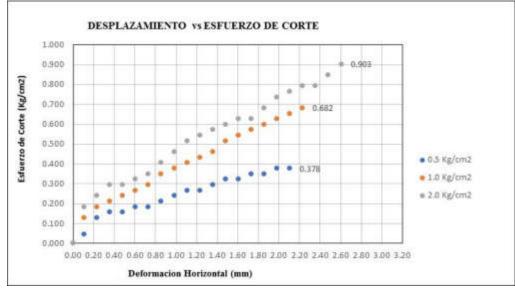
32

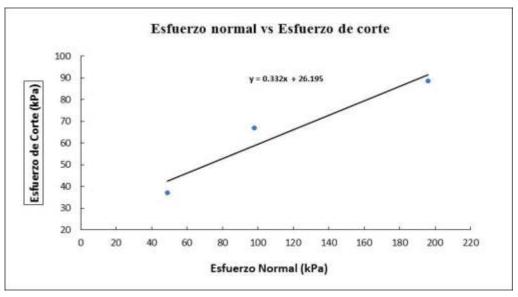
28.540

30.532

32.524

0.793


0.848


0.903

Ensayo	Esfuerzo normal kg/cm2	Esfuerzo de corte kg/cm2	Esfuerzo normal kPa	Esfuerzo de corte kPa
1	0.500	0.378	49.033	37.047
2	1.000	0.682	98.067	66.892
3	2.000	0.903	196.133	88.598

Resultados de ensayo	
Cohesión (kPa) = C	26.19
Ángulo de fricción interna = Φ	18.37

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL <u>MÉTODO PARA EL CORTE DIRECTO</u> N.T.P. 339.171 / ASTM D-3080

Recolección de datos y resultados

Esfuerzo normal (kg/cm2)

Calicata	03	Ubicació	n Distrito La	mbayeque	Estado	3 horas
		Са	racterísticas de la	muestra inalte	rada	
Área	36.00	36.00 cm2 Pes		natural (g)	139.98	
Altura	2.00	cm	Peso después del	ensayo (g)	138.46	
Volumen	72.00	cm3	Peso seco	(g)	114.98	MUESTRA 1
			Peso agua	ı (g)	23.48	
Velocidad	0.25 mr	m/min	Humedad	20.40 %	Peso especí	fico 2.82
Tiempo	8.50	min	Saturación	75%	Relación vac	cíos 0.77
Desplazamiento	2.13	mm De	ensidad húmeda	1.92 g/cm3	Densidad se	eca 1.60 g/cm3
		Vo	lumen del sólido	40.77 cm3	Volumen de va	acíos 31.23 cm3
Corrección	dial horizon	tal	1.00 x + 0.001	Factor	celda de carga	0.996 x + 0.652
			ENSA	YO 1		<u> </u>
	Dia	al C	Corrección dial	Dial de	Corrección di	al de Esfuerzo de
Tiempo	Horizo	ontal	orizontal (mm)	carga (kg)	carga (kg	
	(mr		, ,	0 (0,		
00'00"	0.00	00	0.000	0	0.000	0.000
30"	0.10	05	0.106	1	1.648	0.046
01'00"	0.23	30	0.231	2	2.644	0.073
30"	0.35	55	0.356	3	3.640	0.101
02'00"	0.48	30	0.481	3	3.640	0.101
30"	0.60	05	0.606	4	4.636	0.129
03'00"	0.73	30	0.731	5	5.632	0.156
30"	0.85	55	0.856	6	6.628	0.184
04'00"	0.98	30	0.981	7	7.624	0.212
30"	1.10	05	1.106	8	8.620	0.239
05'00"	1.23	30	1.231	9	9.616	0.267
30"	1.35	55	1.356	9	9.616	0.267
06'00"	1.48	30	1.481	10	10.612	0.295
30"	1.60	05	1.606	10	10.612	0.295
07'00"	1.73	30	1.731	10	10.612	0.295
30"	1.85	55	1.856	11	11.608	0.322
08'00"	1.98	30	1.981	12	12.604	0.350
30"	2.10	05	2.106	12	12.604	0.350

Esfuerzo cortante (kg/cm2)

0.350

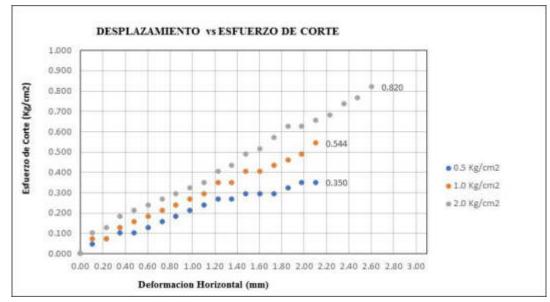
0.500

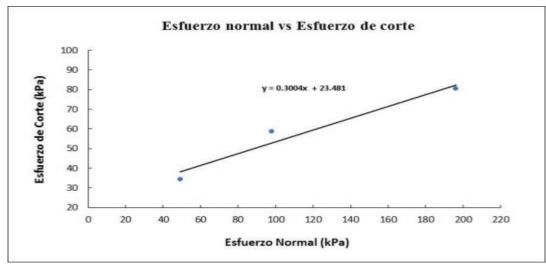
		Características de la	muestra inaltera	ada	
Área	36.00 cm2	Peso satura	do (g)	140.20	
Altura	2.00 cm	Peso después del ensayo (g)		138.61	MUESTDA 2
Volumen	72.00 cm3	Peso seco (g)		115.20	MUESTRA 2
	1	Peso agua (g)		23.41	
Velocidad	0.25 mm/min	Humedad	20.30 %	Peso específico	2.82
Tiempo	9.00 min	Saturación	75%	Relación vacíos	0.76
Desplazamiento	2.25 mm	Densidad húmeda	1.93 g/cm3	Densidad seca	1.60 g/cm3
		Volumen del sólido	40.85 cm3	Volumen de vacíos	31.15 cm3
Corrección	Corrección dial horizontal 1.00 x + 0.001 Factor celda de carga				0.996 x + 0.652
		ENSA	(O 2		
	Dial Horizontal	Corrección dial	Dial de	Corrección dial	Esfuerzo de
Tiempo	(mm)	horizontal (mm)	carga (kg)	de carga (kg)	corte (kg/cm2)
00'00"	0.000	0.000	0	0.000	0.000
30"	0.105	0.106	2	2.644	0.073
01'00"	0.230	0.231	2	2.644	0.073
30"	0.355	0.356	4	4.636	0.129
02'00"	0.480	0.481	5	5.632	0.156
30"	0.605	0.606	6	6.628	0.184
03'00"	0.730	0.731	7	7.624	0.212
30"	0.855	0.856	8	8.620	0.239
04'00"	0.980	0.981	9	9.616	0.267
30"	1.105	1.106	10	10.612	0.295
05'00"	1.230	1.231	12	12.604	0.350
30"	1.355	1.356	12	12.604	0.350
06'00"	1.480	1.481	14	14.596	0.405
30"	1.605	1.606	14	14.596	0.405
07'00"	1.730	1.731	15	15.592	0.433
30"	1.855	1.856	16	16.588	0.461
08'00"	1.980	1.981	17	17.584	0.488
30"	2.105	2.106	19	19.576	0.544
09'00"	2.230	2.231	21	21.568	0.599
			l		

Esfuerzo normal (kg/cm2) 1.000 Esfuerzo cortante (kg/cm2) 0.599	99
---	----

		Características de	la muestra inalter	aha	
Áron	26.00.000			140.41	I
Área	36.00 cm2	Peso satura		-	
Altura	2.00 cm	Peso después del ensayo (g)		138.78	MUESTRA 3
Volumen	72.00 cm3	Peso seco (g)		115.45	
		Peso agu	ıa (g)	23.33	
Velocidad	0.25 mm/min	Humedad	20.20 %	Peso específico	2.82
Tiempo	10.50 min	Saturación	75%	Relación vacíos	0.76
Desplazamiento	2.63 mm	Densidad húmeda	1.93 g/cm3	Densidad seca	1.60 g/cm3
		Volumen del sólido	40.94 cm3	Volumen de vacíos	31.06 cm3
Corrección o	dial horizontal	1.00 x + 0.001	Factor ce	lda de carga	0.996 x + 0.652
		ENS	SAYO 3		
	Dial Horizontal	Corrección dial	Dial de carga	Corrección dial	Esfuerzo de corte
Tiempo	(mm)	horizontal (mm)	(kg)	de carga (kg)	(kg/cm2)
	,	,	(3/	3, (3)	(3,)
00'00"	0.000	0.000	0	0.000	0.000
30"	0.105	0.106	3	3.640	0.101
01'00"	0.230	0.231	4	4.636	0.129
30"	0.355	0.356	6	6.628	0.184
02'00"	0.480	0.481	7	7.624	0.212
30"	0.605	0.606	8	8.620	0.239
03'00"	0.730	0.731	9	9.616	0.267
30"	0.855	0.856	10	10.612	0.295
04'00"	0.980	0.981	11	11.608	0.322
30"	1.105	1.106	12	12.604	0.350
05'00"	1.230	1.231	14	14.596	0.405
30"	1.355	1.356	15	15.592	0.433
06'00"	1.480	1.481	17	17.584	0.488
30"	1.605	1.606	18	18.580	0.516
07'00"	1.730	1.731	20	20.572	0.571
30"	1.855	1.856	22	22.564	0.627
08'00"	1.980	1.981	22	22.564	0.627
30"	2.105	2.106	23	23.560	0.654
09'00"	2.230	2.231	24	24.556	0.682
30"	2.355	2.356	26	26.548	0.737
10'00"	2.480	2.481	27	27.544	0.765
30"	2.605	2.606	29	29.536	0.820

Esfuerzo normal (kg/cm2)	2.000	Esfuerzo cortante (kg/cm2)	0.820
--------------------------	-------	----------------------------	-------




ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÍA CIVIL MÉTODO PARA EL CORTE DIRECTO

N.T.P. 339.171 / ASTM D-3080

Ensayo	Esfuerzo normal kg/cm2	Esfuerzo de corte kg/cm2	Esfuerzo normal kPa	Esfuerzo de corte kPa
1	0.500	0.350	49.033	34.334
2	1.000	0.599	98.067	58.753
3	2.000	0.820	196.133	80.458

Resultados de ensayo	
Cohesión (kPa) = C	23.48
Ángulo de fricción interna = Φ	16.72

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL MÉTODO PARA EL CORTE DIRECTO N.T.P. 339.171 / ASTM D-3080

Recolección de datos y resultados

Calicata	03	Ubicación	Distrito Lambayeque	Estado	8 horas
----------	----	-----------	---------------------	--------	---------

		Características de la	muestra inalter	ada	
Área	36.00 cm2	Peso humedad r	Peso humedad natural (g)		
Altura	2.00 cm	Peso después del ensayo (g)		142.49	MUESTRA 1
Volumen	72.00 cm3	Peso seco	(g)	115.51	MUESTRA 1
		Peso agua	(g)	26.98	
Velocidad	0.25 mm/min	Humedad	23.40 %	Peso específico	2.82
Tiempo	8.00 min	Saturación	87%	Relación vacíos	0.76
Desplazamiento	2.00 mm	Densidad húmeda	1.98 g/cm3	Densidad seca	1.60 g/cm3
		Volumen del sólido	40.96 cm3	Volumen de vacíos	31.04 cm3
Corrección d	ial horizontal	1.00 x + 0.001	Factor	celda de carga	0.996 x + 0.652
		ENSA	YO 1		
Tiempo	Dial Horizontal (mm)	Corrección dial horizontal (mm)	Dial de carga (kg)	Corrección dial de carga (kg)	Esfuerzo de corte (kg/cm2)
00'00"	0.000	0.000	0	0.000	0.000
30"	0.105	0.106	1	1.648	0.046
01'00"	0.230	0.231	2	2.644	0.073
30"	0.355	0.356	2	2.644	0.073
02'00"	0.480	0.481	3	3.640	0.101
30"	0.605	0.606	3	3.640	0.101
03'00"	0.730	0.731	4	4.636	0.129
30"	0.855	0.856	5	5.632	0.156
04'00"	0.980	0.981	6	6.628	0.184
30"	1.105	1.106	6	6.628	0.184
05'00"	1.230	1.231	7	7.624	0.212
30"	1.355	1.356	7	7.624	0.212
06'00"	1.480	1.481	8	8.620	0.239
30"	1.605	1.606	8	8.620	0.239
07'00"	1.730	1.731	9	9.616	0.267
30"	1.855	1.856	10	10.612	0.295
08'00"	1.980	1.981	10	10.612	0.295

Esfuerzo normal (kg/cm2) 0.500 Esfuerzo cortante (kg/cm2) 0.295

		Características de la	muestra inalter	ada	
Área	26.00 am2			143.85	
	36.00 cm2	Peso saturado (g)			
Altura	2.00 cm	Peso después del ensayo (g)		142.13	MUESTRA 2
Volumen	72.00 cm3	Peso seco (g)		115.01	
		Peso agua	ı (g)	27.12	
Velocidad	0.25 mm/min	Humedad	23.60 %	Peso específico	2.82
Tiempo	8.50 min	Saturación	87%	Relación vacíos	0.77
Desplazamiento	2.13 mm	Densidad húmeda	1.97 g/cm3	Densidad seca	1.60 g/cm3
		Volumen del sólido	40.78 cm3	Volumen de vacíos	31.22 cm3
Corrección	dial horizontal	1.00 x + 0.001	Factor	celda de carga	0.996 x + 0.652
		ENSA	(O 2		
	Dial Horizontal	Corrección dial	Dial de	Corrección dial	Esfuerzo de
Tiempo	(mm)	horizontal (mm)	carga (kg)	de carga (kg)	corte (kg/cm2)
00'00"	0.000	0.000	0	0.000	0.000
30"	0.105	0.106	2	2.644	0.073
01'00"	0.230	0.231	3	3.640	0.101
30"	0.355	0.356	3	3.640	0.101
02'00"	0.480	0.481	4	4.636	0.129
30"	0.605	0.606	5	5.632	0.156
03'00"	0.730	0.731	6	6.628	0.184
30"	0.855	0.856	7	7.624	0.212
04'00"	0.980	0.981	9	9.616	0.267
30"	1.105	1.106	10	10.612	0.295
05'00"	1.230	1.231	11	11.608	0.322
30"	1.355	1.356	12	12.604	0.350
06'00"	1.480	1.481	13	13.600	0.378
30"	1.605	1.606	14	14.596	0.405
07'00"	1.730	1.731	15	15.592	0.433
30"	1.855	1.856	16	16.588	0.461
08'00"	1.980	1.981	17	17.584	0.488
30"	2.105	2.106	18	18.580	0.516

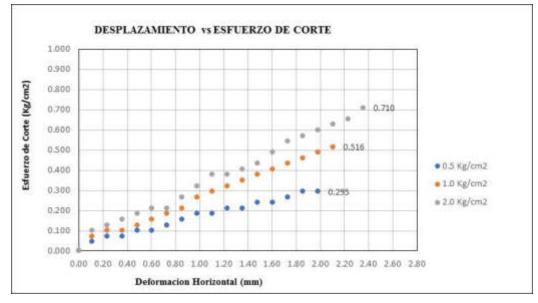
Esfuerzo normal (kg/cm2)	1.000	Esfuerzo cortante (kg/cm2)	0.516
--------------------------	-------	----------------------------	-------

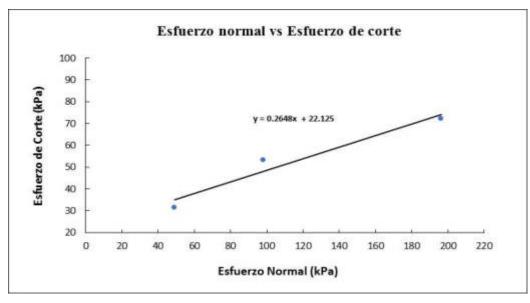
ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL MÉTODO PARA EL CORTE DIRECTO N.T.P. 339.171 / ASTM D-3080

		Características de	la muestra inalter	rada	
Área	36.00 cm2	Peso satura	ado (g)	143.37	
Altura	2.00 cm	Peso después del ensayo (g)		141.64	MUEOTRA
Volumen	72.00 cm3	Peso seco (g)		114.25	MUESTRA 3
	L	Peso agu	ıa (g)	27.39	
Velocidad	0.25 mm/min	Humedad	24.00 %	Peso específico	2.82
Tiempo	9.50 min	Saturación	87%	Relación vacíos	0.78
Desplazamien to	2.38 mm	Densidad húmeda	1.97 g/cm3	Densidad seca	1.59 g/cm3
		Volumen del sólido	40.51 cm3	Volumen de vacíos	31.49 cm3
Corrección	dial horizontal	1.00 x + 0.001	Factor ce	lda de carga	0.996 x + 0.652
		ENS	SAYO 3		
	Dial Horizontal	Corrección dial	Dial de carga	Corrección dial	Esfuerzo de corte
Tiempo	(mm)	horizontal (mm)	(kg)	de carga (kg)	(kg/cm2)
	()	(,	(-3)	g (1.g)	(1.3. 11.1.2)
00'00"	0.000	0.000	0	0.000	0.000
30"	0.105	0.106	3	3.640	0.101
01'00"	0.230	0.231	4	4.636	0.129
30"	0.355	0.356	5	5.632	0.156
02'00"	0.480	0.481	6	6.628	0.184
30"	0.605	0.606	7	7.624	0.212
03'00"	0.730	0.731	7	7.624	0.212
30"	0.855	0.856	9	9.616	0.267
04'00"	0.980	0.981	11	11.608	0.322
30"	1.105	1.106	13	13.600	0.378
05'00"	1.230	1.231	13	13.600	0.378
30"	1.355	1.356	14	14.596	0.405
06'00"	1.480	1.481	15	15.592	0.433
30"	1.605	1.606	17	17.584	0.488
07'00"	1.730	1.731	19	19.576	0.544
30"	1.855	1.856	20	20.572	0.571
08'00"	1.980	1.981	21	21.568	0.599
30"	2.105	2.106	22	22.564	0.627
09'00"	2.230	2.231	23	23.560	0.654
30"	2.355	2.356	25	25.552	0.710

Esfuerzo cortante (kg/cm2)

0.710


2.000


Esfuerzo normal (kg/cm2)

Ensayo	Esfuerzo normal kg/cm2	Esfuerzo de corte kg/cm2	Esfuerzo normal kPa	Esfuerzo de corte kPa
1	0.500	0.322	49.033	31.621
2	1.000	0.544	98.067	53.326
3	2.000	0.737	196.133	72.319

Resultados de ensayo	
Cohesión (kPa) = C	22.12
Ángulo de fricción interna = Φ	14.83

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL MÉTODO PARA EL CORTE DIRECTO N.T.P. 339.171 / ASTM D-3080

Recolección de datos y resultados

Calicata 03 Ubicación	Distrito Lambayeque	Estado	15 horas
-----------------------	---------------------	--------	----------

		Características de la	muestra inalter	ada	
Área	36.00 cm2	Peso humedad r	Peso humedad natural (g)		
Altura	2.00 cm	Peso después del ensayo (g)		144.75	MUESTRA 1
Volumen	72.00 cm3	Peso seco	(g)	115.20	MUESTRA 1
		Peso agua	(g)	29.55	
Velocidad	0.25 mm/min	Humedad	25.70 %	Peso específico	2.82
Tiempo	8.50 min	Saturación	95%	Relación vacíos	0.76
Desplazamiento	2.13 mm	Densidad húmeda	2.01 g/cm3	Densidad seca	1.60 g/cm3
		Volumen del sólido	40.85 cm3	Volumen de vacíos	31.15 cm3
Corrección d	ial horizontal	1.00 x + 0.001	Factor	celda de carga	0.996 x + 0.652
		ENSA	YO 1		
Tiempo	Dial Horizontal (mm)	Corrección dial horizontal (mm)	Dial de carga (kg)	Corrección dial de carga (kg)	Esfuerzo de corte (kg/cm2)
00'00"	0.000	0.000	0	0.000	0.000
30"	0.105	0.106	1	1.648	0.046
01'00"	0.230	0.231	1	1.648	0.046
30"	0.355	0.356	2	2.644	0.073
02'00"	0.480	0.481	2	2.644	0.073
30"	0.605	0.606	2	2.644	0.073
03'00"	0.730	0.731	3	3.640	0.101
30"	0.855	0.856	4	4.636	0.129
04'00"	0.980	0.981	5	5.632	0.156
30"	1.105	1.106	6	6.628	0.184
05'00"	1.230	1.231	6	6.628	0.184
30"	1.355	1.356	7	7.624	0.212
06'00"	1.480	1.481	7	7.624	0.212
30"	1.605	1.606	8	8.620	0.239
07'00"	1.730	1.731	8	8.620	0.239
30"	1.855	1.856	9	9.616	0.267
08'00"	1.980	1.981	10	10.512	0.292

Esfuerzo normal (kg/cm2) 0.500 Esfuerzo cortante (kg/cm2) 0.292

		Características de la	muestra inaltera	ada	
Área	36.00 cm2	Peso saturado (g) 146.44			
Altura	2.00 cm	Peso después del	ensayo (g)	144.83	MUESTRA 2
Volumen	72.00 cm3	Peso seco	(g)	115.19	WUESTRA 2
	1	Peso agua	Peso agua (g)		
Velocidad	0.25 mm/min	Humedad	25.70 %	Peso específico	2.82
Tiempo	5.00 min	Saturación	95%	Relación vacíos	0.76
Desplazamiento	1.25 mm	Densidad húmeda	2.01 g/cm3	Densidad seca	1.60 g/cm3
		Volumen del sólido	40.85 cm3	Volumen de vacíos	31.15 cm3
Corrección	dial horizontal	1.00 x + 0.001	Factor celda de carga		0.996 x + 0.652
		ENSA	YO 2		
	Dial Horizontal	Corrección dial	Dial de	Corrección dial	Esfuerzo de

Tiempo	Dial Horizontal (mm)	Corrección dial horizontal (mm)	Dial de carga (kg)	Corrección dial de carga (kg)	Esfuerzo de corte (kg/cm2)
00'00"	0.000	0.000	0	0.000	0.000
30"	0.105	0.106	2	2.644	0.073
01'00"	0.230	0.231	2	2.644	0.073
30"	0.355	0.356	3	3.640	0.101
02'00"	0.480	0.481	3	3.640	0.101
30"	0.605	0.606	4	4.636	0.129
03'00"	0.730	0.731	5	5.632	0.156
30"	0.855	0.856	6	6.628	0.184
04'00"	0.980	0.981	7	7.624	0.212
30"	1.105	1.106	8	8.620	0.239
05'00"	1.230	1.231	9	9.616	0.267
30"	1.355	1.356	10	10.612	0.295
06'00"	1.480	1.481	11	11.608	0.322
30"	1.605	1.606	11	11.608	0.322
07'00"	1.730	1.731	13	13.600	0.378
30"	1.855	1.856	13	13.600	0.378
08'00"	1.980	1.981	14	14.596	0.405
30"	2.105	2.106	15	15.592	0.433
09'00"	2.230	2.231	17	17.584	0.488

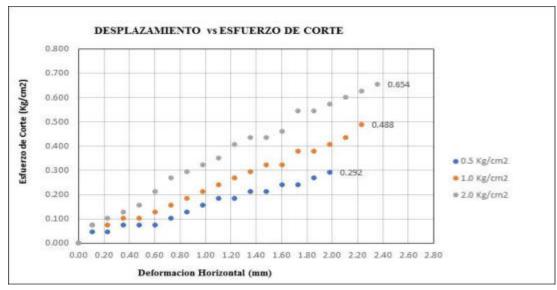
Esfuerzo normal (kg/cm2)	1.000	Esfuerzo cortante (kg/cm2)	0.488
		, -	i

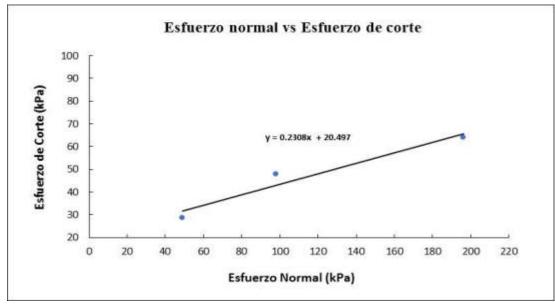
ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL <u>MÉTODO PARA EL CORTE DIRECTO</u> N.T.P. 339.171 / ASTM D-3080

		Características de	la muestra inalter	rada	
Área	36.00 cm2	Peso satura	ado (g)	146.60	
Altura	2.00 cm	Peso después de	el ensayo (g)	144.92	
Volumen	72.00 cm3	Peso sec	o (g)	115.34	MUESTRA 3
	<u> </u>	Peso agu	ıa (g)	29.58	•
Velocidad	0.25 mm/min	Humedad	25.60 %	Peso específico	2.82
Tiempo	5.50 min	Saturación	95%	Relación vacíos	0.76
Desplazamien to	1.38 mm	Densidad húmeda	2.01 g/cm3	Densidad seca	1.60 g/cm3
		Volumen del sólido	40.90 cm3	Volumen de vacíos	31.10 cm3
Corrección	dial horizontal	1.00 x + 0.001	Factor ce	lda de carga	0.996 x + 0.652
		ENS	SAYO 3		
	Dial Horizontal	Corrección dial	Dial de carga	Corrección dial	Esfuerzo de corte
Tiempo	(mm)	horizontal (mm)	(kg)	de carga (kg)	(kg/cm2)
	()	nonzontar (mm)	(9)	uo oui gu (ng)	(11.9/01112)
00'00"	0.000	0.000	0	0.000	0.000
30"	0.105	0.106	2	2.644	0.073
01'00"	0.230	0.231	3	3.640	0.101
30"	0.355	0.356	4	4.636	0.129
02'00"	0.480	0.481	5	5.632	0.156
30"	0.605	0.606	7	7.624	0.212
03'00"	0.730	0.731	9	9.616	0.267
30"	0.855	0.856	10	10.612	0.295
04'00"	0.980	0.981	11	11.608	0.322
30"	1.105	1.106	12	12.604	0.350
05'00"	1.230	1.231	14	14.596	0.405
30"	1.355	1.356	15	15.592	0.433
06'00"	1.480	1.481	15	15.592	0.433
30"	1.605	1.606	16	16.588	0.461
07'00"	1.730	1.731	19	19.576	0.544
30"	1.855	1.856	19	19.576	0.544
08'00"	1.980	1.981	20	20.572	0.571
30"	2.105	2.106	21	21.568	0.599
09'00"	2.230	2.231	22	22.564	0.627
30"	2.355	2.356	23	23.560	0.654

Esfuerzo cortante (kg/cm2)

0.654


2.000


Esfuerzo normal (kg/cm2)

Ensayo	Esfuerzo normal kg/cm2	Esfuerzo de corte kg/cm2	Esfuerzo normal kPa	Esfuerzo de corte kPa
1	0.500	0.292	49.033	28.637
2	1.000	0.488	98.067	47.900
3	2.000	0.654	196.133	64.179

Resultados de ensayo	
Cohesión (kPa) = C	20.50
Ángulo de fricción interna = Φ	13.00

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL MÉTODO PARA EL CORTE DIRECTO N.T.P. 339.171 / ASTM D-3080

Recolección de datos y resultados

Calicata	03	Ubicación	Distrito Lambayeque	Estado	1 semana	
----------	----	-----------	---------------------	--------	----------	--

		Características de la	muestra inalter	ada	
Área	36.00 cm2	Peso humedad r	Peso humedad natural (g)		
Altura	2.00 cm	Peso después del	Peso después del ensayo (g)		MUESTRA 1
Volumen	72.00 cm3	Peso seco	(g)	114.52	MUESTRAT
		Peso agua	(g)	30.71	
Velocidad	0.25 mm/min	Humedad	26.80 %	Peso específico	2.82
Tiempo	8.00 min	Saturación	98%	Relación vacíos	0.77
Desplazamiento	2.00 mm	Densidad húmeda	2.02 g/cm3	Densidad seca	1.59 g/cm3
		Volumen del sólido	40.61 cm3	Volumen de vacíos	31.39 cm3
Corrección d	ial horizontal	1.00 x + 0.001	Factor	celda de carga	0.996 x + 0.652
		ENSA	YO 1		
Tiempo	Dial Horizontal (mm)	Corrección dial horizontal (mm)	Dial de carga (kg)		
00'00"	0.000	0.000	0	0.000	0.000
30"	0.105	0.106	1	1.648	0.046
01'00"	0.230	0.231	1	1.648	0.046
30"	0.355	0.356	2	2.644	0.073
02'00"	0.480	0.481	2	2.644	0.073
30"	0.605	0.606	2	2.644	0.073
03'00"	0.730	0.731	3	3.640	0.101
30"	0.855	0.856	3	3.640	0.101
04'00"	0.980	0.981	4	4.636	0.129
30"	1.105	1.106	5	5.632	0.156
05'00"	1.230	1.231	6	6.628	0.184
30"	1.355	1.356	6	6.628	0.184
06'00"	1.480	1.481	7	7.624	0.212
30"	1.605	1.606	7	7.624	0.212
07'00"	1.730	1.731	8	8.620	0.239
30"	1.855	1.856	8	8.620	0.239
08'00"	1.980	1.981	9	9.716	0.270

Esfuerzo normal (kg/cm2) 0.500	Esfuerzo cortante (kg/cm2)	0.270
--------------------------------	----------------------------	-------

07'00"

30"

08'00"

30"

1.730

1.855

1.980

2.105

UNIVERSIDAD SAN MARTIN DE PORRES

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL <u>MÉTODO PARA EL CORTE DIRECTO</u> N.T.P. 339.171 / ASTM D-3080

		Características de la	muestra inaltera	ada	
Área	36.00 cm2	Peso satura	do (g)	147.21	
Altura	2.00 cm	Peso después del	ensayo (g)	145.39	MUESTRA 2
Volumen	72.00 cm3	Peso seco (g)		114.75	MUESTRA 2
	1	Peso agua	ı (g)	30.64	
Velocidad	0.25 mm/min	Humedad	26.70 %	Peso específico	2.82
Tiempo	8.50 min	Saturación	98%	Relación vacíos	0.77
Desplazamient o	2.13 mm	Densidad húmeda	2.02 g/cm3	Densidad seca	1.59 g/cm3
		Volumen del sólido	40.69 cm3	Volumen de vacíos	31.31 cm3
Corrección	dial horizontal	1.00 x + 0.001	Factor	celda de carga	0.996 x + 0.652
		ENSA	YO 2		L
Tiempo	Dial Horizontal (mm)	Corrección dial horizontal (mm)	Dial de carga (kg)	Corrección dial de carga (kg)	Esfuerzo de corte (kg/cm2)
00'00"	0.000	0.000	0	0.000	0.000
30"	0.105	0.106	1	1.648	0.046
01'00"	0.230	0.231	2	2.644	0.073
30"	0.355	0.356	2	2.644	0.073
02'00"	0.480	0.481	4	4.636	0.129
30"	0.605	0.606	5	5.632	0.156
03'00"	0.730	0.731	6	6.628	0.184
30"	0.855	0.856	7	7.624	0.212
04'00"	0.980	0.981	8	8.620	0.239
30"	1.105	1.106	9	9.616	0.267
05'00"	1.230	1.231	9	9.616	0.267
30"	1.355	1.356	10	10.612	0.295
06'00"	1.480	1.481	10	10.612	0.295
30"	1.605	1.606	11	11.608	0.322

Esfuerzo normal (kg/cm2)	1.000	Esfuerzo cortante (kg/cm2)	0.455

13

14

15

16

13.600

14.596

15.592

16.389

0.378

0.405

0.433

0.455

1.731

1.856

1.981

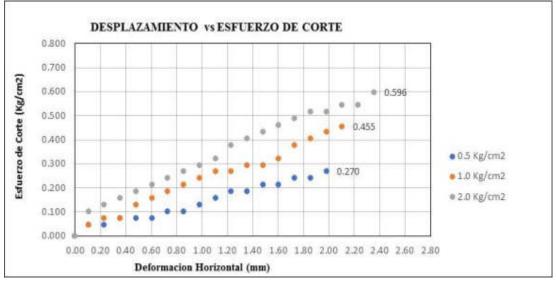
2.106

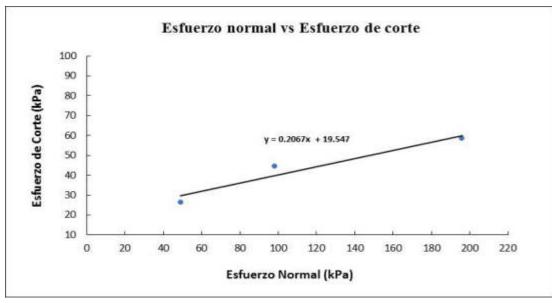
ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL MÉTODO PARA EL CORTE DIRECTO N.T.P. 339.171 / ASTM D-3080

		Características de	la muestra inalter	rada	
Área	36.00 cm2	Peso satura	ado (g)	146.93	
Altura	2.00 cm	Peso después de	el ensayo (g)	145.10	
Volumen	72.00 cm3	Peso sec	o (g)	114.36	MUESTRA 3
	L	Peso agu	Peso agua (g)		
Velocidad	0.25 mm/min	Humedad	26.90 %	Peso específico	2.82
Tiempo	9.50 min	Saturación	98%	Relación vacíos	0.78
Desplazamien to	2.38 mm	Densidad húmeda	2.02 g/cm3	Densidad seca	1.59 g/cm3
		Volumen del sólido	40.55 cm3	Volumen de vacíos	31.45 cm3
Corrección	dial horizontal	1.00 x + 0.001	Factor ce	lda de carga	0.996 x + 0.652
		ENS	SAYO 3		
	Dial Horizontal	Corrección dial	Dial de carga	Corrección dial	Esfuerzo de corte
Tiempo	(mm)	horizontal (mm)	(kg)	de carga (kg)	(kg/cm2)
		,	(3/	3. (3,	(3,)
00'00"	0.000	0.000	0	0.000	0.000
30"	0.105	0.106	3	3.640	0.101
01'00"	0.230	0.231	4	4.636	0.129
30"	0.355	0.356	5	5.632	0.156
02'00"	0.480	0.481	6	6.628	0.184
30"	0.605	0.606	7	7.624	0.212
03'00"	0.730	0.731	8	8.620	0.239
30"	0.855	0.856	9	9.616	0.267
04'00"	0.980	0.981	10	10.612	0.295
30"	1.105	1.106	11	11.608	0.322
05'00"	1.230	1.231	13	13.600	0.378
30"	1.355	1.356	14	14.596	0.405
06'00"	1.480	1.481	15	15.592	0.433
30"	1.605	1.606	16	16.588	0.461
07'00"	1.730	1.731	17	17.584	0.488
30"	1.855	1.856	18	18.580	0.516
08'00"	1.980	1.981	18	18.580	0.516
30"	2.105	2.106	19	19.576	0.544
09'00"	2.230	2.231	19	19.576	0.544
30"	2.355	2.356	21	21.468	0.596

Esfuerzo cortante (kg/cm2)

0.596


2.000


Esfuerzo normal (kg/cm2)

Ensayo	Esfuerzo normal kg/cm2	Esfuerzo de corte kg/cm2	Esfuerzo normal kPa	Esfuerzo de corte kPa
1	0.500	0.270	49.033	26.466
2	1.000	0.455	98.067	44.644
3	2.000	0.596	196.133	58.481

Resultados de ensayo	
Cohesión (kPa) = C	19.55
Ángulo de fricción interna = Φ	11.68

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÍA CIVIL MÉTODO PARA EL CORTE DIRECTO N.T.P. 339.171 / ASTM D-3080

Recolección de datos y resultados

Calicata	03	Ubicación	Distrito Lambayeque	Estado	1 mes
----------	----	-----------	---------------------	--------	-------

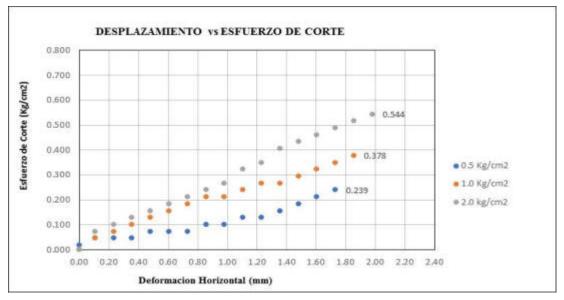
		Características de la	muestra inalte	rada	
Área	36.00 cm2	Peso humedad r	natural (g)	146.18	
Altura	2.00 cm	Peso después del	Peso después del ensayo (g)		MUESTRA 1
Volumen	72.00 cm3	Peso seco (g)		113.04	WIDESTRAT
		Peso agua (g)		31.25	
Velocidad	0.25 mm/min	Humedad	27.60 %	Peso específico	2.82
Tiempo	7.00 min	Saturación	98%	Relación vacíos	0.80
Desplazamiento	1.75 mm	Densidad húmeda	2.00 g/cm3	Densidad seca	1.57 g/cm3
		Volumen del sólido	40.09 cm3	Volumen de vacíos	31.91 cm3
Corrección d	ial horizontal	1.00 x + 0.001 Factor (celda de carga	0.996 x + 0.652
		ENSA	YO 1		
Tiempo	Dial Horizontal (mm)	Corrección dial horizontal (mm)	Dial de carga (kg)	Corrección dial de carga (kg)	Esfuerzo de corte (kg/cm2)
00'00"	0.000	0.000	0	0.652	0.018
30"	0.105	0.106	1	1.648	0.046
01'00"	0.230	0.231	1	1.648	0.046
30"	0.355	0.356	1	1.648	0.046
02'00"	0.480	0.481	2	2.644	0.073
30"	0.605	0.606	2	2.644	0.073
03'00"	0.730	0.731	2	2.644	0.073
30"	0.855	0.856	3	3.640	0.101
04'00"	0.980	0.981	3	3.640	0.101
30"	1.105	1.106	4	4.636	0.129
05'00"	1.230	1.231	4	4.636	0.129
30"	1.355	1.356	5	5.632	0.156
06'00"	1.480	1.481	6	6.628	0.184
30"	1.605	1.606	7	7.624	0.212
07'00"	1.730	1.731	8	8.620	0.239

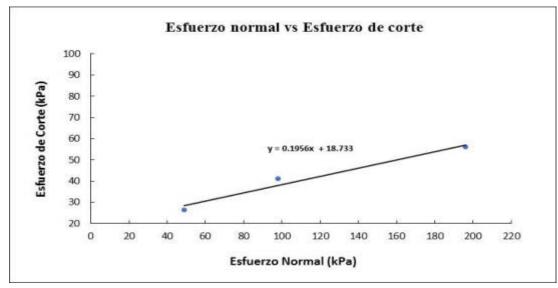
Esfuerzo normal (kg/cm2)	0.500	Esfuerzo cortante (kg/cm2)	0.239

		Características de la	muestra inaltera	ada	
Área	36.00 cm2	Peso satura	do (g)	146.87	
Altura	2.00 cm	Peso después del	Peso después del ensayo (g)		
Volumen	72.00 cm3	Peso seco (g)		113.37	MUESTRA 2
		Peso agua (g)		31.58	
Velocidad	0.25 mm/min	Humedad	27.90 %	Peso específico	2.82
Tiempo	7.50 min	Saturación	99%	Relación vacíos	0.79
Desplazamiento	1.88 mm	Densidad húmeda	2.01 g/cm3	Densidad seca	1.57 g/cm3
		Volumen del sólido	40.20 cm3	Volumen de vacíos	31.80 cm3
Corrección	dial horizontal	1.00 x + 0.001 Factor celda de carga		celda de carga	0.996 x + 0.652
		ENSA	/O 2		
	Diel Herinentel	Corrección dial	Dial de	Corrección dial	Faturaria da
Tiempo	Dial Horizontal (mm)	horizontal (mm)	carga (kg)	de carga (kg)	Esfuerzo de corte (kg/cm2)
	(11111)	nonzontai (mm)	carga (kg)	ue carga (kg)	corte (kg/cmz)
00'00"	0.000	0.000	0	0.000	0.000
30"	0.105	0.106	1	1.648	0.046
01'00"	0.230	0.231	2	2.644	0.073
30"	0.355	0.356	3	3.640	0.101
02'00"	0.480	0.481	4	4.636	0.129
30"	0.605	0.606	5	5.632	0.156
03'00"	0.730	0.731	6	6.628	0.184
30"	0.855	0.856	7	7.624	0.212
04'00"	0.980	0.981	7	7.624	0.212
30"	1.105	1.106	8	8.620	0.239
05'00"	1.230	1.231	9	9.616	0.267
30"	1.355	1.356	9	9.616	0.267
06'00"	1.480	1.481	10	10.612	0.295
30"	1.605	1.606	11	11.608	0.322
07'00"	1.730	1.731	12	12.604	0.350
30"	1.855	1.856	13	13.600	0.378

	Esfuerzo normal (kg/cm2)	1.000	Esfuerzo cortante (kg/cm2)	0.378	l
--	--------------------------	-------	----------------------------	-------	---

		Características de	la muoetra inalto	enda.	
Área	36.00 cm2	Peso satura		146.40	
Altura	2.00 cm	Peso después del ensayo (g)		144.50	
Volumen	72.00 cm3	Peso sec	o (g)	113.10	MUESTRA 3
		Peso agu	ia (g)	31.40	
Velocidad	0.25 mm/min	Humedad	27.80 %	Peso específico	2.82
Tiempo	8.00 min	Saturación	99%	Relación vacíos	0.80
Desplazamiento	2.00 mm	Densidad húmeda	2.01 g/cm3	Densidad seca	1.57 g/cm3
		Volumen del sólido	40.11 cm3	Volumen de vacíos	31.89 cm3
Corrección dial horizontal		1.00 x + 0.001	Factor celda de carga		0.996 x + 0.652
		ENS	AYO 3		
Tiempo	Dial Horizontal (mm)	Corrección dial horizontal (mm)	Dial de carga (kg)	Corrección dial de carga (kg)	Esfuerzo de corte (kg/cm2)
00'00"	0.000	0.000	0	0.000	0.000
30"	0.105	0.106	2	2.644	0.073
01'00"	0.230	0.231	3	3.640	0.101
30"	0.355	0.356	4	4.636	0.129


Tiempo	Dial Horizontal	Corrección dial	Dial de carga	Corrección dial	Esfuerzo de corte
Петтро	(mm)	horizontal (mm)	(kg)	de carga (kg)	(kg/cm2)
00'00"	0.000	0.000	0	0.000	0.000
30"	0.105	0.106	2	2.644	0.073
01'00"	0.230	0.231	3	3.640	0.101
30"	0.355	0.356	4	4.636	0.129
02'00"	0.480	0.481	5	5.632	0.156
30"	0.605	0.606	6	6.628	0.184
03'00"	0.730	0.731	7	7.624	0.212
30"	0.855	0.856	8	8.620	0.239
04'00"	0.980	0.981	9	9.616	0.267
30"	1.105	1.106	11	11.608	0.322
05'00"	1.230	1.231	12	12.604	0.350
30"	1.355	1.356	14	14.596	0.405
06'00"	1.480	1.481	15	15.592	0.433
30"	1.605	1.606	16	16.588	0.461
07'00"	1.730	1.731	17	17.584	0.488
30"	1.855	1.856	18	18.580	0.516
08'00"	1.980	1.981	19	19.576	0.544


Esfuerzo normal (kg/cm2)	2.000	Esfuerzo cortante (kg/cm2)	0.544

Ensayo	Esfuerzo normal kg/cm2	Esfuerzo de corte kg/cm2	Esfuerzo normal kPa	Esfuerzo de corte kPa
1	0.500	0.267	49.033	26.195
2	1.000	0.419	98.067	41.117
3	2.000	0.571	196.133	56.040

Resultados de ensayo	
Cohesión (kPa) = C	18.73
Ángulo de fricción interna = Φ	11.07

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÍA CIVIL MÉTODO PARA EL CORTE DIRECTO N.T.P. 339.171 / ASTM D-3080

Recolección de datos y resultados

Calicata	04 Ubic	ación	Distrito Lar	mbayeque	Estado	0 horas
					T _	
ı	Características de	la muest	ra inalterada		Fuerza normal	0.50 kg
Área	36.00 cm2	Р	eso humedad i	natural (g)	-	
Altura	2.00 cm	Pe	so después de	l ensayo (g)	135.15	MUESTRA 1
Volumen	72.00 cm3		Peso seco) (g)	111.99	- MOLOTRAT
		Peso agua (g)		23.16		
Velocidad	0.25 mm/min	H	umedad	20.70 %	Peso específico	2.73
Tiempo	6.00 min	Sa	turación	75%	Relación vacíos	0.76
Desplazamiento	1.50 mm	Densi	dad húmeda	1.88 g/cm3	Densidad seca	1.56 g/cm3
		Volum	en del sólido	41.02 cm3	Volumen de	30.98 cm3
		Volum	en del solido	41.02 0113	vacíos	30.90 0113
Corrección d	lial horizontal	1.00	x + 0.001	Factor	celda de carga	0.996 x + 0.652
			ENSA	7 0 1		
	Dial	Corre	ección dial	Dial de carga	Corrección dial	Esfuerzo de
Tiempo	Horizontal (mm)	horiz	ontal (mm)	(kg)	de carga (kg)	corte (kg/cm2
00'00"	0.000		0.000	0	0.000	0.000
30"	0.105		0.106	2	2.644	0.073
01'00"	0.230		0.231	3	3.640	0.101
30"	0.355		0.356	4	4.636	0.129
02'00"	0.480		0.481	6	6.628	0.184
30"	0.605		0.606	6	6.628	0.184
03'00"	0.730		0.731	8	8.620	0.239
30"	0.855		0.856	9	9.616	0.267
04'00"	0.980		0.981	10	10.612	0.295
30"	1.105		1.106	11	11.608	0.322
05'00"	1.230		1.231	12	12.604	0.350
30"	1.355		1.356	13	13.600	0.378
06'00"	1.480		1.481	14	14.596	0.405
30"	1.605		1.606	15	15.592	0.433
07'00"	1.730		1.731	16	16.588	0.461
30"	1.855		1.856	17	17.584	0.488
	1	1		1	1	1
Esfuerzo nor	mal (kg/cm2)	(0.500	Esfuerzo c	ortante (kg/cm2)	0.488

	Caractorísticas do	la muestra inalterada		Fuerza normal	1.00 kg
				Fuerza nomiai	1.00 kg
Área	36.00 cm2	Peso satura	(0)	-	
Altura	2.00 cm	Peso después del	ensayo (g)	135.82	MUESTRA 2
Volumen	72.00 cm3	Peso seco) (g)	112.59	
		Peso agua	a (g)	23.23	
Velocidad	0.25 mm/min	Humedad	20.60 %	Peso específico	2.73
Tiempo	7.50 min	Saturación	75%	Relación vacíos	0.75
Desplazamiento	1.88 mm	Densidad húmeda	1.89 g/cm3	Densidad seca	1.56 g/cm3
		Volumen del sólido	41.24 cm3	Volumen de vacíos	30.76 cm3
Corrección o	dial horizontal	1.00 x + 0.001	Factor ce	lda de carga	0.996 x + 0.652
		ENSAYO	2		
Tiempo	Dial Horizontal	Corrección dial	Dial de carga	Corrección dial	Esfuerzo de
riempo	(mm)	horizontal (mm)	(kg)	de carga (kg)	corte (kg/cm2)
00'00"	0.000	0.000	0	0.000	0.000
30"	0.105	0.106	4	4.636	0.129
01'00"	0.230	0.231	5	5.632	0.156
30"	0.355	0.356	6	6.628	0.184
02'00"	0.480	0.481	8	8.620	0.239
30"	0.605	0.606	9	9.616	0.267
03'00"	0.730	0.731	10	10.612	0.295
30"	0.855	0.856	11	11.608	0.322
04'00"	0.980	0.981	12	12.604	0.350
30"	1.105	1.106	13	13.600	0.378
05'00"	1.230	1.231	14	14.596	0.405
30"	1.355	1.356	15	15.592	0.433
06'00"	1.480	1.481	16	16.588	0.461
30"	1.605	1.606	16	16.588	0.461
07'00"	1.730	1.731	17	17.584	0.488
30"	1.855	1.856	18	18.580	0.516
08'00"	1.980	1.981	18	18.580	0.516

Esfuerzo normal (kg/cm2)	1.000	Esfuerzo cortante (kg/cm2)	0.516
--------------------------	-------	----------------------------	-------

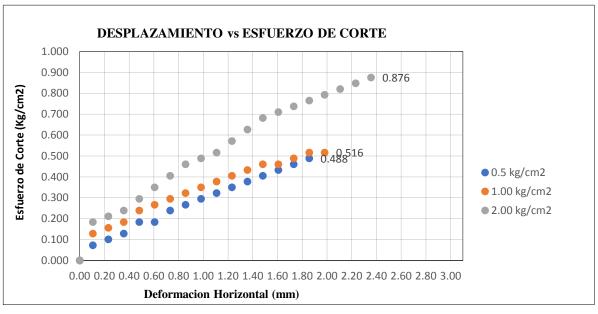
Esfuerzo normal (kg/cm2)

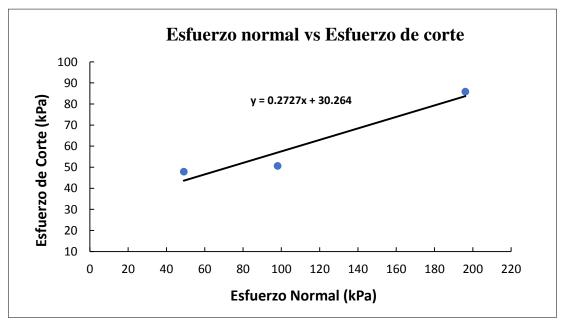
UNIVERSIDAD SAN MARTIN DE PORRES

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL <u>MÉTODO PARA EL CORTE DIRECTO</u> N.T.P. 339.171 / ASTM D-3080

	Características de	e la muestra inalterada	1	Fuerza normal	2.00 kg
Área	36.00 cm2	Peso satura	ado (g)	-	
Altura	2.00 cm	Peso después de	el ensayo (g)	135.61	MUFOTRA
Volumen	72.00 cm3	Peso sec	o (g)	112.67	MUESTRA 3
	l	Peso agu	a (g)	22.94	
Velocidad	0.25 mm/min	Humedad	20.40 %	Peso específico	2.73
Tiempo	8.00 min	Saturación	75%	Relación vacíos	0.74
Desplazamien to	2.00 mm	Densidad húmeda	1.88 g/cm3	Densidad seca	1.56 g/cm3
		Volumen del sólido	41.27 cm3	Volumen de vacíos	30.73 cm3
Corrección	dial horizontal	1.00 x + 0.001			0.996 x + 0.652
		ENS	AYO 3		
Tiamana	Dial Horizontal	Corrección dial	Dial de carga	Corrección dial	Esfuerzo de corte
Tiempo	(mm)	horizontal (mm)	(kg)	de carga (kg)	(kg/cm2)
00'00"	0.000	0.000	0	0.000	0.000
30"	0.105	0.106	6	6.628	0.184
01'00"	0.230	0.231	7	7.624	0.212
30"	0.355	0.356	8	8.620	0.239
02'00"	0.480	0.481	10	10.612	0.295
30"	0.605	0.606	12	12.604	0.350
03'00"	0.730	0.731	14	14.596	0.405
30"	0.855	0.856	16	16.588	0.461
04'00"	0.980	0.981	17	17.584	0.488
30"	1.105	1.106	18	18.580	0.516
05'00"	1.230	1.231	20	20.572	0.571
30"	1.355	1.356	22	22.564	0.627
06'00"	1.480	1.481	24	24.556	0.682
30"	1.605	1.606	25	25.552	0.710
07'00"	1.730	1.731	26	26.548	0.737
30"	1.855	1.856	27	27.544	0.765
08'00"	1.980	1.981	28	28.540	0.793
30"	2.105	2.106	29	29.536	0.820
09'00"	2.230	2.231	30	30.532	0.848
30"	2.355	2.356	31	31.528	0.876

Esfuerzo cortante (kg/cm2)


0.876


2.000

F	Esfuerzo	Esfuerzo de	Esfuerzo	Esfuerzo de
Ensayo	normal kg/cm2	corte kg/cm2	normal kPa	corte kPa
1	0.500	0.488	49.033	47.900
2	1.000	0.516	98.067	50.613
3	2.000	0.876	196.133	85.884

Resultados de ensayo	
Cohesión (kPa) = C	30.26
Ángulo de fricción interna = Φ	15.25

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÍA CIVIL MÉTODO PARA EL CORTE DIRECTO N.T.P. 339.171 / ASTM D-3080

Recolección de datos y resultados

Calicata	04	Ubicación	Distrito Lambayeque	Estado	3 horas
----------	----	-----------	---------------------	--------	---------

		Características de la	ı muestra inalter	rada	
Área	36.00 cm2	Peso humedad r	natural (g)	138.55	
Altura	2.00 cm	Peso después del ensayo (g)		137.02	
Volumen	72.00 cm3	Peso seco	Peso seco (g)		MUESTRA 1
		Peso agua	ı (g)	24.39	
Velocidad	0.25 mm/min	Humedad	Humedad 21.70 %		2.68
Tiempo	7.50 min	Saturación	82%	Relación vacíos	0.71
Desplazamient o	1.875 mm	Densidad húmeda	1.90 g/cm3	Densidad seca	1.56 g/cm3
		Volumen del sólido	42.03 cm3	Volumen de vacíos	29.97 cm3
Corrección di	al horizontal	1.00 x + 0.001	Factor	celda de carga	0.996 x + 0.652
		ENSA	YO 1		
	Dial	Corrección dial	Dial de	Corrección dial de	Esfuerzo de
Tiempo	Horizontal	horizontal (mm)	carga (kg)	carga (kg)	corte (kg/cm2)
	(mm)				
00'00"	0.000	0.000	0	0.000	0.000
30"	0.105	0.106	2	2.644	0.073
01'00"	0.230	0.231	3	3.640	0.101
30"	0.355	0.356	3	3.640	0.101
02'00"	0.480	0.481	4	4.636	0.129
30"	0.605	0.606	4	4.636	0.129
03'00"	0.730	0.731	5	5.632	0.156
30"	0.855	0.856	7	7.624	0.212
04'00"	0.980	0.981	9	9.616	0.267
30"	1.105	1.106	9	9.616	0.267
05'00"	1.230	1.231	10	10.612	0.295
30"	1.355	1.356	11	11.608	0.322
06'00"	1.480	1.481	12	12.604	0.350
30"	1.605	1.606	13	13.600	0.378
07'00"	1.730	1.731	14	14.596	0.405
30"	1.855	1.856	15	15.592	0.433

Esfuerzo normal (kg/cm2)	0.500	Esfuerzo cortante (kg/cm2)	0.433
--------------------------	-------	----------------------------	-------

		Características de la	muestra inalter	ada		
Área	36.00 cm2	Peso satura	do (g)	138.16		
Altura	2.00 cm	Peso después del	ensayo (g)	136.60	MUEOTDAO	
Volumen	72.00 cm3	Peso seco	(g)	111.98	MUESTRA 2	
		Peso agua	ı (g)	24.62		
Velocidad	0.25 mm/min	Humedad	22.00 %	Peso específico	2.68	
Tiempo	8.00 min	Saturación	82%	Relación vacíos	0.72	
Desplazamient o	2.000 mm	Densidad húmeda	1.90 g/cm3	Densidad seca	1.56 g/cm3	
		Volumen del sólido	41.78 cm3	Volumen de vacíos	30.22 cm3	
Corrección	Corrección dial horizontal 1.00 x + 0.001 Factor celda de carga		0.996 x + 0.652			
		ENSA	YO 2			
Tiomno	Dial Horizontal	Corrección dial	Dial de	Corrección dial	Esfuerzo de	
Tiempo	(mm)	horizontal (mm)	carga (kg)	de carga (kg)	corte (kg/cm2	
00'00"	0.000	0.000	0	0.000	0.000	
30"	0.105	0.106	3	3.640	0.101	
01'00"	0.230	0.231	4	4.636	0.129	
30"	0.355	0.356	5	5.632	0.156	
02'00"	0.480	0.481	6	6.628	0.184	
30"	0.605	0.606	7	7.624	0.212	
03'00"	0.730	0.731	9	9.616	0.267	
30"	0.855	0.856	10	10.612	0.295	
04'00"	0.980	0.981	12	12.604	0.350	
30"	1.105	1.106	13	13.600	0.378	
05'00"	1.230	1.231	14	14.596	0.405	
30"	1.355	1.356	14	14.596	0.405	
06'00"	1.480	1.481	15	15.592	0.433	
30"	1.605	1.606	15	15.592	0.433	
07'00"	1.730	1.731	16	16.588	0.461	
30"	1.855	1.856	16	16.588	0.461	
08'00"	1.980	1.981	17	17.584	0.488	

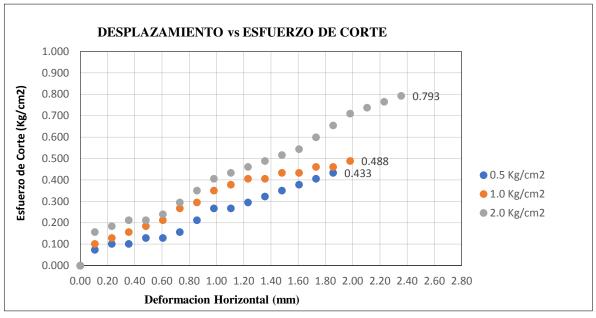
Esfuerzo normal (kg/cm2) 1.000 Esfuerzo cortante (kg/cm2) 0.488	
---	--

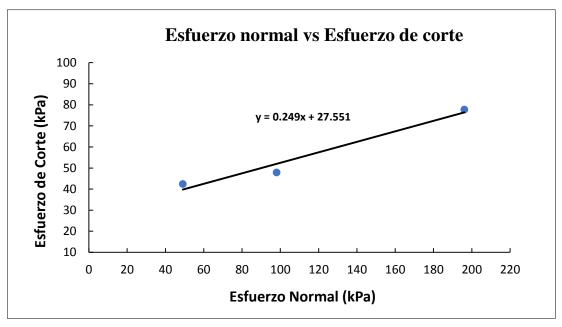
ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL <u>MÉTODO PARA EL CORTE DIRECTO</u> N.T.P. 339.171 / ASTM D-3080

		Características de	la muestra inalter	rada	
Área	36.00 cm2	Peso satura	ado (g)	135.28	
Altura	1.95 cm	Peso después de	el ensayo (g)	133.76	MUESTRA 3
Volumen	70.20 cm3	Peso seco (g)		109.81	MOESTRAS
	1	Peso agu	ıa (g)	23.95	
Velocidad	0.25 mm/min	Humedad	21.80 %	Peso específico	2.68
Tiempo	9.50 min	Saturación	82%	Relación vacíos	0.71
Desplazamien to	2.375 mm	Densidad húmeda	1.91 g/cm3	Densidad seca	1.56 g/cm3
		Volumen del sólido	40.97 cm3	Volumen de vacíos	29.23 cm3
Corrección	dial horizontal	1.00 x + 0.001	Factor ce	lda de carga	0.996 x + 0.652
		ENS	SAYO 3		
T:	Dial Horizontal	Corrección dial	Dial de carga	Corrección dial	Esfuerzo de corte
Tiempo	(mm)	horizontal (mm)	(kg)	de carga (kg)	(kg/cm2)
00'00"	0.000	0.000	0	0.000	0.000
30"	0.105	0.106	5	5.632	0.156
01'00"	0.230	0.231	6	6.628	0.184
30"	0.355	0.356	7	7.624	0.212
02'00"	0.480	0.481	7	7.624	0.212
30"	0.605	0.606	8	8.620	0.239
03'00"	0.730	0.731	10	10.612	0.295
30"	0.855	0.856	12	12.604	0.350
04'00"	0.980	0.981	14	14.596	0.405
30"	1.105	1.106	15	15.592	0.433
05'00"	1.230	1.231	16	16.588	0.461
30"	1.355	1.356	17	17.584	0.488
06'00"	1.480	1.481	18	18.580	0.516
30"	1.605	1.606	19	19.576	0.544
07'00"	1.730	1.731	21	21.568	0.599
30"	1.855	1.856	23	23.560	0.654
08'00"	1.980	1.981	25	25.552	0.710
30"	2.105	2.106	26	26.548	0.737
09'00"	2.230	2.231	27	27.544	0.765
30"	2.355	2.356	28	28.540	0.793
	<u>I</u>	<u> </u>	<u>I</u>	<u> </u>	<u> </u>

Esfuerzo cortante (kg/cm2)

0.793


2.000


Esfuerzo normal (kg/cm2)

Encove	Esfuerzo	Esfuerzo de	Esfuerzo	Esfuerzo de
Ensayo	normal kg/cm2	corte kg/cm2	normal kPa	corte kPa
1	0.500	0.433	49.033	42.474
2	1.000	0.488	98.067	47.900
3	2.000	0.793	196.133	77.745

Resultados de ensayo	
Cohesión (kPa) = C	27.55
Ángulo de fricción interna = Φ	13.98

Calicata

30"

06'00"

30"

07'00"

1.355

1.480

1.605

1.730

UNIVERSIDAD SAN MARTIN DE PORRES

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL MÉTODO PARA EL CORTE DIRECTO N.T.P. 339.171 / ASTM D-3080

Estado

11.608

12.604

13.600

14.596

0.322

0.350

0.378

0.405

8 horas

Recolección de datos y resultados

04

	Características de la	muestra inalter	ada	
36.00 cm2	Peso humedad r	natural (g)	141.76	
2.00 cm	Peso después del	ensayo (g)	140.12	MUESTRA 1
72.00 cm3	Peso seco	(g)	112.42	WIOLSTICAT
	Peso agua	(g)	27.70	
0.25 mm/min	Humedad	24.60 %	Peso específico	2.68
7.00 min	Saturación	92%	Relación vacíos	0.72
1.750 mm	Densidad húmeda	1.95 g/cm3	Densidad seca	1.56 g/cm3
	Volumen del sólido	41.95 cm3	Volumen de vacíos	30.05 cm3
al horizontal	1.00 x + 0.001	Factor celda de carga		0.996 x + 0.652
	ENSA	YO 1		
Dial Horizontal (mm)	Corrección dial horizontal (mm)	Dial de Corrección dial de carga (kg) carga (kg)		Esfuerzo de corte (kg/cm2)
0.000	0.000	0	0.000	0.000
0.105	0.400			
0.105	0.106	1	1.648	0.046
0.105	0.106	3	1.648 3.640	0.046 0.101
0.230	0.231	3	3.640	0.101
0.230 0.355	0.231 0.356	3 4	3.640 4.636	0.101 0.129
0.230 0.355 0.480	0.231 0.356 0.481	3 4 5	3.640 4.636 5.632	0.101 0.129 0.156
0.230 0.355 0.480 0.605	0.231 0.356 0.481 0.606	3 4 5 6	3.640 4.636 5.632 6.628	0.101 0.129 0.156 0.184
0.230 0.355 0.480 0.605 0.730	0.231 0.356 0.481 0.606 0.731	3 4 5 6 7	3.640 4.636 5.632 6.628 7.624	0.101 0.129 0.156 0.184 0.212
0.230 0.355 0.480 0.605 0.730 0.855	0.231 0.356 0.481 0.606 0.731 0.856	3 4 5 6 7 8	3.640 4.636 5.632 6.628 7.624 8.620	0.101 0.129 0.156 0.184 0.212 0.239
	2.00 cm 72.00 cm3 0.25 mm/min 7.00 min 1.750 mm al horizontal Dial Horizontal (mm) 0.000	2.00 cm Peso después del 72.00 cm3 Peso seco Peso agua 0.25 mm/min Humedad 7.00 min Saturación Densidad húmeda Volumen del sólido al horizontal Corrección dial horizontal (mm) 0.000 0.000	2.00 cm Peso después del ensayo (g) 72.00 cm3 Peso seco (g) Peso agua (g) 0.25 mm/min Humedad 24.60 % 7.00 min Saturación 92% 1.750 mm Densidad húmeda 1.95 g/cm3 Volumen del sólido 41.95 cm3 al horizontal 1.00 x + 0.001 Factor of ENSAYO 1 Dial Horizontal (mm) Dial de carga (kg)	2.00 cm Peso después del ensayo (g) 140.12 72.00 cm3 Peso seco (g) 112.42 Peso agua (g) 27.70 0.25 mm/min Humedad 24.60 % Peso específico 7.00 min Saturación 92% Relación vacíos 1.750 mm Densidad húmeda 1.95 g/cm3 Densidad seca Volumen del sólido 41.95 cm3 Volumen de vacíos al horizontal 1.00 x + 0.001 Factor celda de carga ENSAYO 1 Dial Horizontal (mm) Dial de carga (kg) Corrección dial horizontal (mm)

Ubicación Distrito Lambayeque

11

12

13

14

1.356

1.481

1.606

1.731

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL <u>MÉTODO PARA EL CORTE DIRECTO</u> N.T.P. 339.171 / ASTM D-3080

		Características de la	muestra inalter	ada	
Área	36.00 cm2	Peso satura	do (g)	141.51	
Altura	2.00 cm	Peso después del ensayo (g)		139.82	
Volumen	72.00 cm3	Peso seco	(g)	112.04	MUESTRA 2
		Peso agua	ı (g)	27.78	
Velocidad	0.25 mm/min	Humedad	24.80 %	Peso específico	2.68
Tiempo	7.50 min	Saturación	92%	Relación vacíos	0.72
Desplazamient o	1.875 mm	Densidad húmeda	1.94 g/cm3	Densidad seca	1.56 g/cm3
		Volumen del sólido	41.81 cm3	Volumen de vacíos	30.19 cm3
Corrección o	dial horizontal	1.00 x + 0.001	Factor	celda de carga	0.996 x + 0.652
		ENSA	(O 2		
Tiempo	Dial Horizontal	Corrección dial	Dial de	Corrección dial	Esfuerzo de
Hempo	(mm)	horizontal (mm)	carga (kg)	de carga (kg)	corte (kg/cm2)
00'00"	0.000	0.000	0	0.000	0.000
30"	0.105	0.106	3	3.640	0.101
01'00"	0.230	0.231	4	4.636	0.129
30"	0.355	0.356	4	4.636	0.129
02'00"	0.480	0.481	6	6.628	0.184
30"	0.605	0.606	7	7.624	0.212
03'00"	0.730	0.731	8	8.620	0.239
30"	0.855	0.856	9	9.616	0.267
04'00"	0.980	0.981	10	10.612	0.295
30"	1.105	1.106	11	11.608	0.322
05'00"	1.230	1.231	13	13.600	0.378
30"	1.355	1.356	13	13.600	0.378
06'00"	1.480	1.481	14	14.596	0.405
30"	1.605	1.606	15	15.592	0.433
07'00"	1.730	1.731	15	15.592	0.433
30"	1.855	1.856	16	16.588	0.461

Esfuerzo cortante (kg/cm2)

0.461

1.000

Esfuerzo normal (kg/cm2)

30"

06'00"

30"

07'00"

30"

08'00'

30"

1.355

1.480

1.605

1.730

1.855

1.980

2.105

UNIVERSIDAD SAN MARTIN DE PORRES

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL MÉTODO PARA EL CORTE DIRECTO N.T.P. 339.171 / ASTM D-3080

Características de la muestra inalterada Área 36.00 cm2 Peso saturado (g) 138.18 Peso después del ensayo (g) Altura 1.95 cm 136.55 **MUESTRA 3** Volumen 70.20 cm3 Peso seco (g) 109.52 Peso agua (g) 27.03 Velocidad 0.25 mm/min Humedad 24.70 % Peso específico 2.68 92% Relación vacíos 8.50 min Saturación 0.72 Tiempo Desplazamien 2.125 mm Densidad húmeda 1.95 g/cm3 Densidad seca 1.56 g/cm3 to Volumen de Volumen del sólido 40.87 cm3 29.33 cm3 vacíos Corrección dial horizontal 1.00 x + 0.001Factor celda de carga $0.996 \times + 0.652$ **ENSAYO 3 Dial Horizontal** Corrección dial Dial de carga Corrección dial Esfuerzo de corte Tiempo (mm) horizontal (mm) de carga (kg) (kg/cm2) (kg) 00'00" 0.000 0.000 0 0.000 0.000 0.106 0.129 30" 0.105 4.636 4 01'00" 0.230 0.231 6 6.628 0.184 7 30" 0.355 0.356 7.624 0.212 02'00" 0.480 0.481 8 8.620 0.239 30" 0.605 0.606 0.267 9 9.616 03'00" 0.730 0.731 11 11.608 0.322 30" 0.855 0.856 12 12.604 0.350 04'00" 0.980 0.981 13 13.600 0.378 1.106 30" 1.105 15 15.592 0.433 05'00" 1.230 1.231 17 17.584 0.488

Esfuerzo normal (kg/cm2)	2.000	Esfuerzo cortante (kg/cm2)	0.737

19

20

21

23

24

25

26

19.576

20.572

21.568

23.560

24.556

25.552

26.548

1.356

1.481

1.606

1.731

1.856

1.981

2.106

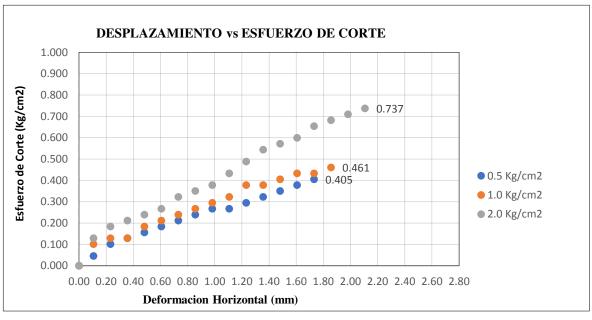
0.544

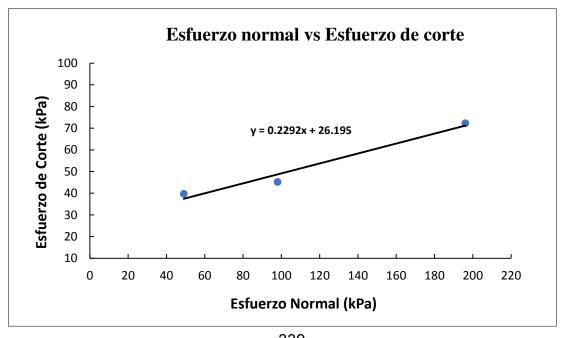
0.571

0.599

0.654

0.682


0.710


0.737

Ensayo	Esfuerzo normal kg/cm2	Esfuerzo de corte kg/cm2	Esfuerzo normal kPa	Esfuerzo de corte kPa
1	0.500	0.405	49.033	39.761
2	1.000	0.461	98.067	45.187
3	2.000	0.737	196.133	72.319

Resultados de ensayo	
Cohesión (kPa) = C	26.19
Ángulo de fricción interna = Φ	12.91

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL MÉTODO PARA EL CORTE DIRECTO N.T.P. 339.171 / ASTM D-3080

Recolección de datos y resultados

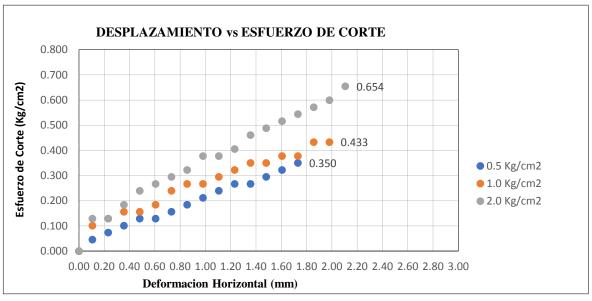
Calicata	04	Ubicación	Distrito Lambayeque	Estado	15 horas

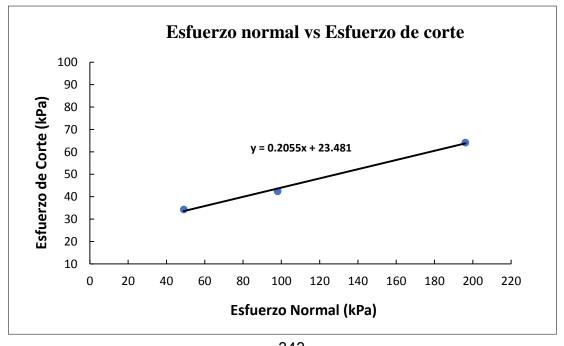
		Características de la	muestra inalter	rada	
Área	36.00 cm2	Peso humedad r	natural (g)	142.77	
Altura	2.00 cm	Peso después del ensayo (g)		141.05	MUESTRA 1
Volumen	72.00 cm3	Peso seco	(g)	111.37	WUESTRAT
		Peso agua	(g)	29.68	
Velocidad	0.25 mm/min	Humedad	26.60 %	Peso específico	2.68
Tiempo	7.00 min	Saturación	97%	Relación vacíos	0.73
Desplazamient o	1.750 mm	Densidad húmeda	1.96 g/cm3	Densidad seca	1.55 g/cm3
		Volumen del sólido	41.56 cm3	Volumen de vacíos	30.44 cm3
Corrección di	ial horizontal	1.00 x + 0.001	Factor	celda de carga	0.996 x + 0.652
		ENSA	YO 1		
Tiempo	Dial Horizontal	Corrección dial	Dial de	Corrección dial de	Esfuerzo de
·	(mm)	horizontal (mm)	carga (kg)	carga (kg)	corte (kg/cm2)
00'00"	0.000	0.000	0	0.000	0.000
30"	0.105	0.106	1	1.648	0.046
01'00"	0.230	0.231	2	2.644	0.073
30"	0.355	0.356	3	3.640	0.101
02'00"	0.480	0.481	4	4.636	0.129
30"	0.605	0.606	4	4.636	0.129
03'00"	0.730	0.731	5	5.632	0.156
30"	0.855	0.856	6	6.628	0.184
04'00"	0.980	0.981	7	7.624	0.212
30"	1.105	1.106	8	8.620	0.239
05'00"	1.230	1.231	9	9.616	0.267
30"	1.355	1.356	9	9.616	0.267
06'00"	1.480	1.481	10	10.612	0.295
30"	1.605	1.606	11	11.608	0.322
07'00"	1.730	1.731	12	12.604	0.350

Esfuerzo normal (kg/cm2)	0.500	Esfuerzo cortante (kg/cm2)	0.350

		Características de la	muestra inaltera	ada	
Área	36.00 cm2	Peso satura	do (g)	143.01	
Altura	2.00 cm	Peso después del	ensayo (g)	141.28	MUECTRA
Volumen	72.00 cm3	Peso seco	(g)	111.85	MUESTRA 2
		Peso agua (g)		29.43	
Velocidad	0.25 mm/min	Humedad	26.30 %	Peso específico	2.68
Tiempo	8.00 min	Saturación	97%	Relación vacíos	0.73
Desplazamient o	2.000 mm	Densidad húmeda	1.96 g/cm3	Densidad seca	1.55 g/cm3
		Volumen del sólido	41.74 cm3	Volumen de vacíos	30.26 cm3
Corrección	dial horizontal	1.00 x + 0.001	Factor	celda de carga	0.996 x + 0.652
		ENSA	(O 2		
Tiamana	Dial Horizontal	Corrección dial	Dial de	Corrección dial	Esfuerzo de
Tiempo	(mm)	horizontal (mm)	carga (kg)	de carga (kg)	corte (kg/cm2)
00'00"	0.000	0.000	0	0.000	0.000
30"	0.105	0.106	3	3.640	0.101
01'00"	0.230	0.231	4	4.636	0.129
30"	0.355	0.356	5	5.632	0.156
02'00"	0.480	0.481	5	5.632	0.156
30"	0.605	0.606	6	6.628	0.184
03'00"	0.730	0.731	8	8.620	0.239
30"	0.855	0.856	9	9.616	0.267
04'00"	0.980	0.981	9	9.616	0.267
30"	1.105	1.106	10	10.612	0.295
05'00"	1.230	1.231	11	11.608	0.322
30"	1.355	1.356	12	12.604	0.350
06'00"	1.480	1.481	12	12.604	0.350
30"	1.605	1.606	13	13.600	0.378
07'00"	1.730	1.731	13	13.600	0.378
30"	1.855	1.856	15	15.592	0.433
08'00"	1.980	1.981	15	15.592	0.433

Esfuerzo normal (kg/cm2)	1.000	Esfuerzo cortante (kg/cm2)	0.433
--------------------------	-------	----------------------------	-------


		Características de	la muestra inalter	ada	
Área	36.00 cm2	Peso satura	ado (g)	139.09	
Altura	1.95 cm	Peso después de	el ensayo (g)	137.34	
Volumen	70.20 cm3	Peso sec	:o (g)	108.59	MUESTRA 3
		Peso agu	ıa (g)	28.75	
Velocidad	0.25 mm/min	Humedad	26.50 %	Peso específico	2.68
Tiempo	8.50 min	Saturación	97%	Relación vacíos	0.73
Desplazamien to	2.125 mm	Densidad húmeda	1.96 g/cm3	Densidad seca	1.55 g/cm3
		Volumen del sólido	40.52 cm3	Volumen de vacíos	29.68 cm3
Corrección	dial horizontal	1.00 x + 0.001	Factor ce	lda de carga	0.996 x + 0.652
		ENS	SAYO 3		
Tiempo	Dial Horizontal	Corrección dial	Dial de carga	Corrección dial	Esfuerzo de corte
Пешро	(mm)	horizontal (mm)	(kg)	de carga (kg)	(kg/cm2)
00'00"	0.000	0.000	0	0.000	0.000
30"	0.105	0.106	4	4.636	0.129
01'00"	0.230	0.231	4	4.636	0.129
30"	0.355	0.356	6	6.628	0.184
02'00"	0.480	0.481	8	8.620	0.239
30"	0.605	0.606	9	9.616	0.267
03'00"	0.730	0.731	10	10.612	0.295
30"	0.855	0.856	11	11.608	0.322
04'00"	0.980	0.981	13	13.600	0.378
30"	1.105	1.106	13	13.600	0.378
05'00"	1.230	1.231	14	14.596	0.405
30"	1.355	1.356	16	16.588	0.461
06'00"	1.480	1.481	17	17.584	0.488
30"	1.605	1.606	18	18.580	0.516
07'00"	1.730	1.731	19	19.576	0.544
30"	1.855	1.856	20	20.572	0.571
08'00"	1.980	1.981	21	21.568	0.599
30"	2.105	2.106	23	23.560	0.654


Esfuerzo normal (kg/cm2)	2.000	Esfuerzo cortante (kg/cm2)	0.654
--------------------------	-------	----------------------------	-------

F	Esfuerzo	Esfuerzo de	Esfuerzo	Esfuerzo de
Ensayo	normal kg/cm2	corte kg/cm2	normal kPa	corte kPa
1	0.500	0.350	49.033	34.334
2	1.000	0.433	98.067	42.474
3	2.000	0.654	196.133	64.179

Resultados de ensayo	
Cohesión (kPa) = C	23.48
Ángulo de fricción interna = Φ	11.61

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÍA CIVIL MÉTODO PARA EL CORTE DIRECTO N.T.P. 339.171 / ASTM D-3080

Recolección de datos y resultados

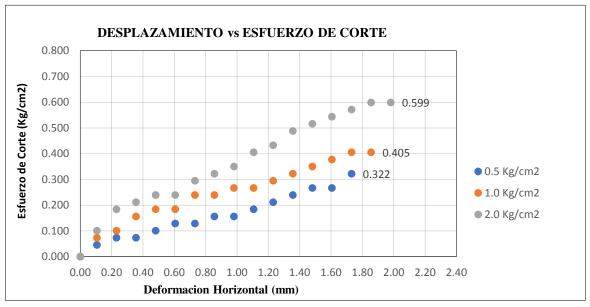
Calicata	04	Ubicación	Distrito Lambayeque	Estado	1 semana

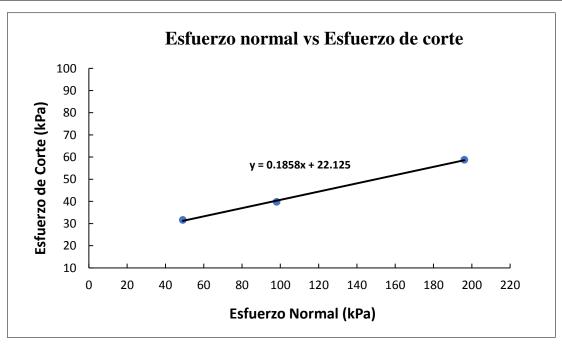
		Características de la	i muestra inaitei	ada		
Área	36.00 cm2	Peso humedad natural (g) 141.10				
Altura	2.00 cm	Peso después del	ensayo (g)	139.28	MUESTRA 1	
Volumen	72.00 cm3	Peso seco (g)		108.59	WIDESTRA	
		Peso agua	(g)	30.69		
Velocidad	0.25 mm/min	Humedad	Humedad 28.30 %		2.68	
Tiempo	7.00 min	Saturación	98%	Relación vacíos	0.78	
esplazamient o	1.75 mm	Densidad húmeda	1.93 g/cm3	Densidad seca	1.51 g/cm3	
		Volumen del sólido	40.52 cm3	Volumen de vacíos	31.48 cm3	
Corrección d	ial horizontal	1.00 x + 0.001	Factor	celda de carga	0.996 x + 0.6	
		ENSA	YO 1			
	Dial	Corrección dial	Dial de	Corrección dial de	Esfuerzo d	
Tiempo	Horizontal	horizontal (mm)	carga (kg)	carga (kg)	corte (kg/cm	
	(mm)	nonzontai (iiiii)	carya (kg)	Carga (kg)	corte (kg/cii	
00'00"	0.000	0.000	0	0.000	0.000	
30"	0.105	0.106	1	1.648	0.046	
01'00"	0.230	0.231	2	2.644	0.073	
30"	0.355	0.356	2	2.644	0.073	
02'00"	0.480	0.481	3	3.640	0.101	
30"	0.605	0.606	4	4.636	0.129	
03'00"	0.730	0.731	4	4.636	0.129	
30"	0.855	0.856	5	5.632	0.156	
04'00"	0.980	0.981	5	5.632	0.156	
30"	1.105	1.106	6	6.628	0.184	
05'00"	1.230	1.231	7	7.624	0.212	
30"	1.355	1.356	8	8.620	0.239	
06'00"	1.480	1.481	9	9.616	0.267	
30"	1.605	1.606	9	9.616	0.267	
	1.730	1.731	11	11.608	0.322	

Esfuerzo normal (kg/cm2)	0.500	Esfuerzo cortante (kg/cm2)	0.322

		Características de la	muestra inaltera	ada	
Área	36.00 cm2	Peso satura	Peso saturado (g)		
Altura	2.00 cm	Peso después del	ensayo (g)	139.77	MUESTRA 2
Volumen	72.00 cm3	Peso seco (g)		109.07	WUESTRA 2
		Peso agua	ı (g)	30.70	
Velocidad	0.25 mm/min	Humedad	28.10 %	Peso específico	2.68
Tiempo	7.50 min	Saturación	98%	Relación vacíos	0.77
Desplazamient o	1.88 mm	Densidad húmeda	1.94 g/cm3	Densidad seca	1.51 g/cm3
		Volumen del sólido	40.70 cm3	Volumen de vacíos	31.30 cm3
Corrección o	dial horizontal	1.00 x + 0.001	Factor	celda de carga	0.996 x + 0.652
		ENSA	(O 2		
Tiempo	Dial Horizontal	Corrección dial	Dial de	Corrección dial	Esfuerzo de
Петтро	(mm)	horizontal (mm)	carga (kg)	de carga (kg)	corte (kg/cm2)
00'00"	0.000	0.000	0	0.000	0.000
30"	0.105	0.106	2	2.644	0.073
01'00"	0.230	0.231	3	3.640	0.101
30"	0.355	0.356	5	5.632	0.156
02'00"	0.480	0.481	6	6.628	0.184
30"	0.605	0.606	6	6.628	0.184
03'00"	0.730	0.731	8	8.620	0.239
30"	0.855	0.856	8	8.620	0.239
04'00"	0.980	0.981	9	9.616	0.267
30"	1.105	1.106	9	9.616	0.267
05'00"	1.230	1.231	10	10.612	0.295
30"	1.355	1.356	11	11.608	0.322
06'00"	1.480	1.481	12	12.604	0.350
30"	1.605	1.606	13	13.600	0.378
07'00"	1.730	1.731	14	14.596	0.405
30"	1.855	1.856	14	14.596	0.405

Esfuerzo normal (kg/cm2)	1.000	Esfuerzo cortante (kg/cm2)	0.405


,	T	Características de		1	Γ	
Área	36.00 cm2	Peso satur		137.56		
Altura	1.95 cm	Peso después de	el ensayo (g)	135.71	MUESTRA 3	
Volumen	70.20 cm3	Peso sec	co (g)	105.72		
		Peso agu	ıa (g)	29.99		
Velocidad	0.25 mm/min	Humedad	28.40 %	Peso específico	2.68	
Tiempo	8.00 min	Saturación	98%	Relación vacíos	0.78	
Desplazamien to	2.00 mm	Densidad húmeda	1.93 g/cm3	Densidad seca	1.51 g/cm3	
		Volumen del sólido	39.45 cm3	Volumen de vacíos	30.75 cm3	
Corrección	dial horizontal	1.00 x + 0.001	Factor ce	lda de carga	0.996 x + 0.652	
ENSAYO 3						
Tiempo	Dial Horizontal (mm)	Corrección dial horizontal (mm)	Dial de carga (kg)	Corrección dial de carga (kg)	Esfuerzo de corte (kg/cm2)	
00'00"	0.000	0.000	0	0.000	0.000	
30"	0.105	0.106	3	3.640	0.101	
01'00"	0.230	0.231	6	6.628	0.184	
30"	0.355	0.356	7	7.624	0.212	
02'00"	0.480	0.481	8	8.620	0.239	
30"	0.605	0.606	8	8.620	0.239	
03'00"	0.730	0.731	10	10.612	0.295	
30"	0.855	0.856	11	11.608	0.322	
04'00"	0.980	0.981	12	12.604	0.350	
30"	1.105	1.106	14	14.596	0.405	
05'00"	1.230	1.231	15	15.592	0.433	
30"	1.355	1.356	17	17.584	0.488	
06'00"	1.480	1.481	18	18.580	0.516	
30"	1.605	1.606	19	19.576	0.544	
07'00"	1.730	1.731	20	20.572	0.571	
30"	1.855	1.856	21	21.568	0.599	
08'00"	1.980	1.981	21	21.568	0.599	


Esfuerzo normal (kg/cm2)	2.000	Esfuerzo cortante (kg/cm2)	0.599
--------------------------	-------	----------------------------	-------

Градиа	Esfuerzo	Esfuerzo de	Esfuerzo	Esfuerzo de
Ensayo	normal kg/cm2	corte kg/cm2	normal kPa	corte kPa
1	0.500	0.322	49.033	31.621
2	1.000	0.405	98.067	39.761
3	2.000	0.599	196.133	58.753

Resultados de ensayo				
Cohesión (kPa) = C	22.12			
Ángulo de fricción interna = Φ	10.52			

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL MÉTODO PARA EL CORTE DIRECTO N.T.P. 339.171 / ASTM D-3080

Recolección de datos y resultados

Calicata	04	Ubicación	Distrito Lambayeque	Estado	1 mes

		Características de la	muestra inalter	ada	
Área	36.00 cm2	Peso humedad r		138.87	
Altura	2.00 cm	Peso después del		136.95	
Volumen	72.00 cm3	Peso seco (g)		104.97	MUESTRA 1
		Peso agua	(g)	31.98	
Velocidad	0.25 mm/min	Humedad	30.50 %	Peso específico	2.68
Tiempo	6.50 min	Saturación	98%	Relación vacíos	0.84
Desplazamient o	1.63 mm	Densidad húmeda	1.90 g/cm3	Densidad seca	1.46 g/cm3
		Volumen del sólido	39.17 cm3	Volumen de vacíos	32.83 cm3
Corrección o	dial horizontal	1.00 x + 0.001	Factor	celda de carga	0.996 x + 0.652
		ENSA	YO 1		
Tiempo	Dial Horizontal (mm)	Corrección dial horizontal (mm)	Dial de carga (kg)	Corrección dial de carga (kg)	Esfuerzo de corte (kg/cm2)
00'00"	0.000	0.000	0	0.652	0.018
30"	0.105	0.106	1	1.648	0.046
01'00"	0.230	0.231	1	1.648	0.046
30"	0.355	0.356	2	2.644	0.073
02'00"	0.480	0.481	3	3.640	0.101
30"	0.605	0.606	4	4.636	0.129
03'00"	0.730	0.731	5	5.632	0.156
30"	0.855	0.856	6	6.628	0.184
04'00"	0.980	0.981	7	7.624	0.212
30"	1.105	1.106	7	7.624	0.212
05'00"	1.230	1.231	8	8.620	0.239
30"	1.355	1.356	8	8.620	0.239
06'00"	1.480	1.481	9	9.616	0.267
30"	1.605	1.606	10	10.612	0.295

Esfuerzo normal (kg/cm2)	0.500	Esfuerzo cortante (kg/cm2)	0.295
--------------------------	-------	----------------------------	-------

30"

07'00"

1.605

1.730

UNIVERSIDAD SAN MARTIN DE PORRES

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERIA CIVIL MÉTODO PARA EL CORTE DIRECTO N.T.P. 339.171 / ASTM D-3080

Características de la muestra inalterada Área 36.00 cm2 Peso saturado (g) 139.12 Peso después del ensayo (g) Altura 2.00 cm 137.19 **MUESTRA 2** Volumen 72.00 cm3 Peso seco (g) 105.29 Peso agua (g) 31.90 Velocidad 0.25 mm/min Humedad 30.30 % Peso específico 2.68 7.00 min 98% Saturación Relación vacíos 0.83 Tiempo Desplazamient 1.75 mm Densidad húmeda 1.91 g/cm3 Densidad seca 1.46 g/cm3 Volumen del sólido 39.29 cm3 Volumen de vacíos 32.71 cm3 Corrección dial horizontal 1.00 x + 0.001 Factor celda de carga 0.996 x + 0.652 **ENSAYO 2 Dial Horizontal** Corrección dial Dial de Corrección dial Esfuerzo de Tiempo (mm) horizontal (mm) carga (kg) de carga (kg) corte (kg/cm2) 00'00" 0.000 0.000 0 0.000 0.000 30" 0.105 0.106 2 2.644 0.073 01'00" 0.230 0.231 2 2.644 0.073 30" 0.355 0.356 3 3.640 0.101 02'00" 0.480 0.481 5 5.632 0.156 0.605 0.606 30" 6 6.628 0.184 03'00" 0.730 0.731 7 7.624 0.212 30" 0.856 8.620 0.239 0.855 8 04'00" 0.980 0.981 9 9.616 0.267 30" 1.105 1.106 10 10.612 0.295 05'00" 1.230 1.231 10 10.612 0.295 30" 1.355 1.356 11 11.608 0.322 06'00' 12 12.604 0.350 1.480 1.481

Esfuerzo normal (kg/cm2)	1.000	Esfuerzo cortante (kg/cm2)	0.378
--------------------------	-------	----------------------------	-------

12

13

12.604

13.600

0.350

0.378

1.606

1.731

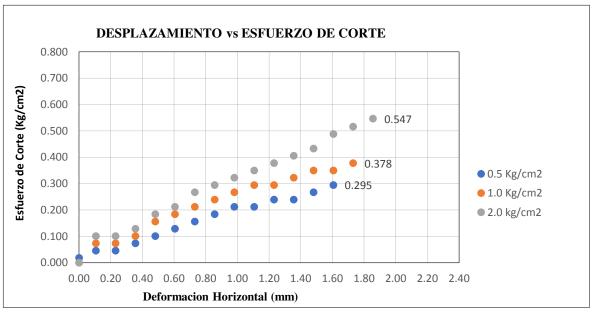
Esfuerzo normal (kg/cm2)

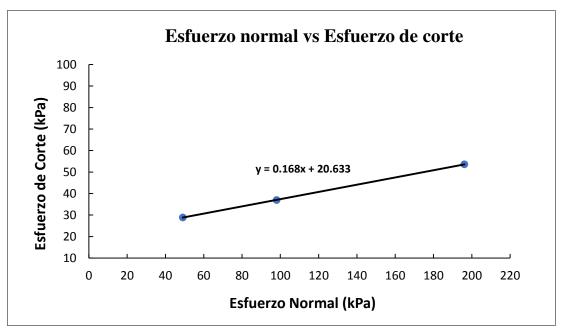
UNIVERSIDAD SAN MARTIN DE PORRES

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL <u>MÉTODO PARA EL CORTE DIRECTO</u> N.T.P. 339.171 / ASTM D-3080

		Características de	la muestra inalter	ada	
Área	36.00 cm2	Peso satura	ado (g)	135.82	
Altura	1.95 cm	Peso después de	el ensayo (g)	133.91	MUESTRA 3
Volumen	70.20 cm3	Peso sec	o (g)	102.77	MUESTRAS
	1	Peso agu	a (g)	31.14	
Velocidad	0.25 mm/min	Humedad	30.30 %	Peso específico	2.68
Tiempo	7.50 min	Saturación	98%	Relación vacíos	0.83
Desplazamien to	1.88 mm	Densidad húmeda	1.91 g/cm3	Densidad seca	1.46 g/cm3
		Volumen del sólido	38.35 cm3	Volumen de vacíos	31.85 cm3
Corrección	dial horizontal	1.00 x + 0.001	Factor ce	lda de carga	0.996 x + 0.652
		ENS	AYO 3		
Tiempo	Dial Horizontal	Corrección dial	Dial de carga	Dial de carga Corrección dial	
Hempo	(mm)	horizontal (mm)	(kg)	de carga (kg)	(kg/cm2)
00'00"	0.000	0.000	0	0.000	0.000
30"	0.105	0.106	3	3.640	0.101
01'00"	0.230	0.231	3	3.640	0.101
30"	0.355	0.356	4	4.636	0.129
02'00"	0.480	0.481	6	6.628	0.184
30"	0.605	0.606	7	7.624	0.212
03'00"	0.730	0.731	9	9.616	0.267
30"	0.855	0.856	10	10.612	0.295
04'00"	0.980	0.981	11	11.608	0.322
30"	1.105	1.106	12	12.604	0.350
05'00"	1.230	1.231	13	13.600	0.378
30"	1.355	1.356	14	14.596	0.405
06'00"	1.480	1.481	15	15.592	0.433
	1.605	1.606	17	17.584	0.488
30"					
30" 07'00"	1.730	1.731	18	18.580	0.516

Esfuerzo cortante (kg/cm2)


0.547


2.000

Ensayo	Esfuerzo normal kg/cm2	Esfuerzo de corte kg/cm2	Esfuerzo normal kPa	Esfuerzo de corte kPa
1	0.500	0.295	49.033	28.908
2	1.000	0.378	98.067	37.047
3	2.000	0.547	196.133	53.598

Resultados de ensayo	
Cohesión (kPa) = C	20.63
Ángulo de fricción interna = Φ	9.54

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL MÉTODO PARA EL CORTE DIRECTO N.T.P. 339.171 / ASTM D-3080

Recolección de datos y resultados

Calicata	05 U I	oicación	Distrito La	mbayeque	Estado	0 horas
		Caract	erísticas de la	muestra inalte	rada	
Área	36.00 cm2	Pe	eso humedad i	natural (g)	-	
Altura	1.95 cm	Pes	o después del	ensayo (g)	129.44	MUESTRA 1
Volumen	70.20 cm3		Peso seco (g) 110.00			
			Peso agua	gua (g) 19.44		
Velocidad	0.25 mm/mir	ı Hı	ımedad	17.70 %	Peso especí	fico 2.70
Tiempo	8.50 min	Sa	turación	66%	Relación vac	cíos 0.72
Desplazamient o	2.125 mm	Densid	lad húmeda	1.84 g/cm3	Densidad se	eca 1.57 g/cm3
		Volume	en del sólido	40.74 cm3	Volumen de va	acíos 29.46 cm3
Corrección d	ial horizontal	1.00	x + 0.001	Factor	celda de carga	0.996 x + 0.652
			ENSA	YO 1		
	Dial	Corre	ección dial	Dial de	Corrección di	al de Esfuerzo de
Tiempo	Horizontal		ontal (mm)	carga (kg)	carga (kg	
00'00"	(mm)		0.000	0	0.000	0.000
30"	0.000		0.000	2	0.000	0.000
	0.105				2.644	0.073
01'00"	0.230	_	0.231	3	3.640	0.101
30"	0.355		0.356	4	4.636	0.129
02'00"	0.480		0.481	5	5.632	0.156
30"	0.605	_	0.606	5	5.632	0.156
03'00"	0.730		0.731	6	6.628	0.184
30"	0.855		0.856	7	7.624	0.212
04'00"	0.980		0.981	7	7.624	0.212
30"	1.105		1.106	8	8.620	0.239
05'00"	1.230		1.231	9	9.616	0.267
30"	1.355		1.356	9	9.616	0.267
06'00"	1.480		1.481	10	10.612	0.295
30"	1.605		1.606	10	10.612	0.295
07'00"	1.730		1.731	11	11.608	0.322
30"	1.855		1.856	11	11.608	0.322
08'00"	1.980		1.981	12	12.604	0.350
30"	2.105		2.106	12	12.604	0.350
Esfuerzo nor	mal (kg/cm2)		0.500	Esfuerzo	cortante (kg/cm2	0.350

		Características de la	muestra inalter	ada	
Área	36.00 cm2	Peso satura	do (g)	-	
Altura	1.95 cm	Peso después del	ensayo (g)	129.63	MUESTRA 2
Volumen	70.20 cm3	Peso seco	(g)	110.21	WUESTRA 2
		Peso agua	ı (g)	19.42	
Velocidad	0.25 mm/min	Humedad	17.60 %	Peso específico	2.70
Tiempo	9.00 min	Saturación	66%	Relación vacíos	0.72
Desplazamient o	2.250 mm	Densidad húmeda	1.85 g/cm3	Densidad seca	1.57 g/cm3
		Volumen del sólido	40.82 cm3	Volumen de vacíos	29.38 cm3
Corrección o	dial horizontal	1.00 x + 0.001	Factor	celda de carga	0.996 x + 0.652
		ENSA	YO 2		
	Dial Horizontal	Corrección dial	Dial de	Corrección dial de	Esfuerzo de
Tiempo	(mm)	horizontal (mm)	carga (kg)	carga (kg)	corte (kg/cm2)
00'00"	0.000	0.000	0	0.000	0.000
30"	0.105	0.106	4	4.636	0.129
01'00"	0.230	0.231	6	6.628	0.184
30"	0.355	0.356	6	6.628	0.184
02'00"	0.480	0.481	7	7.624	0.212
30"	0.605	0.606	7	7.624	0.212
03'00"	0.730	0.731	8	8.620	0.239
30"	0.855	0.856	9	9.616	0.267
04'00"	0.980	0.981	9	9.616	0.267
30"	1.105	1.106	10	10.612	0.295
05'00"	1.230	1.231	10	10.612	0.295
30"	1.355	1.356	11	11.608	0.322
06'00"	1.480	1.481	12	12.604	0.350
30"	1.605	1.606	13	13.600	0.378
07'00"	1.730	1.731	14	14.596	0.405
30"	1.855	1.856	15	15.592	0.433
08'00"	1.980	1.981	15	15.592	0.433
30"	2.105	2.106	16	16.588	0.461
09'00"	2.230	2.231	16	16.588	0.461

Esfuerzo normal (kg/cm2)	1.000	Esfuerzo cortante (kg/cm2)	0.461
--------------------------	-------	----------------------------	-------

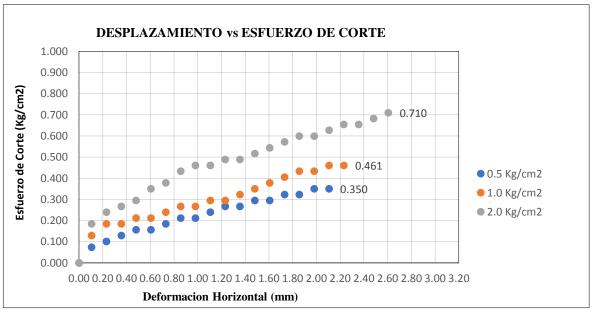
Esfuerzo normal (kg/cm2)

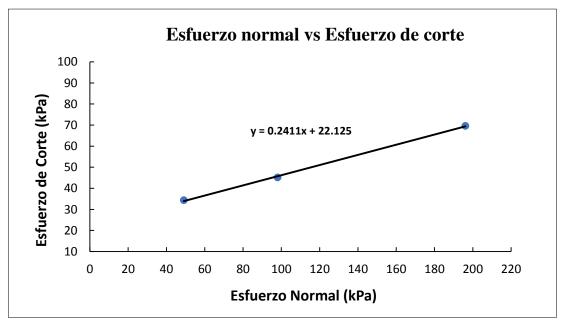
UNIVERSIDAD SAN MARTIN DE PORRES

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL MÉTODO PARA EL CORTE DIRECTO N.T.P. 339.171 / ASTM D-3080

,	ı	Características de		1	T
Área	36.00 cm2	Peso satura	ado (g)	-	
Altura	1.95 cm	Peso después de	el ensayo (g)	129.91	MUESTRA 3
Volumen	70.20 cm3	Peso sec	:o (g)	110.43	
		Peso agu	ıa (g)	19.48	
Velocidad	0.25 mm/min	Humedad	17.60 %	Peso específico	2.70
Tiempo	10.50 min	Saturación	66%	Relación vacíos	0.72
Desplazamien to	2.625 mm	Densidad húmeda	1.85 g/cm3	Densidad seca	1.57 g/cm3
		Volumen del sólido	40.90 cm3	Volumen de vacíos	29.30 cm3
Corrección	dial horizontal	1.00 x + 0.001	Factor ce	elda de carga	0.996 x + 0.652
		ENS	SAYO 3		
T:	Dial Horizontal	Corrección dial	Dial de carga	Corrección dial	Esfuerzo de corte
Tiempo	(mm)	horizontal (mm)	(kg)	de carga (kg)	(kg/cm2)
00'00"	0.000	0.000	0	0.000	0.000
30"	0.105	0.106	6	6.628	0.184
01'00"	0.230	0.231	8	8.620	0.239
30"	0.355	0.356	9	9.616	0.267
02'00"	0.480	0.481	10	10.612	0.295
30"	0.605	0.606	12	12.604	0.350
03'00"	0.730	0.731	13	13.600	0.378
30"	0.855	0.856	15	15.592	0.433
04'00"	0.980	0.981	16	16.588	0.461
30"	1.105	1.106	16	16.588	0.461
05'00"	1.230	1.231	17	17.584	0.488
30"	1.355	1.356	17	17.584	0.488
06'00"	1.480	1.481	18	18.580	0.516
30"	1.605	1.606	19	19.576	0.544
07'00"	1.730	1.731	20	20.572	0.571
30"	1.855	1.856	21	21.568	0.599
08'00"	1.980	1.981	21	21.568	0.599
30"	2.105	2.106	22	22.564	0.627
09'00"	2.230	2.231	23	23.560	0.654
30"	2.355	2.356	23	23.560	0.654
10'00"	2.480	2.481	24	24.556	0.682
30"	2.605	2.606	25	25.552	0.710
	<u>l</u>	<u> </u>	<u>l</u>	1	<u>I</u>

Esfuerzo cortante (kg/cm2)


0.710


2.000

Energy	Esfuerzo	Esfuerzo de	Esfuerzo	Esfuerzo de
Ensayo	normal kg/cm2	corte kg/cm2	normal kPa	corte kPa
1	0.500	0.350	49.033	34.334
2	1.000	0.461	98.067	45.187
3	2.000	0.710	196.133	69.605

Resultados de ensayo	
Cohesión (kPa) = C	22.12
Ángulo de fricción interna = Φ	13.56

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL MÉTODO PARA EL CORTE DIRECTO N.T.P. 339.171 / ASTM D-3080

Recolección de datos y resultados

Esfuerzo normal (kg/cm2)

Calicata	05 Ubi	cación	Distrito La	mbayeque	Estado	3 horas
		Caracte	erísticas de la	muestra inaltei	rada	
Área	36.00 cm2	Pe	so humedad r	natural (g)	136.29	
Altura	1.95 cm	Pes	o después del	ensayo (g)	134.77	MUESTRA 1
Volumen	70.20 cm3		Peso seco	(g)	110.41	MOLOTICAT
			Peso agua	(g)	24.36	
Velocidad	0.25 mm/min	Hu	medad	22.10 %	Peso específico	2.82
Tiempo	8.50 min	Sat	uración	79%	Relación vacíos	0.79
Desplazamient o	2.13 mm	Densid	ad húmeda	1.92 g/cm3	Densidad seca	1.57 g/cm3
		Volume	n del sólido	39.15 cm3	Volumen de vacíos	31.05 cm3
Corrección	dial horizontal	1.00	x + 0.001	Factor	celda de carga	0.996 x + 0.652
		_	ENSA	YO 1		
	Dial	Corre	cción dial	Dial de	Corrección dial de	Esfuerzo de
Tiempo	Horizontal (mm)	horizo	ontal (mm)	carga (kg)	carga (kg)	corte (kg/cm2)
00'00"	0.000	(0.000	0	0.000	0.000
30"	0.105	().106	1	1.648	0.046
01'00"	0.230	().231	2	2.644	0.073
30"	0.355	().356	3	3.640	0.101
02'00"	0.480	().481	4	4.636	0.129
30"	0.605	(0.606	5	5.632	0.156
03'00"	0.730	().731	6	6.628	0.184
30"	0.855	().856	7	7.624	0.212
04'00"	0.980	().981	7	7.624	0.212
30"	1.105	1	1.106	8	8.620	0.239
05'00"	1.230	1	1.231	8	8.620	0.239
30"	1.355	1	1.356	9	9.616	0.267
06'00"	1.480	1	1.481	9	9.616	0.267
30"	1.605	1	1.606	9	9.616	0.267
07'00"	1.730	1	1.731	10	10.612	0.295
30"	1.855	1	1.856	10	10.612	0.295
08'00"	1.980	1	1.981	11	11.608	0.322
30"	2.105	2	2.106	11	11.608	0.322

Esfuerzo cortante (kg/cm2)

0.322

0.500

		Características de la	muestra inaltera	ada	
Área	36.00 cm2	Peso satura	do (g)	136.31	
Altura	1.95 cm	Peso después del	ensayo (g)	134.72	
Volumen	70.20 cm3	Peso seco (g)		109.87	MUESTRA 2
		Peso agua	ı (g)	24.85	
Velocidad	0.25 mm/min	Humedad 22.60 %		Peso específico	2.82
Tiempo	9.00 min	Saturación	79%	Relación vacíos	0.80
Desplazamient o	2.25 mm	Densidad húmeda	1.92 g/cm3	Densidad seca	1.57 g/cm3
		Volumen del sólido	38.96 cm3	Volumen de vacíos	31.24 cm3
Corrección o	dial horizontal	1.00 x + 0.001	Factor	celda de carga	0.996 x + 0.652
		ENSA	(O 2		
Tiomano	Dial Horizontal	Corrección dial	Dial de	Corrección dial	Esfuerzo de
Tiempo	(mm)	horizontal (mm)	carga (kg)	de carga (kg)	corte (kg/cm2)
00'00"	0.000	0.000	0	0.000	0.000
30"	0.105	0.106	2	2.644	0.073
01'00"	0.230	0.231	3	3.640	0.101
30"	0.355	0.356	5	5.632	0.156
02'00"	0.480	0.481	5	5.632	0.156
30"	0.605	0.606	7	7.624	0.212
03'00"	0.730	0.731	7	7.624	0.212
30"	0.855	0.856	8	8.620	0.239
04'00"	0.980	0.981	9	9.616	0.267
30"	1.105	1.106	10	10.612	0.295
05'00"	1.230	1.231	10	10.612	0.295
30"	1.355	1.356	10	10.612	0.295
06'00"	1.480	1.481	11	11.608	0.322
30"	1.605	1.606	12	12.604	0.350
07'00"	1.730	1.731	13	13.600	0.378
30"	1.855	1.856	14	14.596	0.405
08'00"	1.980	1.981	14	14.596	0.405
30"	2.105	2.106	15	15.592	0.433
09'00"	2.230	2.231	15	15.592	0.433

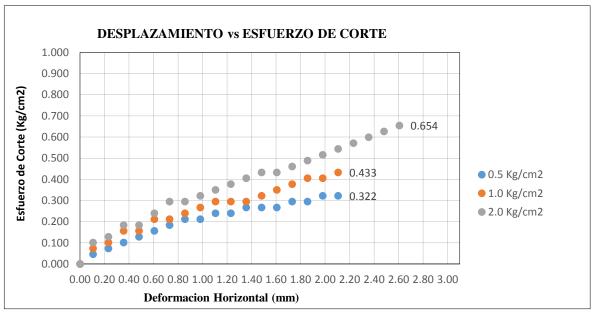
Esfuerzo normal (kg/cm2)	1.000	Esfuerzo cortante (kg/cm2)	0.433
--------------------------	-------	----------------------------	-------

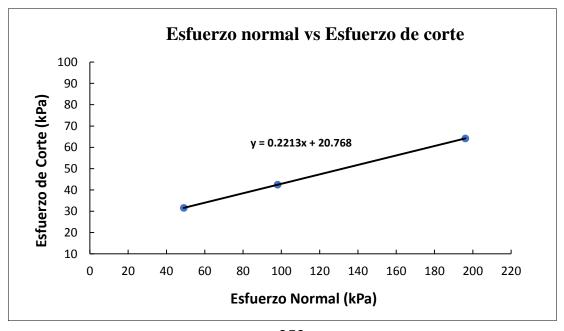
ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL <u>MÉTODO PARA EL CORTE DIRECTO</u> N.T.P. 339.171 / ASTM D-3080

		Características de	la muestra inalter	ada	
Área	36.00 cm2	Peso satura	ado (g)	136.73	
Altura	1.95 cm	Peso después del ensayo (g)		135.10	
Volumen	70.20 cm3	Peso sec	o (g)	110.75	MUESTRA 3
	I.	Peso agu	a (g)	24.35	
Velocidad	0.25 mm/min	Humedad	22.00 %	Peso específico	2.82
Tiempo	10.50 min	Saturación	79%	Relación vacíos	0.79
Desplazamien to	2.63 mm	Densidad húmeda	1.92 g/cm3	Densidad seca	1.58 g/cm3
		Volumen del sólido 39.27 cm3		Volumen de vacíos	30.93 cm3
Corrección	dial horizontal	1.00 x + 0.001	Factor ce	lda de carga	0.996 x + 0.652
		ENS	AYO 3		
Tiempo	Dial Horizontal	Corrección dial	Dial de carga	Corrección dial	Esfuerzo de corte
riempo	(mm)	horizontal (mm)	(kg)	de carga (kg)	(kg/cm2)
00'00"	0.000	0.000	0	0.000	0.000
30"	0.105	0.106	3	3.640	0.101
01'00"	0.230	0.231	4	4.636	0.129
30"	0.355	0.356	6	6.628	0.184
02'00"	0.480	0.481	6	6.628	0.184
30"	0.605	0.606	8	8.620	0.239
03'00"	0.730	0.731	10	10.612	0.295
30"	0.855	0.856	10	10.612	0.295
04'00"	0.980	0.981	11	11.608	0.322
30"	1.105	1.106	12	12.604	0.350
05'00"	1.230	1.231	13	13.600	0.378
30"	1.355	1.356	14	14.596	0.405
06'00"	1.480	1.481	15	15.592	0.433
30"	1.605	1.606	15	15.592	0.433
07'00"	1.730	1.731	16	16.588	0.461
30"	1.855	1.856	17	17.584	0.488
08'00"	1.980	1.981	18	18.580	0.516
30"	2.105	2.106	19	19.576	0.544
09'00"	2.230	2.231	20	20.572	0.571
30"	2.355	2.356	21	21.568	0.599
10'00"	2.480	2.481	22	22.564	0.627
30"	2.605	2.606	23	23.560	0.654

Esfuerzo cortante (kg/cm2)

0.654


2.000


Esfuerzo normal (kg/cm2)

Градиа	Esfuerzo	Esfuerzo de	Esfuerzo	Esfuerzo de
Ensayo	normal kg/cm2	corte kg/cm2	normal kPa	corte kPa
1	0.500	0.322	49.033	31.621
2	1.000	0.433	98.067	42.474
3	2.000	0.654	196.133	64.179

Resultados de ensayo	
Cohesión (kPa) = C	20.77
Ángulo de fricción interna = Φ	12.48

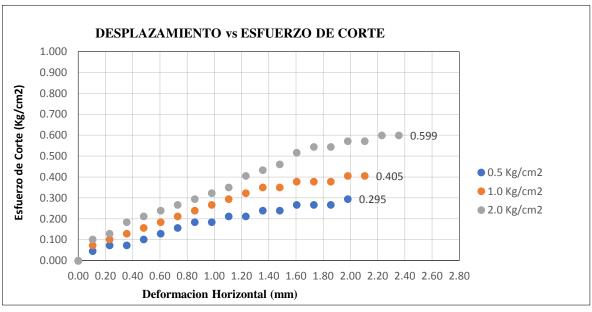
ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÍA CIVIL MÉTODO PARA EL CORTE DIRECTO N.T.P. 339.171 / ASTM D-3080

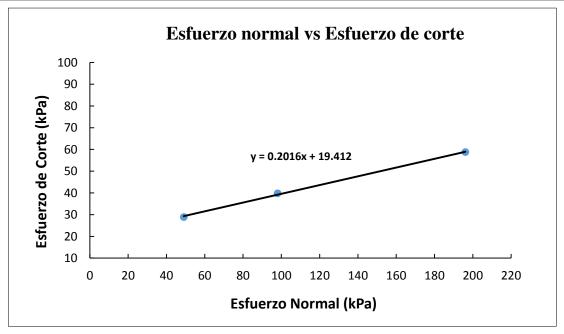
Recolección de datos y resultados

Calicata	05	Ubic	cación Distrito La		mbayeque	Estado	8 horas
			Caracte	erísticas de la	muestra inalte	rada	
Área	36.00	cm2	Pe	so humedad r	natural (g)	143.69	
Altura	2.00	2.00 cm Peso de			ensayo (g)	142.02	MUESTRA 1
Volumen	72.00	cm3		Peso seco	(g)	113.19	mozoma i
				Peso agua	ı (g)	28.83	
Velocidad	0.25 m	m/min	Hu	medad	25.50 %	Peso específ	fico 2.82
Tiempo	8.00	min	Sat	uración	91%	Relación vac	cíos 0.79
Desplazamient o	2.00	mm	Densid	ad húmeda	1.97 g/cm3	Densidad se	eca 1.57 g/cm3
			Volume	n del sólido	40.14 cm3	Volumen de va	acíos 31.86 cm3
Corrección d	lial horizon	tal	1.00	x + 0.001	Factor	celda de carga	0.996 x + 0.652
				ENSA	YO 1		•
	Dia		Corre	cción dial	Dial de	Corrección di	al de Esfuerzo de
Tiempo	Horizo (mı		horizo	ontal (mm)	carga (kg)	carga (kg) corte (kg/cm2)
00'00"	0.0	00	С	0.000	0	0.000	0.000
30"	0.1	05	C	0.106	1	1.648	0.046
01'00"	0.2	30	С).231	2	2.644	0.073
30"	0.3	55	C).356	2	2.644	0.073
02'00"	0.4	80	C).481	3	3.640	0.101
30"	0.6	05	C	0.606	4	4.636	0.129
03'00"	0.7	30	C).731	5	5.632	0.156
30"	0.8	55	C).856	6	6.628	0.184
04'00"	0.9	80	C).981	6	6.628	0.184
30"	1.10	05	1	.106	7	7.624	0.212
05'00"	1.2	30	1	.231	7	7.624	0.212
30"	1.3	55	1	.356	8	8.620	0.239
06'00"	1.4	80	1	.481	8	8.620	0.239
30"	1.6	05	1	.606	9	9.616	0.267
07'00"	1.7	30	1	.731	9	9.616	0.267
30"	1.8	55	1	.856	9	9.616	0.267
08'00"	1.9	80	1	.981	10	10.612	0.295
Esfuerzo noi	rmal (kg/c	m2)	(0.500	Esfuerzo	cortante (kg/cm2	0.295

		• • • • • • • • • • • • • • • • • • • •			
	T	Características de la			
Área	36.00 cm2	Peso satura	do (g)	143.49	
Altura	2.00 cm	Peso después del	ensayo (g)	141.77	MUESTRA 2
Volumen	72.00 cm3	Peso seco	(g)	112.77	02011012
		Peso agua	ı (g)	29.00	
Velocidad	0.25 mm/min	Humedad	25.70 %	Peso específico	2.82
Tiempo	8.50 min	Saturación	91%	Relación vacíos	0.80
Desplazamient o	2.13 mm	Densidad húmeda	1.97 g/cm3	Densidad seca	1.57 g/cm3
		Volumen del sólido	39.99 cm3	Volumen de vacíos	32.01 cm3
Corrección o	dial horizontal	1.00 x + 0.001	Factor	celda de carga	0.996 x + 0.652
		ENSA	/O 2		
Tiomano	Dial Horizontal	Corrección dial	Dial de	Corrección dial	Esfuerzo de
Tiempo	(mm)	horizontal (mm)	carga (kg)	de carga (kg)	corte (kg/cm2)
00'00"	0.000	0.000	0	0.000	0.000
30"	0.105	0.106	2	2.644	0.073
01'00"	0.230	0.231	3	3.640	0.101
30"	0.355	0.356	4	4.636	0.129
02'00"	0.480	0.481	5	5.632	0.156
30"	0.605	0.606	6	6.628	0.184
03'00"	0.730	0.731	7	7.624	0.212
30"	0.855	0.856	8	8.620	0.239
04'00"	0.980	0.981	9	9.616	0.267
30"	1.105	1.106	10	10.612	0.295
05'00"	1.230	1.231	11	11.608	0.322
30"	1.355	1.356	12	12.604	0.350
06'00"	1.480	1.481	12	12.604	0.350
30"	1.605	1.606	13	13.600	0.378
07'00"	1.730	1.731	13	13.600	0.378
30"	1.855	1.856	13	13.600	0.378
08'00"	1.980	1.981	14	14.596	0.405
30"	2.105	2.106	14	14.596	0.405

Esfuerzo normal (kg/cm2)	1.000	Esfuerzo cortante (kg/cm2)	0.405




		Características de	la muestra inalter	ada	
Área	36.00 cm2	Peso satura	ado (g)	144.00	
Altura	2.00 cm	Peso después de	el ensayo (g)	142.27	MUESTRA 3
Volumen	72.00 cm3	Peso sec	o (g)	113.25	MUESTRAS
		Peso agu	ıa (g)	29.02	
Velocidad	0.25 mm/min	Humedad	25.60 %	Peso específico	2.82
Tiempo	9.50 min	Saturación	91%	Relación vacíos	0.79
Desplazamien to	2.38 mm	Densidad húmeda	1.98 g/cm3	Densidad seca	1.57 g/cm3
		Volumen del sólido	Volumen del sólido 40.16 cm3		31.84 cm3
Corrección	dial horizontal	1.00 x + 0.001	Factor ce	lda de carga	0.996 x + 0.652
		ENS	SAYO 3		<u> </u>
	Dial Horizontal	Corrección dial	Dial de carga	Corrección dial	Esfuerzo de cor
Tiempo	(mm)	horizontal (mm)	(kg)	de carga (kg)	(kg/cm2)
00'00"	0.000	0.000	0	0.000	0.000
30"	0.105	0.106	3	3.640	0.101
01'00"	0.230	0.231	4	4.636	0.129
30"	0.355	0.356	6	6.628	0.184
02'00"	0.480	0.481	7	7.624	0.212
30"	0.605	0.606	8	8.620	0.239
03'00"	0.730	0.731	9	9.616	0.267
30"	0.855	0.856	10	10.612	0.295
04'00"	0.980	0.981	11	11.608	0.322
30"	1.105	1.106	12	12.604	0.350
05'00"	1.230	1.231	14	14.596	0.405
30"	1.355	1.356	15	15.592	0.433
06'00"	1.480	1.481	16	16.588	0.461
30"	1.605	1.606	18	18.580	0.516
07'00"	1.730	1.731	19	19.576	0.544
30"	1.855	1.856	19	19.576	0.544
08'00"	1.980	1.981	20	20.572	0.571
30"	2.105	2.106	20	20.572	0.571
09'00"	2.230	2.231	21	21.568	0.599
30"	2.355	2.356	21	21.568	0.599
		, , , , , , , , , , , , , , , , , , ,			
Esfuerzo nor	mal (kg/cm2)	2.000	Esfuerzo cor	tante (kg/cm2)	0.599

Ensayo	Esfuerzo	Esfuerzo de	Esfuerzo	Esfuerzo de
	normal kg/cm2	corte kg/cm2	normal kPa	corte kPa
1	0.500	0.295	49.033	28.908
2	1.000	0.405	98.067	39.761
3	2.000	0.599	196.133	58.753

Resultados de ensayo				
Cohesión (kPa) = C	19.41			
Ángulo de fricción interna = Φ	11.40			

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÍA CIVIL MÉTODO PARA EL CORTE DIRECTO N.T.P. 339.171 / ASTM D-3080

Recolección de datos y resultados

Calicata	05 Ubi	cación	Distrito La	mbayeque	Estado	15 horas
		Caracto	erísticas de la	muestra inalter	ada	
Área	36.00 cm2	Peso hu	medad natural	(g)	146.22	
Altura	2.00 cm Peso después del ensag		ayo (g)	144.65	MUESTRA 1	
Volumen	72.00 cm3 Peso seco (g)			113.39	MUESTRAT	
		Peso ag	ua (g)		31.26	
Velocidad	0.25 mm/min	Humeda	nd	27.60 %	Peso específico	2.82
Tiempo	8.50 min	Saturaci	ón	98%	Relación vacíos	0.79
Desplazamient o	2.125 mm	Densida	d húmeda	2.01 g/cm3	Densidad seca	1.57 g/cm3
		Volumer	n del sólido	40.21 cm3	Volumen de vacíos	31.79 cm3
Corrección dial h	orizontal	1.00 x +	0.001	Factor celda de	carga	0.996 x + 0.652
	ENSAYO 1					
Tiempo	Dial Horizontal	Correct	ción dial tal (mm)	Dial de carga	Corrección dial de carga (kg)	Esfuerzo de corte (kg/cm2)
0010011	(mm)	0.000				
00'00"	0.000	0.000		0	0.000	0.000
30"	0.105	0.106		1	1.648	0.046
01'00"	0.230	0.231		1	1.648	0.046
30"	0.355	0.356		2	2.644	0.073
02'00"	0.480	0.481		2	2.644	0.073
30"	0.605	0.606		3	3.640	0.101
03'00"	0.730	0.731		4	4.636	0.129
30"	0.855	0.856		5	5.632	0.156
04'00"	0.980	0.981		5	5.632	0.156
30"	1.105	1.106		6	6.628	0.184
05'00"	1.230	1.231		6	6.628	0.184
30"	1.355	1.356		6	6.628	0.184
06'00"	1.480	1.481		7	7.624	0.212
30"	1.605	1.606		7	7.624	0.212
07'00"	1.730	1.731		8	8.620	0.239
30"	1.855	1.856		8	8.620	0.239
08'00"	1.980	1.981		9	9.616	0.267

		Características de la	muestra inaltera	ada	
Área	36.00 cm2	Peso saturad	do (g)	145.78	
Altura	2.00 cm	Peso después del ensayo (g)		144.17	
Volumen	72.00 cm3	Peso seco (g)		112.99	MUESTRA 2
		Peso agua (g)		31.18	
Velocidad	0.25 mm/min	Humedad 27.60 %		Peso específico	2.82
Tiempo	5.00 min	Saturación	98%	Relación vacíos	0.80
Desplazamient o	1.250 mm	Densidad húmeda	2.00 g/cm3	Densidad seca	1.57 g/cm3
		Volumen del sólido	40.07 cm3	Volumen de vacíos	31.93 cm3
Corrección o	dial horizontal	1.00 x + 0.001	Factor	celda de carga	0.996 x + 0.652
		ENSA	(O 2		
T:	Dial Horizontal	Corrección dial	Dial de	Corrección dial	Esfuerzo de
Tiempo	(mm)	horizontal (mm)	carga (kg)	de carga (kg)	corte (kg/cm2)
00'00"	0.000	0.000	0	0.000	0.000
30"	0.105	0.106	2	2.644	0.073
01'00"	0.230	0.231	2	2.644	0.073
30"	0.355	0.356	3	3.640	0.101
02'00"	0.480	0.481	4	4.636	0.129
30"	0.605	0.606	5	5.632	0.156
03'00"	0.730	0.731	6	6.628	0.184
30"	0.855	0.856	7	7.624	0.212
04'00"	0.980	0.981	8	8.620	0.239
30"	1.105	1.106	9	9.616	0.267
05'00"	1.230	1.231	9	9.616	0.267
30"	1.355	1.356	9	9.616	0.267
06'00"	1.480	1.481	10	10.612	0.295
30"	1.605	1.606	10	10.612	0.295
07'00"	1.730	1.731	11	11.608	0.322
30"	1.855	1.856	12	12.604	0.350
08'00"	1.980	1.981	12	12.604	0.350
30"	2.105	2.106	13	13.600	0.378
09'00"	2.230	2.231	13	13.600	0.378

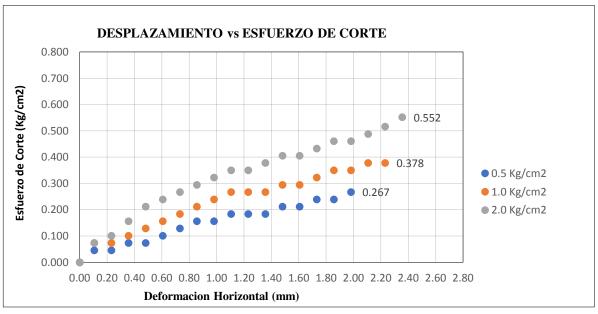
Esfuerzo normal (kg/cm2)	1.000	Esfuerzo cortante (kg/cm2)	0.378

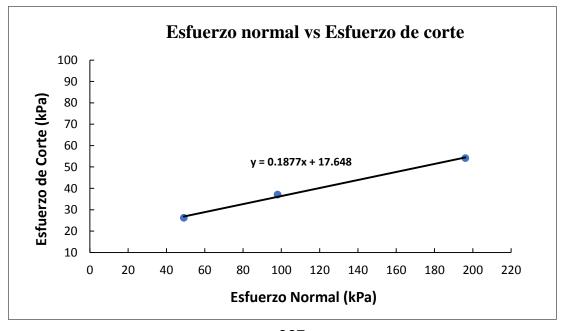
ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL <u>MÉTODO PARA EL CORTE DIRECTO</u> N.T.P. 339.171 / ASTM D-3080

			la muestra inalter		
Área	36.00 cm2	Peso satura	ado (g)	146.16	
Altura	2.00 cm	Peso después de	el ensayo (g)	144.48	MUESTRA 2
Volumen	72.00 cm3	Peso seco (g)		113.39	MUESTRA 3
		Peso agua (g)		31.09	
Velocidad	0.25 mm/min	Humedad	27.40 %	Peso específico	2.82
Tiempo	5.50 min	Saturación	98%	Relación vacíos	0.79
Desplazamien to	1.375 mm	Densidad húmeda	2.01 g/cm3	Densidad seca	1.57 g/cm3
		Volumen del sólido	40.21 cm3	Volumen de vacíos	31.79 cm3
Corrección d	ial horizontal	1.00 x + 0.001	Factor ce	lda de carga	0.996 x + 0.652
		ENS	AYO 3		•
Tiempo	Dial Horizontal	Corrección dial	Dial de carga	Corrección dial	Esfuerzo de corte
Tiompo	(mm)	horizontal (mm)	(kg)	de carga (kg)	(kg/cm2)
00'00"	0.000	0.000	0	0.000	0.000
30"	0.105	0.106	2	2.644	0.073
01'00"	0.230	0.231	3	3.640	0.101
30"	0.355	0.356	5	5.632	0.156
02'00"	0.480	0.481	7	7.624	0.212
30"	0.605	0.606	8	8.620	0.239
03'00"	0.730	0.731	9	9.616	0.267
30"	0.855	0.856	10	10.612	0.295
04'00"	0.980	0.981	11	11.608	0.322
30"	1.105	1.106	12	12.604	0.350
05'00"	1.230	1.231	12	12.604	0.350
30"	1.355	1.356	13	13.600	0.378
06'00"	1.480	1.481	14	14.596	0.405
30"	1.605	1.606	14	14.596	0.405
07'00"	1.730	1.731	15	15.592	0.433
30"	1.855	1.856	16	16.588	0.461
08'00"	1.980	1.981	16	16.588	0.461
30"	2.105	2.106	17	17.584	0.488
09'00"	2.230	2.231	18	18.580	0.516
30"	2.355	2.356	19	19.875	0.552

Esfuerzo cortante (kg/cm2)

0.552


2.000


Esfuerzo normal (kg/cm2)

F22212	Esfuerzo	Esfuerzo de	Esfuerzo	Esfuerzo de
Ensayo	normal kg/cm2	corte kg/cm2	normal kPa	corte kPa
1	0.500	0.267	49.033	26.195
2	1.000	0.378	98.067	37.047
3	2.000	0.552	196.133	54.140

Resultados de ensayo				
Cohesión (kPa) = C	17.65			
Ángulo de fricción interna = Φ	10.63			

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL <u>MÉTODO PARA EL CORTE DIRECTO</u> N.T.P. 339.171 / ASTM D-3080

1 semana

Recolección de datos y resultados

Calicata 05 Ubicación Distrito Lambayeque Estado

Calicata	05 0010	acion Distrito La	imbayeque	Estado	i semana	
		Características de la	muestra inalter	ada		
Área	36.00 cm2	Peso humedad i	natural (g)	145.02		
Altura	2.00 cm	Peso después de	ensayo (g)	143.23	MUESTRA 1	
Volumen	72.00 cm3	Peso seco) (g)	111.19		
		Peso agua (g)		32.04	1	
Velocidad	0.25 mm/min	Humedad	28.80 %	Peso específico	2.82	
Tiempo	8.00 min	Saturación	98%	Relación vacíos	0.83	
Desplazamient o	2.00 mm	Densidad húmeda	1.99 g/cm3	Densidad seca	1.54 g/cm3	
		Volumen del sólido	39.43 cm3	Volumen de vacíos	32.57 cm3	
Corrección d	ial horizontal	1.00 x + 0.001	Factor	celda de carga	0.996 x + 0.652	
ENSAYO 1						
	Dial	Corrección dial	I Dial de Corrección dial de		Esfuerzo de	
Tiempo	Horizontal (mm)	horizontal (mm)	carga (kg)	carga (kg)	corte (kg/cm2)	
00'00"	0.000	0.000	0	0.000	0.000	
30"	0.105	0.106	1	1.648	0.046	
01'00"	0.230	0.231	1	1.648	0.046	
30"	0.355	0.356	2	2.644	0.073	
02'00"	0.480	0.481	2	2.644	0.073	
30"	0.605	0.606	3	3.640	0.101	
03'00"	0.730	0.731	3	3.640	0.101	
30"	0.855	0.856	4	4.636	0.129	
04'00"	0.980	0.981	4	4.636	0.129	
30"	1.105	1.106	5	5.632	0.156	
05'00"	1.230	1.231	5	5.632	0.156	
30"	1.355	1.356	6	6.628	0.184	
06'00"	1.480	1.481	6	6.628	0.184	
30"	1.605	1.606	7	7.624	0.212	
07'00"	1.730	1.731	7	7.624	0.212	
30"	1.855	1.856	8	8.620	0.239	
08'00"	1.980	1.981	8	8.620	0.239	
Esfuerzo nor	rmal (kg/cm2)	0.500	Esfuerzo	cortante (kg/cm2)	0.239	

		Características de la	muestra inaltera	ıda	
Área	36.00 cm2	Peso satura	do (g)	144.54	
Altura	2.00 cm	Peso después del ensayo (g)		142.72	MUESTRA 2
Volumen	72.00 cm3	Peso seco (g)		110.75	
		Peso agua (g)		31.97	
Velocidad	0.25 mm/min	Humedad	28.90 %	Peso específico	2.82
Tiempo	8.50 min	Saturación	98%	Relación vacíos	0.83
Desplazamient o	2.13 mm	Densidad húmeda	1.98 g/cm3	Densidad seca	1.54 g/cm3
		Volumen del sólido	39.27 cm3	Volumen de vacíos	32.73 cm3
Corrección o	dial horizontal	1.00 x + 0.001	Factor o	elda de carga	0.996 x + 0.652
		ENSA	(O 2		
Tiempo	Dial Horizontal (mm)	Corrección dial horizontal (mm)	Dial de carga (kg)		
00'00"	0.000	0.000	0	0.000	0.000
30"	0.105	0.106	1	1.648	0.046
01'00"	0.230	0.231	2	2.644	0.073
30"	0.355	0.356	3	3.640	0.101
02'00"	0.480	0.481	5	5.632	0.156
30"	0.605	0.606	6	6.628	0.184
03'00"	0.730	0.731	7	7.624	0.212
30"	0.855	0.856	7	7.624	0.212
04'00"	0.980	0.981	8	8.620	0.239
30"	1.105	1.106	8	8.620	0.239
05'00"	1.230	1.231	9	9.616	0.267
30"	1.355	1.356	9	9.616	0.267
06'00"	1.480	1.481	10	10.612	0.295
30"	1.605	1.606	11	11.608	0.322
07'00"	1.730	1.731	12	12.604	0.350
30"	1.855	1.856	12	12.604	0.350
08'00"	1.980	1.981	13	13.600	0.378
30"	2.105	2.106	13	13.600	0.378

Esfuerzo normal (kg/cm2)	1.000	Esfuerzo cortante (kg/cm2)	0.378
--------------------------	-------	----------------------------	-------

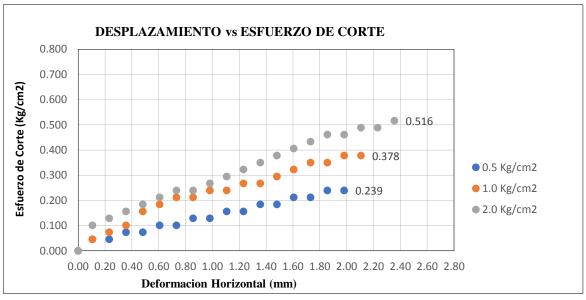
Esfuerzo normal (kg/cm2)

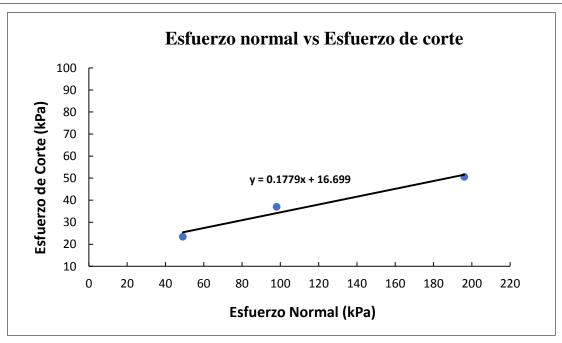
UNIVERSIDAD SAN MARTIN DE PORRES

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL MÉTODO PARA EL CORTE DIRECTO N.T.P. 339.171 / ASTM D-3080

		Características de	la muestra inalter	ada	
Área	36.00 cm2	Peso satura		144.94	<u> </u>
Altura	2.00 cm	Peso después de		143.11	
Volumen	72.00 cm3	Peso sec		110.91	MUESTRA 3
volumen	72.00 CHI3			32.20	
\/_I; dd	0.05	Peso agu			0.00
Velocidad	0.25 mm/min	Humedad	29.00 %	Peso específico	2.82
Tiempo	9.50 min	Saturación	98%	Relación vacíos	0.83
Desplazamien to	2.38 mm	Densidad húmeda	1.99 g/cm3	Densidad seca	1.54 g/cm3
		Volumen del sólido	39.33 cm3	Volumen de vacíos	32.67 cm3
Corrección	dial horizontal	1.00 x + 0.001	Factor ce	lda de carga	0.996 x + 0.652
		ENS	AYO 3		
Tiempo	Dial Horizontal	Corrección dial	Dial de carga	Corrección dial	Esfuerzo de corte
петтро	(mm)	horizontal (mm)	(kg)	de carga (kg)	(kg/cm2)
00'00"	0.000	0.000	0	0.000	0.000
30"	0.105	0.106	3	3.640	0.101
01'00"	0.230	0.231	4	4.636	0.129
30"	0.355	0.356	5	5.632	0.156
02'00"	0.480	0.481	6	6.628	0.184
30"	0.605	0.606	7	7.624	0.212
03'00"	0.730	0.731	8	8.620	0.239
30"	0.855	0.856	8	8.620	0.239
04'00"	0.980	0.981	9	9.616	0.267
30"	1.105	1.106	10	10.612	0.295
05'00"	1.230	1.231	11	11.608	0.322
30"	1.355	1.356	12	12.604	0.350
06'00"	1.480	1.481	13	13.600	0.378
30"	1.605	1.606	14	14.596	0.405
07'00"	1.730	1.731	15	15.592	0.433
30"	1.855	1.856	16	16.588	0.461
08'00"	1.980	1.981	16	16.588	0.461
30"	2.105	2.106	17	17.584	0.488
09'00"	2.230	2.231	17	17.584	0.488
30"	2.355	2.356	18	18.580	0.516

Esfuerzo cortante (kg/cm2)


0.516


2.000

Encovo	Esfuerzo	Esfuerzo de	Esfuerzo	Esfuerzo de
Ensayo	normal kg/cm2	corte kg/cm2	normal kPa	corte kPa
1	0.500	0.239	49.033	23.481
2	1.000	0.378	98.067	37.047
3	2.000	0.516	196.133	50.613

Resultados de ensayo	
Cohesión (kPa) = C	16.70
Ángulo de fricción interna = Φ	10.09

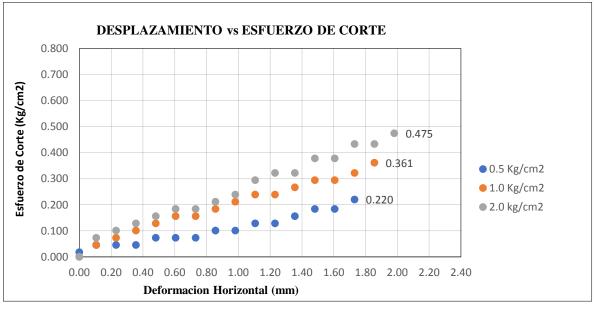
ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÍA CIVIL MÉTODO PARA EL CORTE DIRECTO N.T.P. 339.171 / ASTM D-3080

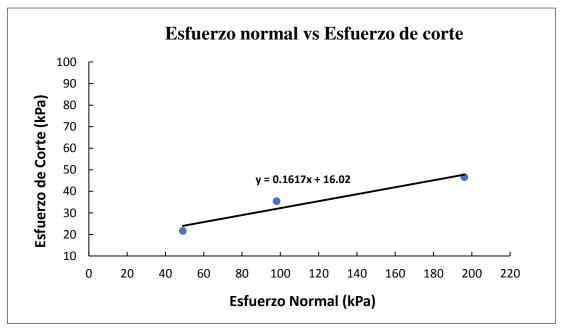
Recolección de datos y resultados

Calicata	05 Ubi	cación	Distrito La	mbayeque	Estado		1 mes	
		Caract	erísticas de la	muestra inalte	rada			
Área	36.00 cm2	Pe	Peso humedad natural (g)		143.60			
Altura	2.00 cm	Pes	Peso después del ensayo (g)		141.71			
Volumen	72.00 cm3		Peso seco	(g)	108.60		MUESTRA 1	
			Peso agua	ı (g)	33.11			
Velocidad	Velocidad 0.25 mm/min		ımedad	30.50 %	Peso específ	ico	2.82	
Tiempo	Tiempo 7.00 min		turación	99%	Relación vac	íos	0.87	
Desplazamient o	1.75 mm	Densio	lad húmeda	1.97 g/cm3	Densidad se	са	1.51 g/cm3	
		Volume	en del sólido	38.51 cm3	Volumen de va	icíos	33.49 cm3	
Corrección d	ial horizontal	1.00	x + 0.001	Factor	r celda de carga 0.996		0.996 x + 0.652	
	•	ENSA	YO 1					
Dial		Corre	cción dial	Dial de	Corrección dia	al de	Esfuerzo de	
Tiempo	Horizontal (mm)	horizo	ontal (mm)	carga (kg)	carga (kg)		corte (kg/cm2)	
00'00"	0.000		0.000	0	0.652		0.018	
30"	0.105	(0.106	1	1.648		0.046	
01'00"	0.230	(0.231	1	1.648		0.046	
30"	30" 0.355		0.356	1	1.648		0.046	
02'00"	02'00" 0.480		0.481	2	2.644		0.073	
30"	0.605	(0.606	2	2.644		0.073	
03'00"	0.730	(0.731	2	2.644		0.073	
30"	0.855	(0.856	3	3.640		0.101	
04'00"	0.980	(0.981	3	3.640		0.101	
30"	1.105		1.106	4	4.636		0.129	
05'00"	1.230		1.231	4	4.636		0.129	
30"	1.355		1.356	5	5.632		0.156	
06'00"	1.480		1.481	6	6.628		0.184	
30"	1.605		1.606	6	6.628		0.184	
07'00"	1.730		1.731	7	7.923		0.220	
Esfuerzo nor	mal (kg/cm2)		0.500	Esfuerzo	cortante (kg/cm2)	0.220	

Á	00.00	Características de la		· · · ·	
Área	36.00 cm2	Peso satura		143.94	
Altura	2.00 cm	Peso después del ensayo (g)		142.02	MUESTRA
Volumen	72.00 cm3	Peso seco (g)		109.02	
		Peso agua (g)		33.00	
Velocidad	0.25 mm/min	Humedad	30.30 %	Peso específico	2.82
Tiempo	7.50 min	Saturación	99%	Relación vacíos	0.86
Desplazamient o	1.88 mm	Densidad húmeda	1.97 g/cm3	Densidad seca	1.51 g/cm3
		Volumen del sólido	38.66 cm3	Volumen de vacíos	33.34 cm3
Corrección	dial horizontal	1.00 x + 0.001	Factor	celda de carga	0.996 x + 0.6
		ENSA	/O 2		
Dial Horizontal		Corrección dial	Dial de	Corrección dial	Esfuerzo d
пешро	(mm)	horizontal (mm)	carga (kg)	de carga (kg)	corte (kg/cm
00'00"	0.000	0.000	0	0.000	0.000
30"	0.105	0.106	1	1.648	0.046
01'00"	0.230	0.231	2	2.644	0.073
30"	0.355	0.356	3	3.640	0.101
02'00"	0.480	0.481	4	4.636	0.129
30"	0.605	0.606	5	5.632	0.156
03'00"	0.730	0.731	5	5.632	0.156
30"	0.855	0.856	6	6.628	0.184
04'00"	0.980	0.981	7	7.624	0.212
30"	1.105	1.106	8	8.620	0.239
05'00"	1.230	1.231	8	8.620	0.239
30"	1.355	1.356	9	9.616	0.267
06'00"	1.480	1.481	10	10.612	0.295
30"	1.605	1.606	10	10.612	0.295
07'00"	1.730	1.731	11	11.608	0.322
30"	1.855	1.856	12	13.002	0.361

|--|




Caracteristicas de la muestra inalterada Área 36.00 cm2 Peso asturado (g) 140.29 Altura 1.95 cm Peso después del ensayo (g) 138.39 Volumen 70.20 cm3 Peso agua (g) 106.10 Velocidad 0.25 mm/min Humedad 30.40 % Peso específico 2.82 Tiempo 8.00 min Saturación 99% Relación vacios 0.87 Desplazamien to 2.00 mm Densidad húmeda 1.97 g/cm3 Densidad seca 1.51 g/cm3 Corrección dial horizontal Volumen del sólido 37.62 cm3 Volumen de vacios 32.58 cm3 ENSAYO 3 ENSAYO 3 Tiempo Dial Horizontal (mm) Corrección dial horizontal (mm) Díal de carga (kg) Corrección dial de carga (kg) Esfuerzo de corte (kg/cm2) 0°00° 0.000 0.000 0.000 0.000 0.000 0.000 30° 0.105 0.106 2 2.644 0.073 01°00° 0.230 0.231						
Altura 1.95 cm Peso después del ensayo (g) 138.39 MUESTRA 3 Volumen 70.20 cm3 Peso seco (g) 106.10 Velocidad 0.25 mm/min Humedad 30.40 % Peso específico 2.82 Tiempo 8.00 min Saturación 99% Relación vacios 0.87 Desplazamien to 2.00 mm Densidad húmeda 1.97 g/cm3 Densidad seca 1.51 g/cm3 Corrección dial horizontal 1.00 x + 0.001 Factor celda de carga 0.996 x + 0.652 Tiempo Dial Horizontal (mm) Corrección dial horizontal (mm) Dial de carga (kg) Esfuerzo de corte (kg/cm2) 00'00° 0.000 0.000 0.000 0.000 0.000 30° 0.105 0.106 2 2.644 0.073 01'00° 0.230 0.231 3 3.640 0.101 30° 0.480 0.481 5 5.632 0.156 30° 0.605 0.606 6 6.628 0.184 03'0						
Volumen 70.20 cm3 Peso seco (g) 106.10 Peso agua (g) 32.29 Velocidad 0.25 mm/min Humedad 30.40 % Peso específico 2.82 Tiempo 8.00 min Saturación 99% Relación vacios 0.87 Desplazamien to 2.00 mm Densidad húmeda 1.97 g/cm3 Densidad seca 1.51 g/cm3 ENSAYO 3 ENSAYO 3 ENSAYO 3 Tiempo Dial Horizontal Corrección dial horizontal (mm) Dial de carga verso de corte (kg/cm2) Esfuerzo de corte (kg/cm2) 00°0° 0.000 0.000 0.000 0.000 0.000 0.000 30° 0.105 0.106 2 2.644 0.073 01°00° 0.230 0.231 3 3.640 0.101 30° 0.155 0.356 4 4.636 0.129 02′00° 0.480 0.481 5 5.632 0.156 30° 0.605 0.606 <	Área	36.00 cm2	Peso satur	ado (g)	140.29	
Volumen 70.20 cm3 Peso seco (g) 106.10 Peso agua (g) 32.29 Velocidad 0.25 mm/min Humedad 30.40 % Peso específico 2.82 Tiempo 8.00 min Saturación 99% Relación vacios 0.87 Desplazamien to 2.00 mm Densidad húmeda 1.97 g/cm3 Densidad seca 1.51 g/cm3 ENSAYO 3 ENSAYO 3 ENSAYO 3 Tiempo Dial Horizontal (mm) Corrección dial horizontal (kg) Dial de carga (kg) Corrección dial (kg/cm2) Esfuerzo de corte (kg/cm2) 00°00" 0.000 0.000 0.000 0.000 0.000 30" 0.105 0.106 2 2.644 0.073 01°00" 0.230 0.231 3 3.640 0.101 30" 0.355 0.356 4 4.636 0.129 02'00" 0.480 0.481 5 5.632 0.156 30" 0.605 0.606	Altura	1.95 cm	Peso después de	el ensayo (g)	138.39	MUESTRA 3
Velocidad 0.25 mm/min Humedad 30.40 % Peso específico 2.82 Tiempo 8.00 min Saturación 99% Relación vacios 0.87 Desplazamien to 2.00 mm Densidad húmeda 1.97 g/cm3 Densidad seca 1.51 g/cm3 Corrección dial horizontal 1.00 x + 0.001 Factor celda de carga 0.996 x + 0.652 Tiempo Dial Horizontal (mm) Corrección dial horizontal (mm) Dial de carga (kg) Corrección dial de carga (kg/cm2) 00°00° 0.000 0.000 0.000 0.000 0.000 30° 0.105 0.106 2 2.644 0.073 01°00° 0.230 0.231 3 3.640 0.101 30° 0.355 0.356 4 4.636 0.129 02'00° 0.480 0.481 5 5.632 0.156 30° 0.605 0.606 6 6.628 0.184 03°0° 0.730 0.731 6 6.628 0.184	Volumen	70.20 cm3	Peso sec	o (g)	106.10	
Tiempo 8.00 min Saturación 99% Relación vacíos 0.87 Desplazamien to 2.00 mm Densidad húmeda 1.97 g/cm3 Densidad seca 1.51 g/cm3 Corrección dial horizontal 1.00 x + 0.001 Factor celda de carga 0.996 x + 0.652 Tiempo Dial Horizontal (mm) Corrección dial horizontal (mm) Dial de carga (kg) Corrección dial de carga (kg) Esfuerzo de corte (kg/cm2) 00°00° 0.000 0.000 0.000 0.000 0.000 30° 0.105 0.106 2 2.644 0.073 01°00° 0.230 0.231 3 3.640 0.101 30° 0.355 0.356 4 4.636 0.129 02'00° 0.480 0.481 5 5.632 0.156 30° 0.605 0.606 6 6.628 0.184 03'00° 0.730 0.731 6 6.628 0.184 03'00° 0.980 0.981 8 8.620 0.239			Peso agu	ıa (g)	32.29	
Despia	Velocidad	0.25 mm/min	Humedad	30.40 %	Peso específico	2.82
Tiempo	Tiempo	8.00 min	Saturación	99%	Relación vacíos	0.87
Volumen del sólido 37.62 cm3 vacíos 32.58 cm3	•	2.00 mm	Densidad húmeda	1.97 g/cm3	Densidad seca	1.51 g/cm3
Tiempo Dial Horizontal (mm) Corrección dial horizontal (mm) Dial de carga (kg) Corrección dial de carga (kg) Esfuerzo de corte (kg/cm2) 00'00" 0.000 0.000 0.000 0.000 0.000 30" 0.105 0.106 2 2.644 0.073 01'00" 0.230 0.231 3 3.640 0.101 30" 0.355 0.356 4 4.636 0.129 02'00" 0.480 0.481 5 5.632 0.156 30" 0.605 0.606 6 6.628 0.184 03'00" 0.730 0.731 6 6.628 0.184 30" 0.855 0.856 7 7.624 0.212 04'00" 0.980 0.981 8 8.620 0.239 30" 1.105 1.106 10 10.612 0.295 05'00" 1.230 1.231 11 11.608 0.322 30" 1.355 1.356 11			Volumen del sólido	37.62 cm3		32.58 cm3
Tiempo Dial Horizontal (mm) Corrección dial horizontal (mm) Dial de carga (kg) Corrección dial de carga (kg) Esfuerzo de corte (kg/cm2) 00'00" 0.000 0.000 0.000 0.000 0.000 30" 0.105 0.106 2 2.644 0.073 01'00" 0.230 0.231 3 3.640 0.101 30" 0.355 0.356 4 4.636 0.129 02'00" 0.480 0.481 5 5.632 0.156 30" 0.605 0.606 6 6.628 0.184 03'00" 0.730 0.731 6 6.628 0.184 30" 0.855 0.856 7 7.624 0.212 04'00" 0.980 0.981 8 8.620 0.239 30" 1.105 1.106 10 10.612 0.295 05'00" 1.230 1.231 11 11.608 0.322 30" 1.355 1.356 11	Corrección	dial horizontal	1.00 x + 0.001	Factor ce	lda de carga	0.996 x + 0.652
Tiempo (mm) horizontal (mm) (kg) de carga (kg) (kg/cm2) 00'00" 0.000 0.000 0.000 0.000 30" 0.105 0.106 2 2.644 0.073 01'00" 0.230 0.231 3 3.640 0.101 30" 0.355 0.356 4 4.636 0.129 02'00" 0.480 0.481 5 5.632 0.156 30" 0.605 0.606 6 6.628 0.184 03'00" 0.730 0.731 6 6.628 0.184 30" 0.855 0.856 7 7.624 0.212 04'00" 0.980 0.981 8 8.620 0.239 30" 1.105 1.106 10 10.612 0.295 05'00" 1.230 1.231 11 11.608 0.322 30" 1.355 1.356 11 11.608 0.322 06'00" 1.480			ENS	SAYO 3		
(mm) horizontal (mm) (kg) de carga (kg) (kg/cm2) 00'00" 0.000 0.000 0.000 0.000 30" 0.105 0.106 2 2.644 0.073 01'00" 0.230 0.231 3 3.640 0.101 30" 0.355 0.356 4 4.636 0.129 02'00" 0.480 0.481 5 5.632 0.156 30" 0.605 0.606 6 6.628 0.184 03'00" 0.730 0.731 6 6.628 0.184 30" 0.855 0.856 7 7.624 0.212 04'00" 0.980 0.981 8 8.620 0.239 30" 1.105 1.106 10 10.612 0.295 05'00" 1.230 1.231 11 11.608 0.322 06'00" 1.480 1.481 13 13.600 0.378 30" 1.605 1.606<	Dial Horizontal		Corrección dial	Dial de carga	Corrección dial	Esfuerzo de corte
30" 0.105 0.106 2 2.644 0.073 01'00" 0.230 0.231 3 3.640 0.101 30" 0.355 0.356 4 4.636 0.129 02'00" 0.480 0.481 5 5.632 0.156 30" 0.605 0.606 6 6.628 0.184 03'00" 0.730 0.731 6 6.628 0.184 30" 0.855 0.856 7 7.624 0.212 04'00" 0.980 0.981 8 8.620 0.239 30" 1.105 1.106 10 10.612 0.295 05'00" 1.230 1.231 11 11.608 0.322 30" 1.355 1.356 11 11.608 0.322 06'00" 1.480 1.481 13 13.600 0.378 30" 1.605 1.606 13 13.600 0.378 07'00" 1.730 <th>Пешро</th> <th>(mm)</th> <th>horizontal (mm)</th> <th>(kg)</th> <th>de carga (kg)</th> <th>(kg/cm2)</th>	Пешро	(mm)	horizontal (mm)	(kg)	de carga (kg)	(kg/cm2)
01'00" 0.230 0.231 3 3.640 0.101 30" 0.355 0.356 4 4.636 0.129 02'00" 0.480 0.481 5 5.632 0.156 30" 0.605 0.606 6 6.628 0.184 03'00" 0.730 0.731 6 6.628 0.184 30" 0.855 0.856 7 7.624 0.212 04'00" 0.980 0.981 8 8.620 0.239 30" 1.105 1.106 10 10.612 0.295 05'00" 1.230 1.231 11 11.608 0.322 30" 1.355 1.356 11 11.608 0.322 06'00" 1.480 1.481 13 13.600 0.378 30" 1.605 1.606 13 13.600 0.378 07'00" 1.730 1.731 15 15.592 0.433 30" 1.855<	00'00"	0.000	0.000	0	0.000	0.000
30" 0.355 0.356 4 4.636 0.129 02'00" 0.480 0.481 5 5.632 0.156 30" 0.605 0.606 6 6.628 0.184 03'00" 0.730 0.731 6 6.628 0.184 30" 0.855 0.856 7 7.624 0.212 04'00" 0.980 0.981 8 8.620 0.239 30" 1.105 1.106 10 10.612 0.295 05'00" 1.230 1.231 11 11.608 0.322 30" 1.355 1.356 11 11.608 0.322 06'00" 1.480 1.481 13 13.600 0.378 30" 1.605 1.606 13 13.600 0.378 07'00" 1.730 1.731 15 15.592 0.433 30" 1.855 1.856 15 15.592 0.433	30"	0.105	0.106	2	2.644	0.073
02'00" 0.480 0.481 5 5.632 0.156 30" 0.605 0.606 6 6.628 0.184 03'00" 0.730 0.731 6 6.628 0.184 30" 0.855 0.856 7 7.624 0.212 04'00" 0.980 0.981 8 8.620 0.239 30" 1.105 1.106 10 10.612 0.295 05'00" 1.230 1.231 11 11.608 0.322 30" 1.355 1.356 11 11.608 0.322 06'00" 1.480 1.481 13 13.600 0.378 30" 1.605 1.606 13 13.600 0.378 07'00" 1.730 1.731 15 15.592 0.433 30" 1.855 1.856 15 15.592 0.433	01'00"	0.230	0.231	3	3.640	0.101
30" 0.605 0.606 6 6.628 0.184 03'00" 0.730 0.731 6 6.628 0.184 30" 0.855 0.856 7 7.624 0.212 04'00" 0.980 0.981 8 8.620 0.239 30" 1.105 1.106 10 10.612 0.295 05'00" 1.230 1.231 11 11.608 0.322 30" 1.355 1.356 11 11.608 0.322 06'00" 1.480 1.481 13 13.600 0.378 30" 1.605 1.606 13 13.600 0.378 07'00" 1.730 1.731 15 15.592 0.433 30" 1.855 1.856 15 15.592 0.433	30"	0.355	0.356	4	4.636	0.129
03'00" 0.730 0.731 6 6.628 0.184 30" 0.855 0.856 7 7.624 0.212 04'00" 0.980 0.981 8 8.620 0.239 30" 1.105 1.106 10 10.612 0.295 05'00" 1.230 1.231 11 11.608 0.322 30" 1.355 1.356 11 11.608 0.322 06'00" 1.480 1.481 13 13.600 0.378 30" 1.605 1.606 13 13.600 0.378 07'00" 1.730 1.731 15 15.592 0.433 30" 1.855 1.856 15 15.592 0.433	02'00"	0.480	0.481	5	5.632	0.156
30" 0.855 0.856 7 7.624 0.212 04'00" 0.980 0.981 8 8.620 0.239 30" 1.105 1.106 10 10.612 0.295 05'00" 1.230 1.231 11 11.608 0.322 30" 1.355 1.356 11 11.608 0.322 06'00" 1.480 1.481 13 13.600 0.378 30" 1.605 1.606 13 13.600 0.378 07'00" 1.730 1.731 15 15.592 0.433 30" 1.855 1.856 15 15.592 0.433	30"	0.605	0.606	6	6.628	0.184
04'00" 0.980 0.981 8 8.620 0.239 30" 1.105 1.106 10 10.612 0.295 05'00" 1.230 1.231 11 11.608 0.322 30" 1.355 1.356 11 11.608 0.322 06'00" 1.480 1.481 13 13.600 0.378 30" 1.605 1.606 13 13.600 0.378 07'00" 1.730 1.731 15 15.592 0.433 30" 1.855 1.856 15 15.592 0.433	03'00"	0.730	0.731	6	6.628	0.184
30" 1.105 1.106 10 10.612 0.295 05'00" 1.230 1.231 11 11.608 0.322 30" 1.355 1.356 11 11.608 0.322 06'00" 1.480 1.481 13 13.600 0.378 30" 1.605 1.606 13 13.600 0.378 07'00" 1.730 1.731 15 15.592 0.433 30" 1.855 1.856 15 15.592 0.433	30"	0.855	0.856	7	7.624	0.212
05'00" 1.230 1.231 11 11.608 0.322 30" 1.355 1.356 11 11.608 0.322 06'00" 1.480 1.481 13 13.600 0.378 30" 1.605 1.606 13 13.600 0.378 07'00" 1.730 1.731 15 15.592 0.433 30" 1.855 1.856 15 15.592 0.433	04'00"	0.980	0.981	8	8.620	0.239
30" 1.355 1.356 11 11.608 0.322 06'00" 1.480 1.481 13 13.600 0.378 30" 1.605 1.606 13 13.600 0.378 07'00" 1.730 1.731 15 15.592 0.433 30" 1.855 1.856 15 15.592 0.433	30"	1.105	1.106	10	10.612	0.295
06'00" 1.480 1.481 13 13.600 0.378 30" 1.605 1.606 13 13.600 0.378 07'00" 1.730 1.731 15 15.592 0.433 30" 1.855 1.856 15 15.592 0.433	05'00"	1.230	1.231	11	11.608	0.322
30" 1.605 1.606 13 13.600 0.378 07'00" 1.730 1.731 15 15.592 0.433 30" 1.855 1.856 15 15.592 0.433	30"	1.355	1.356	11	11.608	0.322
07'00" 1.730 1.731 15 15.592 0.433 30" 1.855 1.856 15 15.592 0.433	06'00"	1.480	1.481	13	13.600	0.378
30" 1.855 1.856 15 15.592 0.433	30"	1.605	1.606	13	13.600	0.378
	07'00"	1.730	1.731	15	15.592	0.433
08'00" 1.980 1.981 17 17.086 0.475	30"	1.855	1.856	15	15.592	0.433
	08'00"	1.980	1.981	17	17.086	0.475

Градиа	Esfuerzo	Esfuerzo de	Esfuerzo	Esfuerzo de
Ensayo	normal kg/cm2	corte kg/cm2	normal kPa	corte kPa
1	0.500	0.220	49.033	21.582
2	1.000	0.361	98.067	35.419
3	2.000	0.475	196.133	46.543

Resultados de ensayo	
Cohesión (kPa) = C	16.02
Ángulo de fricción interna = Φ	9.18

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÍA CIVIL MÉTODO PARA EL CORTE DIRECTO N.T.P. 339.171 / ASTM D-3080

Recolección de datos y resultados

Calicata	06	Ubicación	Distrito Lambayeque	Estado	0 horas
Gaileata	00	Obloadion	District Earlibayeque		U HOLGS

		Características de la	muestra inalter	ada	
Área	36.00 cm2	Peso humedad r	natural (g)	-	
Altura	1.95 cm	Peso después del ensayo (g)		124.18	MUESTRA 1
Volumen	70.20 cm3	Peso seco (g)		103.78	
		Peso agua	(g)	20.40	
Velocidad	0.25 mm/min	Humedad	19.70 %	Peso específico	2.70
Tiempo	8.50 min	Saturación	64%	Relación vacíos	0.83
Desplazamient o	2.125 mm	Densidad húmeda	1.77 g/cm3	Densidad seca	1.48 g/cm3
		Volumen del sólido	38.44 cm3	Volumen de vacíos	31.76 cm3
Corrección dial horizontal		1.00 x + 0.001	001 Factor celda de carga 0.996		0.996 x + 0.652
		ENSA	YO 1		
	Dial	Corrección dial	Dial de	Dial de Corrección dial de	
Tiempo	Horizontal	horizontal (mm)	carga (kg)	carga (kg)	Esfuerzo de corte (kg/cm2)
0010011	(mm)	0.000		0.000	
00'00"	0.000	0.000	0	0.000	0.000
30"	0.105	0.106	2	2.644	0.073
01'00"	0.230	0.231	3	3.640	0.101
30"	0.355	0.356	4	4.636	0.129
02'00"	0.480	0.481	5	5.632	0.156
30"	0.605	0.606	6	6.628	0.184
03'00"	0.730	0.731	0.731 6 6.628		0.184
30"	0.855	0.856	7	7.624	0.212
04'00"	0.980	0.981	8	8.620	0.239
30"	1.105	1.106	9	9.616	0.267
05'00"	1.230	1.231	10	10.612	0.295
30"	1.355	1.356	12	12.604	0.350
06'00"	1.480	1.481	12	12.604	0.350
30"	1.605	1.606	13	13.600	0.378
07'00"	1.730	1.731	14	14.596	0.405
30"	1.855	1.856	14	14.596	0.405
08'00"	1.980	1.981	14	14.596	0.405
30"	2.105	2.106	15	15.592	0.433

Esfuerzo normal (kg/cm2)	0.500	Esfuerzo cortante (kg/cm2)	0.433

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL MÉTODO PARA EL CORTE DIRECTO N.T.P. 339.171 / ASTM D-3080

		Cavantavíntiana da la	warrantun innitar		
,	T	Características de la		rada T	<u> </u>
Área	36.00 cm2	Peso satura	Peso saturado (g) Peso después del ensayo (g)		
Altura	1.95 cm	Peso después del	ensayo (g)	124.53	MUESTRA 2
Volumen	70.20 cm3	Peso seco	(g)	104.09	
		Peso agua (g)		20.44	
Velocidad	0.25 mm/min	Humedad	19.60 %	Peso específico	2.70
Tiempo	9.00 min	Saturación	64%	Relación vacíos	0.82
Desplazamient o	2.250 mm	Densidad húmeda	Densidad húmeda 1.77 g/cm3		1.48 g/cm3
		Volumen del sólido	38.55 cm3	Volumen de vacíos	31.65 cm3
Corrección	dial horizontal	1.00 x + 0.001	1.00 x + 0.001 Factor celda de carga		0.996 x + 0.652
		ENSA	YO 2		
	Dial Horizontal	Corrección dial	Dial de	Corrección dial de	Esfuerzo de
Tiempo	(mm)	horizontal (mm)	carga (kg)	carga (kg)	corte (kg/cm2)
00'00"	0.000	0.000	0	0.000	0.000
30"	0.105	0.106	4	4.636	0.129
01'00"	0.230	0.231	6	6.628	0.184
30"	0.355	0.356	6	6.628	0.184
02'00"	0.480	0.481	7	7.624	0.212
30"	0.605	0.606	8	8.620	0.239
03'00"	0.730	0.731	8	8.620	0.239
30"	0.855	0.856	9	9.616	0.267
04'00"	0.980	0.981	11	11.608	0.322
30"	1.105	1.106	13	13.600	0.378
05'00"	1.230	1.231	14	14.596	0.405
30"	1.355	1.356	15	15.592	0.433
06'00"	1.480	1.481	15	15.592	0.433
30"	1.605	1.606	16	16.588	0.461
07'00"	1.730	1.731	16	16.588	0.461
30"	1.855	1.856	17	17.584	0.488
08'00"	1.980	1.981	17	17.584	0.488
30"	2.105	2.106	18	18.580	0.516
09'00"	2.230	2.231	19	19.576	0.544

Esfuerzo normal (kg/cm2)	1.000	Esfuerzo cortante (kg/cm2)	0.544
--------------------------	-------	----------------------------	-------

Esfuerzo normal (kg/cm2)

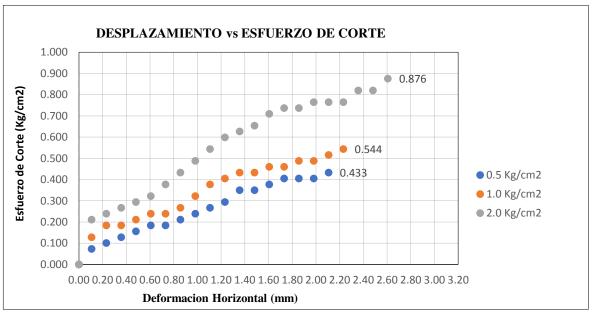
UNIVERSIDAD SAN MARTIN DE PORRES

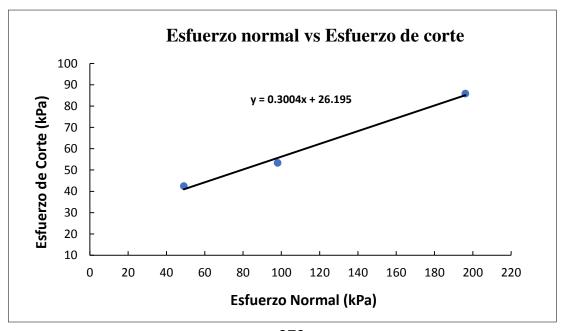
ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL <u>MÉTODO PARA EL CORTE DIRECTO</u> N.T.P. 339.171 / ASTM D-3080

		Características de	la muestra inalte	rada	
Área	36.00 cm2	Peso satura	ado (g)	-	
Altura	1.95 cm	Peso después de	el ensayo (g)	123.91	
Volumen	70.20 cm3	Peso sec	:o (g)	103.55	MUESTRA 3
		Peso agu	ıa (g)	20.36	-
Velocidad	0.25 mm/min	Humedad	19.70 %	Peso específico	2.70
Tiempo	10.50 min	Saturación	64%	Relación vacíos	0.83
Desplazamien to	2.625 mm	Densidad húmeda	1.77 g/cm3	Densidad seca	1.48 g/cm3
		Volumen del sólido	38.35 cm3	Volumen de vacíos	31.85 cm3
Corrección	dial horizontal	1.00 x + 0.001	Factor ce	elda de carga	0.996 x + 0.652
		ENS	SAYO 3		•
Tiempo	Dial Horizontal	ial Horizontal Corrección dial Dial de carga		Corrección dial	Esfuerzo de corte
Hempo	(mm)	horizontal (mm)	(kg)	de carga (kg)	(kg/cm2)
00'00"	0.000	0.000	0	0.000	0.000
30"	0.105	0.106	7	7.624	0.212
01'00"	0.230	0.231	8	8.620	0.239
30"	0.355	0.356	9	9.616	0.267
02'00"	0.480	0.481	10	10.612	0.295
30"	0.605	0.606	11	11.608	0.322
03'00"	0.730	0.731	13	13.600	0.378
30"	0.855	0.856	15	15.592	0.433
04'00"	0.980	0.981	17	17.584	0.488
30"	1.105	1.106	19	19.576	0.544
05'00"	1.230	1.231	21	21.568	0.599
30"	1.355	1.356	22	22.564	0.627
06'00"	1.480	1.481	23	23.560	0.654
30"	1.605	1.606	25	25.552	0.710
07'00"	1.730	1.731	26	26.548	0.737
30"	1.855	1.856	26	26.548	0.737
08'00"	1.980	1.981	27	27.544	0.765
30"	2.105	2.106	27	27.544	0.765
09'00"	2.230	2.231	27	27.544	0.765
30"	2.355	2.356	29	29.536	0.820
10'00"	2.480	2.481	29	29.536	0.820
30"	2.605	2.606	31	31.528	0.876

Esfuerzo cortante (kg/cm2)

0.876


2.000



ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL <u>MÉTODO PARA EL CORTE DIRECTO</u> N.T.P. 339.171 / ASTM D-3080

F22212	Esfuerzo	Esfuerzo de	Esfuerzo	Esfuerzo de
Ensayo	normal kg/cm2	corte kg/cm2	normal kPa	corte kPa
1	0.500	0.433	49.033	42.474
2	1.000	0.544	98.067	53.326
3	2.000	0.876	196.133	85.884

Resultados de ensayo			
Cohesión (kPa) = C	26.19		
Ángulo de fricción interna = Φ	16.72		

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL MÉTODO PARA EL CORTE DIRECTO N.T.P. 339.171 / ASTM D-3080

Calicata 06 Ubicaci	n Distrito Lambayeque	Estado	3 horas
---------------------	-----------------------	--------	---------

		Características de la	muestra inalter	ada	
Área	36.00 cm2	Peso humedad r	natural (g)	130.99	
Altura	1.95 cm	Peso después del	Peso después del ensayo (g)		MUESTRA 1
Volumen	70.20 cm3	Peso seco	(g)	103.71	WOESTRA I
		Peso agua (g)		25.76	
Velocidad	0.25 mm/min	Humedad	Humedad 24.80 %		2.82
Tiempo	8.50 min	Saturación	77%	Relación vacíos	0.91
Desplazamient o	2.13 mm	Densidad húmeda	Densidad húmeda 1.84 g/cm3		1.48 g/cm3
		Volumen del sólido	36.78 cm3	Volumen de vacíos	33.42 cm3
Corrección d	ial horizontal	1.00 x + 0.001 Factor celda de carga		0.996 x + 0.652	
		ENSA	YO 1		
Tiempo	Dial Horizontal (mm)	Corrección dial horizontal (mm)	Dial de Corrección dial de carga (kg) carga (kg)		Esfuerzo de corte (kg/cm2)
00'00"	0.000	0.000	0	0.000	0.000
30"	0.105	0.106	1	1.648	0.046
01'00"	0.230	0.231	2	2.644	0.073
30"	0.355	0.356	3	3.640	0.101
02'00"	0.480	0.481	4	4.636	0.129
30"	0.605	0.606	5	5.632	0.156
03'00"	0.730	0.731	5	5.632	0.156
30"	0.855	0.856	6	6.628	0.184
04'00"	0.980	0.981	7	7.624	0.212
30"	1.105	1.106	8	8.620	0.239
05'00"	1.230	1.231	9	9.616	0.267
30"	1.355	1.356	10	10.612	0.295
06'00"	1.480	1.481	11	11.608	0.322
30"	1.605	1.606	11	11.608	0.322
07'00"	1.730	1.731	12	12.604	0.350
30"	1.855	1.856	12	12.604	0.350
08'00"	1.980	1.981	13	13.600	0.378
30"	2.105	2.106	13	13.600	0.378

Esfuerzo normal (kg/cm2)	0.500	Esfuerzo cortante (kg/cm2)	0.378
--------------------------	-------	----------------------------	-------

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL MÉTODO PARA EL CORTE DIRECTO N.T.P. 339.171 / ASTM D-3080

	Características de la muestra inalterada					
Área	36.00 cm2	Peso satura	do (g)	131.31		
Altura	1.95 cm	Peso después del	ensayo (g)	129.72		
Volumen	70.20 cm3	Peso seco	(a)	104.07	MUESTRA 2	
		Peso agua		25.65		
Velocidad	0.25 mm/min	Humedad	24.60 %	Peso específico	2.82	
	9.00 min	Saturación	77%	Relación vacíos	0.90	
Tiempo	9.00 min	Saturación	77%	Relacion vacios	0.90	
Desplazamient o	2.25 mm	Densidad húmeda 1.85 g/cm3		Densidad seca	1.48 g/cm3	
		Volumen del sólido 36.90 cm3 Volumen de vacíos		33.30 cm3		
Corrección o	lial horizontal	1.00 x + 0.001	Factor	celda de carga	0.996 x + 0.652	
		ENSA	(O 2			
Tiemne	Dial Horizontal	Corrección dial	Dial de	Corrección dial	Esfuerzo de	
Tiempo	(mm)	horizontal (mm)	carga (kg)	de carga (kg)	corte (kg/cm2)	
00'00"	0.000	0.000	0	0.000	0.000	
30"	0.105	0.106	3	3.640	0.101	
01'00"	0.230	0.231	5	5.632	0.156	
30"	0.355	0.356	5	5.632	0.156	
02'00"	0.480	0.481	6	6.628	0.184	
30"	0.605	0.606	7	7.624	0.212	
03'00"	0.730	0.731	7	7.624	0.212	
30"	0.855	0.856	8	8.620	0.239	
04'00"	0.980	0.981	10	10.612	0.295	
30"	1.105	1.106	12	12.604	0.350	
05'00"	1.230	1.231	13	13.600	0.378	
30"	1.355	1.356	14	14.596	0.405	
06'00"	1.480	1.481	14	14.596	0.405	
30"	1.605	1.606	15	15.592	0.433	
07'00"	1.730	1.731	15	15.592	0.433	
30"	1.855	1.856	16	16.588	0.461	
08'00"	1.980	1.981	16	16.588	0.461	
30"	2.105	2.106	17	17.584	0.488	
09'00"	2.230	2.231	19	19.576	0.544	

Esfuerzo normal (kg/cm2)	1.000	Esfuerzo cortante (kg/cm2)	0.544
--------------------------	-------	----------------------------	-------

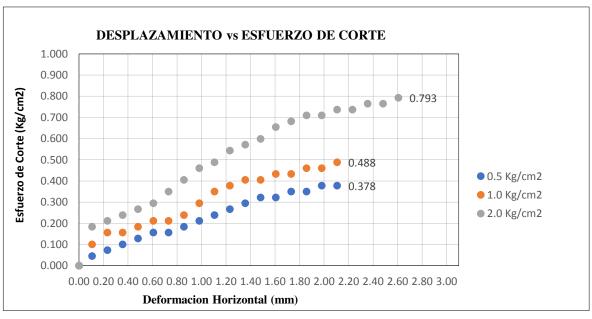
ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL <u>MÉTODO PARA EL CORTE DIRECTO</u> N.T.P. 339.171 / ASTM D-3080

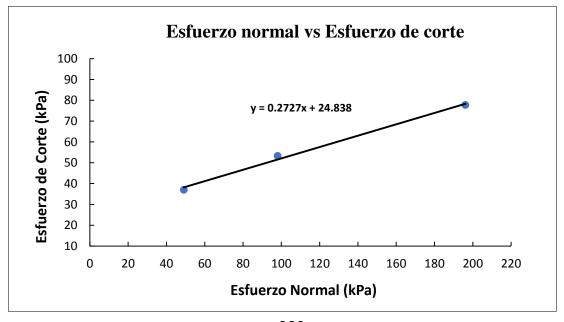
		Características de	la muestra inalter	ada	
Área	36.00 cm2	Peso satura	ado (g)	131.02	
Altura	1.95 cm	Peso después de	el ensayo (g)	129.39	
Volumen	70.20 cm3	Peso sec	o (g)	103.75	MUESTRA 3
	<u> </u>	Peso agu	a (g)	25.64	
Velocidad	0.25 mm/min	Humedad	24.70 %	Peso específico	2.82
Tiempo	10.50 min	Saturación	77%	Relación vacíos	0.91
Desplazamien to	2.63 mm	Densidad húmeda	1.84 g/cm3	Densidad seca	1.48 g/cm3
		Volumen del sólido	36.79 cm3	Volumen de vacíos	33.41 cm3
Corrección	dial horizontal	1.00 x + 0.001	1.00 x + 0.001 Factor celo		0.996 x + 0.652
		ENS	AYO 3		
Tiempo	Dial Horizontal	Corrección dial	Dial de carga	Corrección dial	Esfuerzo de corte
Пешро	(mm)	horizontal (mm)	(kg)	de carga (kg)	(kg/cm2)
00'00"	0.000	0.000	0	0.000	0.000
30"	0.105	0.106	6	6.628	0.184
01'00"	0.230	0.231	7	7.624	0.212
30"	0.355	0.356	8	8.620	0.239
02'00"	0.480	0.481	9	9.616	0.267
30"	0.605	0.606	10	10.612	0.295
03'00"	0.730	0.731	12	12.604	0.350
30"	0.855	0.856	14	14.596	0.405
04'00"	0.980	0.981	16	16.588	0.461
30"	1.105	1.106	17	17.584	0.488
05'00"	1.230	1.231	19	19.576	0.544
30"	1.355	1.356	20	20.572	0.571
06'00"	1.480	1.481	21	21.568	0.599
30"	1.605	1.606	23	23.560	0.654
07'00"	1.730	1.731	24	24.556	0.682
30"	1.855	1.856	25	25.552	0.710
08'00"	1.980	1.981	25	25.552	0.710
30"	2.105	2.106	26	26.548	0.737
09'00"	2.230	2.231	26	26.548	0.737
30"	2.355	2.356	27	27.544	0.765
10'00"	2.480	2.481	27	27.544	0.765
30"	2.605	2.606	28	28.540	0.793

Esfuerzo cortante (kg/cm2)

0.793

2.000


Esfuerzo normal (kg/cm2)



ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL <u>MÉTODO PARA EL CORTE DIRECTO</u> N.T.P. 339.171 / ASTM D-3080

Engavo	Esfuerzo	Esfuerzo de	Esfuerzo	Esfuerzo de
Ensayo	normal kg/cm2	corte kg/cm2	normal kPa	corte kPa
1	0.500	0.378	49.033	37.047
2	1.000	0.544	98.067	53.326
3	2.000	0.793	196.133	77.745

Resultados de ensayo	
Cohesión (kPa) = C	24.84
Ángulo de fricción interna = Φ	15.25

Calicata

UNIVERSIDAD SAN MARTIN DE PORRES

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL <u>MÉTODO PARA EL CORTE DIRECTO</u> N.T.P. 339.171 / ASTM D-3080

Estado

8 horas

Recolección de datos y resultados

Ubicación

06

		Características de la	muestra inalter	ada	
Área	36.00 cm2	Peso humedad r	natural (g)	138.69	
Altura	2.00 cm	Peso después del	ensayo (g)	137.02	MUESTRA 1
Volumen	72.00 cm3	Peso seco	(g)	106.42	WIDESTRAT
		Peso agua	a (g)	30.60	
Velocidad	0.25 mm/min	Humedad	28.80 %	Peso específico	2.82
Tiempo	8.00 min	Saturación	89%	Relación vacíos	0.91
Desplazamient o	2.00 mm	Densidad húmeda	1.90 g/cm3	Densidad seca	1.48 g/cm3
		Volumen del sólido	37.74 cm3	Volumen de vacíos	34.26 cm3
Corrección di	al horizontal	1.00 x + 0.001	Factor celda de carga		0.996 x + 0.65
		ENSA	YO 1		
Tiempo	Dial Horizontal	Corrección dial	Dial de	Corrección dial de	Esfuerzo de
	(mm)	horizontal (mm)	carga (kg)	carga (kg)	corte (kg/cm2
00'00"	0.000	0.000	0	0.000	0.000
30"	0.105	0.106	1	1.648	0.046

Distrito Lambayeque

Tiempo	Horizontal (mm)	Corrección dial horizontal (mm)	Dial de carga (kg)	Corrección dial de carga (kg)	Esfuerzo de corte (kg/cm2)
00'00"	0.000	0.000	0	0.000	0.000
30"	0.105	0.106	1	1.648	0.046
01'00"	0.230	0.231	2	2.644	0.073
30"	0.355	0.356	2	2.644	0.073
02'00"	0.480	0.481	3	3.640	0.101
30"	0.605	0.606	4	4.636	0.129
03'00"	0.730	0.731	4	4.636	0.129
30"	0.855	0.856	5	5.632	0.156
04'00"	0.980	0.981	6	6.628	0.184
30"	1.105	1.106	7	7.624	0.212
05'00"	1.230	1.231	7	7.624	0.212
30"	1.355	1.356	9	9.616	0.267
06'00"	1.480	1.481	10	10.612	0.295
30"	1.605	1.606	10	10.612	0.295
07'00"	1.730	1.731	11	11.608	0.322
30"	1.855	1.856	12	12.604	0.350
08'00"	1.980	1.981	12	12.604	0.350

Esfuerzo normal (kg/cm2)	0.500	Esfuerzo cortante (kg/cm2)	0.350	1
--------------------------	-------	----------------------------	-------	---

Esfuerzo normal (kg/cm2)

UNIVERSIDAD SAN MARTIN DE PORRES

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL MÉTODO PARA EL CORTE DIRECTO N.T.P. 339.171 / ASTM D-3080

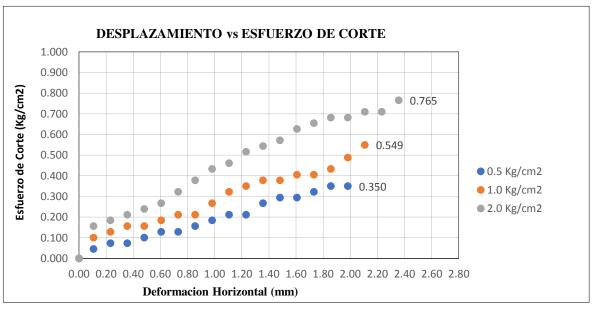
		Características de la	muestra inaltera	ada		
Área	36.00 cm2	Peso satura	do (g)	138.49		
Altura	2.00 cm	Peso después del	ensayo (g)	136.77		
Volumen	72.00 cm3	Peso seco	(g)	106.37	MUESTRA 2	
		Peso agua	Peso agua (g)			
Velocidad	0.25 mm/min	Humedad	28.60 %	Peso específico	2.82	
Tiempo	8.50 min	Saturación	89%	Relación vacíos	0.91	
Desplazamient o	2.13 mm	Densidad húmeda	1.90 g/cm3	Densidad seca	1.48 g/cm3	
<u>-</u>		Volumen del sólido	37.72 cm3	Volumen de vacíos	34.28 cm3	
Corrección o	dial horizontal	1.00 x + 0.001	Factor	celda de carga	0.996 x + 0.65	
		ENSA	(O 2			
Tiempo	Dial Horizontal (mm)	Corrección dial horizontal (mm)	Dial de carga (kg)	Corrección dial de carga (kg)	Esfuerzo de corte (kg/cm2	
00'00"	0.000	0.000	0	0.000	0.000	
30"	0.105	0.106	3	3.640	0.101	
01'00"	0.230	0.231	4	4.636	0.129	
30"	0.355	0.356	5	5.632	0.156	
02'00"	0.480	0.481	5	5.632	0.156	
30"	0.605	0.606	6	6.628	0.184	
03'00"	0.730	0.731	7	7.624	0.212	
30"	0.855	0.856	7	7.624	0.212	
04'00"	0.980	0.981	9	9.616	0.267	
30"	1.105	1.106	11	11.608	0.322	
05'00"	1.230	1.231	12	12.604	0.350	
30"	1.355	1.356	13	13.600	0.378	
06'00"	1.480	1.481	13	13.600	0.378	
30"	1.605	1.606	14	14.596	0.405	
07'00"	1.730	1.731	14	14.596	0.405	
30"	1.855	1.856	15	15.592	0.433	
08'00"	1.980	1.981	17	17.584	0.488	
30"	2.105	2.106	19	19.775	0.549	

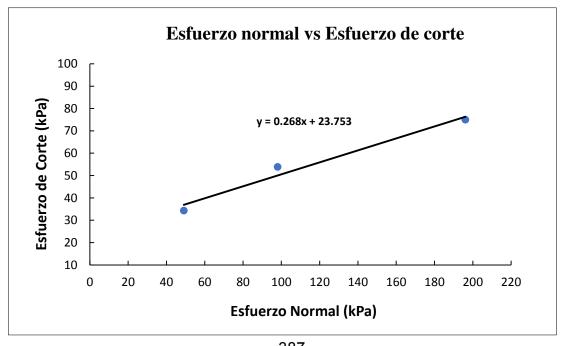
Esfuerzo cortante (kg/cm2)

0.549

1.000

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL <u>MÉTODO PARA EL CORTE DIRECTO</u> N.T.P. 339.171 / ASTM D-3080


		Características de	la muestra inalter	ada	
Área	36.00 cm2	Peso satur	ado (g)	138.85	
Altura	2.00 cm	Peso después de	el ensayo (g)	137.12	MUEOTRA
Volumen	72.00 cm3	Peso sec	:o (g)	106.74	MUESTRA 3
		Peso agu	ıa (g)	30.38	
Velocidad	0.25 mm/min	Humedad	28.50 %	Peso específico	2.82
Tiempo	9.50 min	Saturación	89%	Relación vacíos	0.90
Desplazamien to	2.38 mm	Densidad húmeda	1.90 g/cm3	Densidad seca	1.48 g/cm3
		Volumen del sólido	37.85 cm3	Volumen de vacíos	34.15 cm3
Corrección	dial horizontal	1.00 x + 0.001	Factor ce	lda de carga	0.996 x + 0.652
		ENS	AYO 3		•
Tiempo	Dial Horizontal	Corrección dial	Dial de carga	Corrección dial	Esfuerzo de corte
riempo	(mm)	horizontal (mm)	(kg)	de carga (kg)	(kg/cm2)
00'00"	0.000	0.000	0	0.000	0.000
30"	0.105	0.106	5	5.632	0.156
01'00"	0.230	0.231	6	6.628	0.184
30"	0.355	0.356	7	7.624	0.212
02'00"	0.480	0.481	8	8.620	0.239
30"	0.605	0.606	9	9.616	0.267
03'00"	0.730	0.731	11	11.608	0.322
30"	0.855	0.856	13	13.600	0.378
04'00"	0.980	0.981	15	15.592	0.433
30"	1.105	1.106	16	16.588	0.461
05'00"	1.230	1.231	18	18.580	0.516
30"	1.355	1.356	19	19.576	0.544
06'00"	1.480	1.481	20	20.572	0.571
30"	1.605	1.606	22	22.564	0.627
07'00"	1.730	1.731	23	23.560	0.654
30"	1.855	1.856	24	24.556	0.682
08'00"	1.980	1.981	24	24.556	0.682
30"	2.105	2.106	25	25.552	0.710
09'00"	2.230	2.231	25	25.552	0.710
30"	2.355	2.356	27	27.544	0.765
Esfuerzo normal (kg/cm2)		2.000	Esfuerzo cor	tante (kg/cm2)	0.765



ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÍA CIVIL <u>MÉTODO PARA EL CORTE DIRECTO</u> N.T.P. 339.171 / ASTM D-3080

_	Esfuerzo	Esfuerzo de	Esfuerzo	Esfuerzo de
Ensayo	normal kg/cm2	corte kg/cm2	normal kPa	corte kPa
1	0.500	0.350	49.033	34.334
2	1.000	0.549	98.067	53.869
3	2.000	0.765	196.133	75.032

Resultados de ensayo	
Cohesión (kPa) = C	23.75
Ángulo de fricción interna = Φ	15.00

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL MÉTODO PARA EL CORTE DIRECTO N.T.P. 339.171 / ASTM D-3080

Calicata	06	Ubicación	Distrito Lambayeque	Estado	15 horas
----------	----	-----------	---------------------	--------	----------

		Características de la	muestra maitei	raua		
Área	36.00 cm2	Peso humedad r	natural (g)	140.86	MUESTRA 1	
Altura	2.00 cm	Peso después del	ensayo (g)	139.29		
Volumen	72.00 cm3	Peso seco (g)		106.60	WIOLSTRAT	
		Peso agua	(g)	32.69		
Velocidad	0.25 mm/min	Humedad	30.70 %	Peso específico	2.82	
Tiempo	8.50 min	Saturación	96%	Relación vacíos	0.90	
Desplazamient o	2.125 mm	Densidad húmeda	1.93 g/cm3	Densidad seca	1.48 g/cm3	
		Volumen del sólido	37.80 cm3	Volumen de vacíos	34.20 cm3	
Corrección d	ial horizontal	1.00 x + 0.001	Factor	celda de carga	0.996 x + 0.65	
		ENSA	YO 1			
	Dial	Corrección dial	Dial de	Corrección dial de	Esfuerzo de	
Tiempo	Horizontal (mm)	horizontal (mm)	carga (kg)	carga (kg)	corte (kg/cm2	
00'00"	0.000	0.000	0	0.000	0.000	
30"	0.105	0.106	1	1.648	0.046	
01'00"	0.230	0.231	1	1.648	0.046	
30"	0.355	0.356	2	2.644	0.073	
02'00"	0.480	0.481	2	2.644	0.073	
30"	0.605	0.606	3	3.640	0.101	
03'00"	0.730	0.731	3	3.640	0.101	
30"	0.855	0.856	4	4.636	0.129	
04'00"	0.980	0.981	5	5.632	0.156	
30"	1.105	1.106	6	6.628	0.184	
05'00"	1.230	1.231	6	6.628	0.184	
30"	1.355	1.356	8	8.620	0.239	
06'00"	1.480	1.481	9	9.616	0.267	
30"	1.605	1.606	9	9.616	0.267	
07'00"	1.730	1.731	9	9.616	0.267	
30"	1.855	1.856	10	10.612	0.295	
			•	i a		

Esfuerzo normal (kg/cm2)	0.500	Esfuerzo cortante (kg/cm2)	0.295
--------------------------	-------	----------------------------	-------

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL MÉTODO PARA EL CORTE DIRECTO N.T.P. 339.171 / ASTM D-3080

F					
		Características de la	muestra inaltera	ada 	
Área	36.00 cm2	Peso satura	do (g)	141.08	
Altura	2.00 cm	Peso después del ensayo (g)		139.47	MUESTRA 2
Volumen	72.00 cm3	Peso seco	(g)	106.91	
		Peso agua	Peso agua (g)		
Velocidad	0.25 mm/min	Humedad	30.50 %	Peso específico	2.82
Tiempo	5.00 min	Saturación	96%	Relación vacíos	0.90
Desplazamient o	1.250 mm	Densidad húmeda	1.94 g/cm3	Densidad seca	1.48 g/cm3
		Volumen del sólido	37.91 cm3	Volumen de vacíos	34.09 cm3
Corrección o	dial horizontal	1.00 x + 0.001	Factor	celda de carga	0.996 x + 0.652
		ENSA	/O 2		
Tiempo	Dial Horizontal	Corrección dial	Dial de	Corrección dial	Esfuerzo de
Tiempo	(mm)	horizontal (mm)	carga (kg)	de carga (kg)	corte (kg/cm2)
00'00"	0.000	0.000	0	0.000	0.000
30"	0.105	0.106	3	3.640	0.101
01'00"	0.230	0.231	3	3.640	0.101
30"	0.355	0.356	4	4.636	0.129
02'00"	0.480	0.481	4	4.636	0.129
30"	0.605	0.606	5	5.632	0.156
03'00"	0.730	0.731	6	6.628	0.184
30"	0.855	0.856	6	6.628	0.184
04'00"	0.980	0.981	8	8.620	0.239
30"	1.105	1.106	10	10.612	0.295
05'00"	1.230	1.231	11	11.608	0.322
30"	1.355	1.356	12	12.604	0.350
06'00"	1.480	1.481	12	12.604	0.350
30"	1.605	1.606	13	13.600	0.378
07'00"	1.730	1.731	13	13.600	0.378
30"	1.855	1.856	14	14.596	0.405
08'00"	1.980	1.981	16	16.588	0.461
30"	2.105	2.106	18	18.580	0.516
09'00"	2.230	2.231	18	18 18.580	

Esfuerzo cortante (kg/cm2)

0.516

1.000

Esfuerzo normal (kg/cm2)

Esfuerzo normal (kg/cm2)

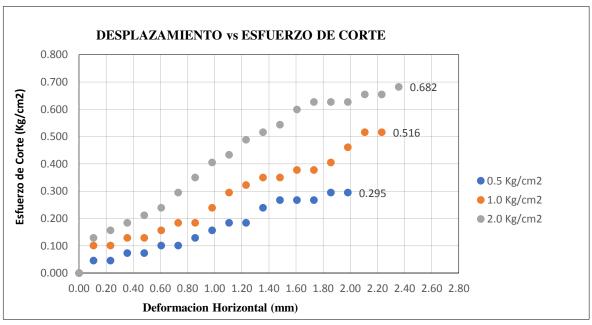
UNIVERSIDAD SAN MARTIN DE PORRES

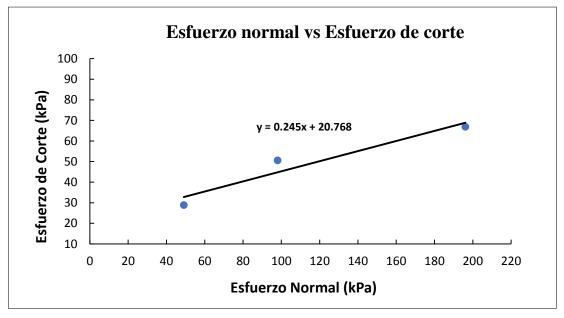
ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÍA CIVIL MÉTODO PARA EL CORTE DIRECTO N.T.P. 339.171 / ASTM D-3080

Características de la muestra inalterada Área 36.00 cm2 Peso saturado (g) 140.93 Peso después del ensayo (g) 2.00 cm 139.25 Altura **MUESTRA 3** Volumen 72.00 cm3 Peso seco (g) 106.46 Peso agua (g) 32.79 Velocidad 0.25 mm/min Humedad 30.80 % Peso específico 2.82 96% Relación vacíos 5.50 min Saturación 0.91 Tiempo Desplazamien 1.375 mm Densidad húmeda 1.93 g/cm3 Densidad seca 1.48 g/cm3 to Volumen de 37.75 cm3 Volumen del sólido 34.25 cm3 vacíos Corrección dial horizontal 1.00 x + 0.001Factor celda de carga $0.996 \times + 0.652$ **ENSAYO 3 Dial Horizontal** Corrección dial Dial de carga Corrección dial Esfuerzo de corte Tiempo (mm) horizontal (mm) de carga (kg) (kg/cm2) (kg) 00'00" 0.000 0.000 0 0.000 0.000 0.106 0.129 30" 0.105 4.636 4 01'00" 0.230 0.231 5 5.632 0.156 30" 0.355 0.356 6 6.628 0.184 02'00" 0.480 0.481 7 7.624 0.212 30" 0.606 0.239 0.605 8 8.620 03'00" 0.730 0.731 10 10.612 0.295 30" 0.855 0.856 12 12.604 0.350 04'00" 0.980 0.981 14 14.596 0.405 30" 1.105 1.106 15 15.592 0.433 1.231 17 17.584 0.488 05'00" 1.230 30" 0.516 1.355 1.356 18 18.580 06'00" 1.480 1.481 19 19.576 0.544 30" 1.605 1.606 21 21.568 0.599 07'00" 1.730 1.731 22 22.564 0.627 30" 22 22.564 0.627 1.855 1.856 08'00' 1.980 1.981 22 22.564 0.627 30" 2.105 2.106 23 23.560 0.654 09'00" 2.230 2.231 23 23.560 0.654 30" 2.355 2.356 24 24.556 0.682

Esfuerzo cortante (kg/cm2)

0.682


2.000



ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL MÉTODO PARA EL CORTE DIRECTO N.T.P. 339.171 / ASTM D-3080

Γ		Esfuerzo	Esfuerzo de	Esfuerzo	Esfuerzo de
	Ensayo	normal kg/cm2	corte kg/cm2	normal kPa	corte kPa
	1	0.500	0.295	49.033	28.908
	2	1.000	0.516	98.067	50.613
	3	2.000	0.682	196.133	66.892

Resultados de ensayo	
Cohesión (kPa) = C	20.77
Ángulo de fricción interna = Φ	13.77

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL MÉTODO PARA EL CORTE DIRECTO N.T.P. 339.171 / ASTM D-3080

Calicata	06	Ubicación	Distrito Lambayeque	Estado	1 semana
- 4110464	00	00.000.0	Diotitio Editiba (Cque		i ocilialia

		Características de la	muestra inaltei	rada	
Área	36.00 cm2	Peso humedad r	atural (g)	141.26	
Altura	2.00 cm	Peso después del ensayo (g)		139.47	MUESTRA 1
Volumen	72.00 cm3	Peso seco	(g)	104.75	MOLSTRA
	•	Peso agua	(g)	34.72	
Velocidad	0.25 mm/min	Humedad	33.10 %	Peso específico	2.82
Tiempo	8.00 min	Saturación	99%	Relación vacíos	0.94
Desplazamient o	2.00 mm	Densidad húmeda	1.94 g/cm3	Densidad seca	1.45 g/cm3
		Volumen del sólido	37.15 cm3	Volumen de vacíos	34.85 cm3
Corrección d	lial horizontal	1.00 x + 0.001	Factor	celda de carga	0.996 x + 0.65
		ENSA	YO 1		
	Dial	Corrección dial	Dial de	Corrección dial de	Esfuerzo de
Tiempo	Horizontal (mm)	horizontal (mm)	carga (kg)	carga (kg)	corte (kg/cm2
00'00"	0.000	0.000	0	0.000	0.000
30"	0.105	0.106	1	1.648	0.046
01'00"	0.230	0.231	1	1.648	0.046
30"	0.355	0.356	2	2.644	0.073
02'00"	0.480	0.481	2	2.644	0.073
30"	0.605	0.606	2	2.644	0.073
03'00"	0.730	0.731	3	3.640	0.101
30"	0.855	0.856	3	3.640	0.101
04'00"	0.980	0.981	4	4.636	0.129
30"	1.105	1.106	5	5.632	0.156
05'00"	1.230	1.231	5	5.632	0.156
30"	1.355	1.356	7	7.624	0.212
	1.480	1.481	7	7.624	0.212
06'00"	<u> </u>	1.606	8	8.620	0.239
06'00" 30"	1.605	1.000			
	1.605 1.730	1.731	8	8.620	0.239
30"			8	8.620 9.616	0.239 0.267

Esfuerzo normal (kg/cm2) 0.500	Esfuerzo cortante (kg/cm2)	0.267
--------------------------------	----------------------------	-------

Esfuerzo normal (kg/cm2)

UNIVERSIDAD SAN MARTIN DE PORRES

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL <u>MÉTODO PARA EL CORTE DIRECTO</u> N.T.P. 339.171 / ASTM D-3080

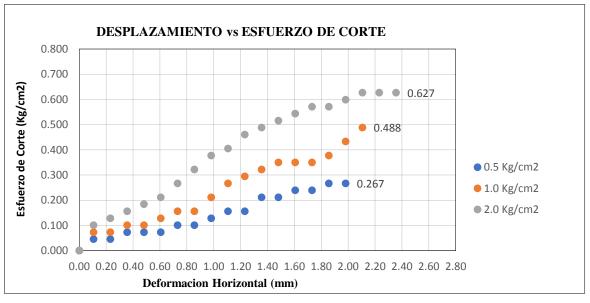
	1	Características de la			
Área	36.00 cm2	Peso satura	do (g)	141.14	
Altura	2.00 cm	Peso después del ensayo (g)		139.32	MUESTRA 2
Volumen	72.00 cm3	Peso seco (g)		104.75	02011011
		Peso agua	(g)	34.57	
Velocidad	0.25 mm/min	Humedad	33.00 %	Peso específico	2.82
Tiempo	8.50 min	Saturación	99%	Relación vacíos	0.94
Desplazamient o	2.13 mm	Densidad húmeda	1.94 g/cm3	Densidad seca	1.45 g/cm3
		Volumen del sólido	37.15 cm3	Volumen de vacíos	34.85 cm3
Corrección o	dial horizontal	1.00 x + 0.001	Factor	celda de carga	0.996 x + 0.6
		ENSA	(O 2		
T:	Dial Horizontal	Corrección dial	Dial de	Corrección dial	Esfuerzo de
Tiempo	(mm)	horizontal (mm)	carga (kg)	de carga (kg)	corte (kg/cm
00'00"	0.000	0.000	0	0.000	0.000
30"	0.105	0.106	2	2.644	0.073
01'00"	0.230	0.231	2	2.644	0.073
30"	0.355	0.356	3	3.640	0.101
02'00"	0.480	0.481	3	3.640	0.101
30"	0.605	0.606	4	4.636	0.129
03'00"	0.730	0.731	5	5.632	0.156
30"	0.855	0.856	5	5.632	0.156
04'00"	0.980	0.981	7	7.624	0.212
30"	1.105	1.106	9	9.616	0.267
05'00"	1.230	1.231	10	10.612	0.295
30"	1.355	1.356	11	11.608	0.322
06'00"	1.480	1.481	12	12.604	0.350
30"	1.605	1.606	12	12.604	0.350
07'00"	1.730	1.731	12	12.604	0.350
30"	1.855	1.856	13	13.600	0.378
08'00"	1.980	1.981	15	15.592	0.433
30"	2.105	2.106	17	17.584	0.488

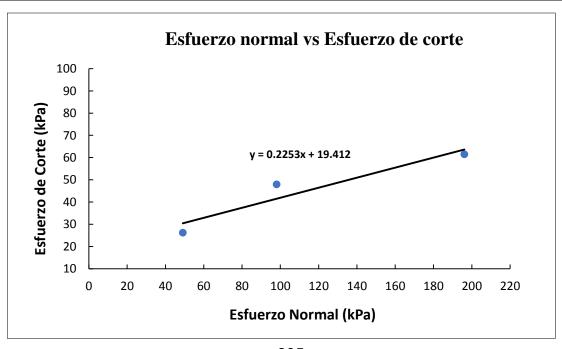
Esfuerzo cortante (kg/cm2)

0.488

1.000

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÍA CIVIL <u>MÉTODO PARA EL CORTE DIRECTO</u> N.T.P. 339.171 / ASTM D-3080


		Características de	la muestra inalter	ada	
Área	36.00 cm2	Peso satur	ado (g)	140.84	
Altura	2.00 cm	Peso después de	el ensayo (g)	139.01	
Volumen	72.00 cm3	Peso seco (g)		104.57	MUESTRA 3
		Peso agu	ıa (g)	34.44	-
Velocidad	0.25 mm/min	Humedad	32.90 %	Peso específico	2.82
Tiempo	9.50 min	Saturación	99%	Relación vacíos	0.94
Desplazamien to	2.38 mm	Densidad húmeda	1.93 g/cm3	Densidad seca	1.45 g/cm3
		Volumen del sólido	37.08 cm3	Volumen de vacíos	34.92 cm3
Corrección	dial horizontal	1.00 x + 0.001	Factor ce	lda de carga	0.996 x + 0.652
		ENS	SAYO 3		
Tiempo	Dial Horizontal	Corrección dial	Dial de carga	Corrección dial	Esfuerzo de corte
riempo	(mm)	horizontal (mm)	(kg)	de carga (kg)	(kg/cm2)
00'00"	0.000	0.000	0	0.000	0.000
30"	0.105	0.106	3	3.640	0.101
01'00"	0.230	0.231	4	4.636	0.129
30"	0.355	0.356	5	5.632	0.156
02'00"	0.480	0.481	6	6.628	0.184
30"	0.605	0.606	7	7.624	0.212
03'00"	0.730	0.731	9	9.616	0.267
30"	0.855	0.856	11	11.608	0.322
04'00"	0.980	0.981	13	13.600	0.378
30"	1.105	1.106	14	14.596	0.405
05'00"	1.230	1.231	16	16.588	0.461
30"	1.355	1.356	17	17.584	0.488
06'00"	1.480	1.481	18	18.580	0.516
30"	1.605	1.606	19	19.576	0.544
07'00"	1.730	1.731	20	20.572	0.571
30"	1.855	1.856	20	20.572	0.571
08'00"	1.980	1.981	21	21.568	0.599
30"	2.105	2.106	22	22.564	0.627
09'00"	2.230	2.231	22	22.564	0.627
30"	2.355	2.356	22	22.564	0.627
Esfuerzo noi	rmal (kg/cm2)	2.000	Esfuerzo con	tante (kg/cm2)	0.627



ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL <u>MÉTODO PARA EL CORTE DIRECTO</u> N.T.P. 339.171 / ASTM D-3080

Грасия	Esfuerzo	Esfuerzo de	Esfuerzo	Esfuerzo de
Ensayo	normal kg/cm2	corte kg/cm2	normal kPa	corte kPa
1	0.500	0.267	49.033	26.195
2	1.000	0.488	98.067	47.900
3	2.000	0.627	196.133	61.466

Resultados de ensayo	
Cohesión (kPa) = C	19.41
Ángulo de fricción interna = Φ	12.70

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL MÉTODO PARA EL CORTE DIRECTO N.T.P. 339.171 / ASTM D-3080

Calicata 06 Ubicación Distrito Lambayeque Estado 1 mes
--

		Características de la	muestra inaltei	rada	
Área	36.00 cm2	Peso humedad r	natural (g)	139.09	
Altura	2.00 cm	Peso después del ensayo (g)		137.20	
Volumen	72.00 cm3	Peso seco	(g)	101.89	MUESTRA 1
		Peso agua	(g)	35.31	
Velocidad	0.25 mm/min	Humedad	34.70 %	Peso específico	2.82
Tiempo	7.00 min	Saturación	99%	Relación vacíos	0.99
Desplazamient o	1.75 mm	Densidad húmeda	1.91 g/cm3	Densidad seca	1.42 g/cm3
		Volumen del sólido	36.13 cm3	Volumen de vacíos	35.87 cm3
Corrección di	al horizontal	1.00 x + 0.001	Factor	celda de carga	0.996 x + 0.652
		ENSA	YO 1		
	Dial	Corrección dial	Dial de Corrección dial de		Esfuerzo de
Tiempo	Horizontal	horizontal (mm)	carga (kg)	carga (kg)	corte (kg/cm2
	(mm)	· ,	0 (0)	G (0/	
00'00"	0.000	0.000	0	0.652	0.018
30"	0.105	0.106	1	1.648	0.046
01'00"	0.230	0.231	1	1.648	0.046
30"	0.355	0.356	1	1.648	0.046
02'00"	0.480	0.481	2	2.644	0.073
30"	0.605	0.606	2	2.644	0.073
03'00"	0.730	0.731	2	2.644	0.073
30"	0.855	0.856	3	3.640	0.101
04'00"	0.980	0.981	3	3.640	0.101
30"	1.105	1.106	4	4.636	0.129
05'00"	1.230	1.231	5	5.632	0.156
30"	1.355	1.356	6	6.628	0.184
06'00"	1.480	1.481	6	6.628	0.184
30"	1.605	1.606	7	7.624	0.212
07'00"	1.730	1.731	9	9.417	0.262

Esfuerzo normal (kg/cm2)	0.500	Esfuerzo cortante (kg/cm2)	0.262

Esfuerzo normal (kg/cm2)

UNIVERSIDAD SAN MARTIN DE PORRES

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL <u>MÉTODO PARA EL CORTE DIRECTO</u> N.T.P. 339.171 / ASTM D-3080

Área	36.00 cm2	Peso satura	do (a)	139.64	
Altura	2.00 cm	Peso después del		137.72	MUESTRA 2
Volumen	72.00 cm3	Peso seco	(g)	102.42	
		Peso agua	ı (g)	35.30	
Velocidad	0.25 mm/min	Humedad	34.50 %	Peso específico	2.82
Tiempo	7.50 min	Saturación	99%	Relación vacíos	0.98
Desplazamient o	1.88 mm	Densidad húmeda	Densidad húmeda 1.91 g/cm3		1.42 g/cm3
		Volumen del sólido 36.32 cm3 Volumen de vacíos		35.68 cm3	
Corrección o	dial horizontal	1.00 x + 0.001	Factor celda de carga		0.996 x + 0.65
		ENSA	/O 2		
_	Dial Horizontal	Corrección dial	Dial de	Corrección dial	Esfuerzo de
Tiempo	(mm)	horizontal (mm)	carga (kg)	de carga (kg)	corte (kg/cm2
00'00"	0.000	0.000	0	0.000	0.000
30"	0.105	0.106	1	1.648	0.046
01'00"	0.230	0.231	2	2.644	0.073
30"	0.355	0.356	2	2.644	0.073
02'00"	0.480	0.481	3	3.640	0.101
30"	0.605	0.606	3	3.640	0.101
03'00"	0.730	0.731	4	4.636	0.129
30"	0.855	0.856	4	4.636	0.129
04'00"	0.980	0.981	6	6.628	0.184
30"	1.105	1.106	8	8.620	0.239
05'00"	1.230	1.231	9	9.616	0.267
30"	1.355	1.356	9	9.616	0.267
06'00"	1.480	1.481	10	10.612	0.295
30"	1.605	1.606	12	12.604	0.350
07'00"	1.730	1.731	14	14.596	0.405
30"	1.855	1.856	16	16.588	0.461

Esfuerzo cortante (kg/cm2)

0.461

1.000

08'00'

1.980

UNIVERSIDAD SAN MARTIN DE PORRES

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL MÉTODO PARA EL CORTE DIRECTO N.T.P. 339.171 / ASTM D-3080

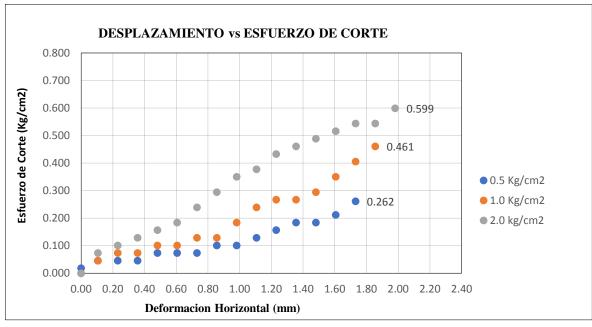
Características de la muestra inalterada Área 36.00 cm2 Peso saturado (g) 135.99 Peso después del ensayo (g) Altura 1.95 cm 134.09 **MUESTRA 3** Volumen 70.20 cm3 Peso seco (g) 99.71 Peso agua (g) 34.38 Velocidad 0.25 mm/min Humedad 34.50 % Peso específico 2.82 99% 8.00 min Saturación Relación vacíos 0.99 Tiempo Desplazamien 2.00 mm Densidad húmeda 1.91 g/cm3 Densidad seca 1.42 g/cm3 to Volumen de Volumen del sólido 35.36 cm3 34.84 cm3 vacíos Corrección dial horizontal 1.00 x + 0.001Factor celda de carga $0.996 \times + 0.652$ **ENSAYO 3 Dial Horizontal** Corrección dial Dial de carga Corrección dial Esfuerzo de corte Tiempo (mm) horizontal (mm) de carga (kg) (kg/cm2) (kg) 00'00" 0.000 0.000 0 0.000 0.000 0.106 0.073 30" 0.105 2 2.644 01'00" 0.230 0.231 3 3.640 0.101 0.129 30" 0.355 0.356 4 4.636 02'00" 0.480 0.481 5 5.632 0.156 30" 0.605 0.606 6.628 0.184 6 03'00" 0.730 0.731 8 8.620 0.239 30" 0.855 0.856 10 10.612 0.295 04'00" 0.980 0.981 12 12.604 0.350 1.106 30" 1.105 13 13.600 0.378 05'00" 1.230 1.231 15 15.592 0.433 30" 0.461 1.355 1.356 16 16.588 06'00" 1.480 1.481 17 17.584 0.488 30" 1.605 1.606 18 18.580 0.516 07'00" 1.730 1.731 19 19.576 0.544 30" 1.855 19 19.576 0.544 1.856

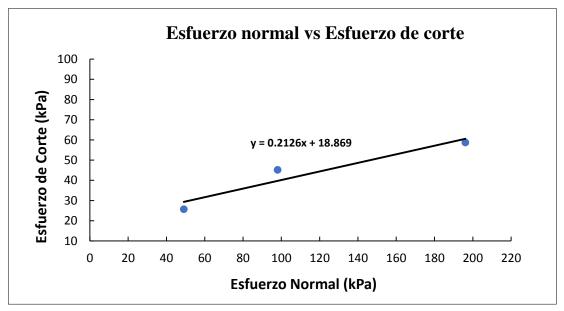
Esfuerzo normal (kg/cm2)	2.000	Esfuerzo cortante (kg/cm2)	0.599

21

21.568

0.599


1.981



ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL <u>MÉTODO PARA EL CORTE DIRECTO</u> N.T.P. 339.171 / ASTM D-3080

Грасия	Esfuerzo	Esfuerzo de	Esfuerzo	Esfuerzo de
Ensayo	normal kg/cm2	corte kg/cm2	normal kPa	corte kPa
1	0.500	0.262	49.033	25.652
2	1.000	0.461	98.067	45.187
3	2.000	0.599	196.133	58.753

Resultados de ensayo	
Cohesión (kPa) = C	18.87
Ángulo de fricción interna = Φ	12.00

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÍA CIVIL MÉTODO PARA EL CORTE DIRECTO N.T.P. 339.171 / ASTM D-3080

Calicata	07	Ubicación	Distrito Lambayeque	Estado	0 horas
----------	----	-----------	---------------------	--------	---------

		Características de la	muestra inaltei	rada	
Área	36.00 cm2	Peso humedad r		-	
Altura	1.95 cm	Peso después del		129.35	
Volumen	70.20 cm3	Peso seco	,	106.00	MUESTRA 1
Voidinion	7 0.20 0.110	Peso agua		23.35	
Velocidad	0.25 mm/min	Humedad	22.00 %	Peso específico	2.68
Tiempo	7.50 min	Saturación	76%	Relación vacíos	0.77
Desplazamiento	1.875 mm	Densidad húmeda	1.84 g/cm3	Densidad seca	1.51 g/cm3
Despiazamiento	1.675 111111		<u> </u>		•
0		Volumen del sólido	39.55 cm3	Volumen de vacíos	30.65 cm3
Corrección d	ial horizontal	1.00 x + 0.001		celda de carga	0.996 x + 0.652
		ENSA	YO 1		
T:	Dial Horizontal	Corrección dial	Dial de	Corrección dial de	Esfuerzo de
Tiempo	(mm)	horizontal (mm)	carga (kg)	carga (kg)	corte (kg/cm2)
00'00"	0.000	0.000	0	0.000	0.000
30"	0.105	0.106	2	2.644	0.073
01'00"	0.230	0.231	3	3.640	0.101
30"	0.355	0.356	4	4.636	0.129
02'00"	0.480	0.481	5	5.632	0.156
30"	0.605	0.606	6	6.628	0.184
03'00"	0.730	0.731	7	7.624	0.212
30"	0.855	0.856	8	8.620	0.239
04'00"	0.980	0.981	9	9.616	0.267
30"	1.105	1.106	10	10.612	0.295
05'00"	1.230	1.231	11	11.608	0.322
30"	1.355	1.356	11	11.608	0.322
06'00"	1.480	1.481	12	12.604	0.350
30"	1.605	1.606	12	12.604	0.350
07'00"	1.730	1.731	13	13.600	0.378
30"	1.855	1.856	14	14.596	0.405

	Esfuerzo normal (kg/cm2)	0.500	Esfuerzo cortante (kg/cm2)	0.405
--	--------------------------	-------	----------------------------	-------

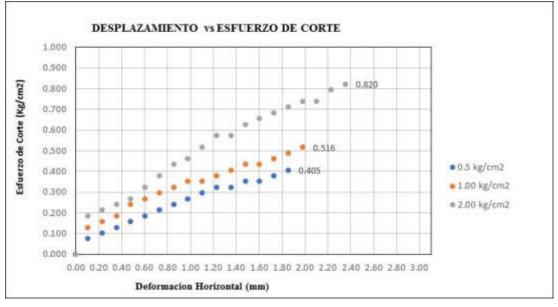
ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL MÉTODO PARA EL CORTE DIRECTO N.T.P. 339.171 / ASTM D-3080

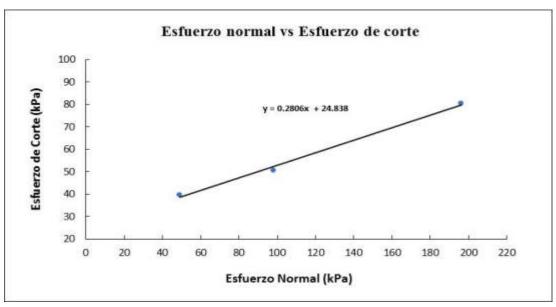
		Características de la	muestra inaltera	ada	
Área	36.00 cm2	Peso satura	do (g)	-	
Altura	1.95 cm	Peso después del	ensayo (g)	129.50	
Volumen	70.20 cm3	Peso seco (g)		106.28	MUESTRA 2
		Peso agua (g)		23.22	
Velocidad	0.25 mm/min	Humedad	21.80 %	Peso específico	2.68
Tiempo	8.00 min	Saturación	76%	Relación vacíos	0.77
Desplazamiento	2.000 mm	Densidad húmeda	1.84 g/cm3	Densidad seca	1.51 g/cm3
		Volumen del sólido	39.66 cm3	Volumen de vacíos	30.54 cm3
Corrección o	lial horizontal	1.00 x + 0.001	Factor	celda de carga	0.996 x + 0.652
		ENSAY	(O 2		
Tiempo	Dial Horizontal	Corrección dial	Dial de	Corrección dial	Esfuerzo de
Hempo	(mm)	horizontal (mm)	carga (kg)	de carga (kg)	corte (kg/cm2)
00'00"	0.000	0.000	0	0.000	0.000
30"	0.105	0.106	4	4.636	0.129
01'00"	0.230	0.231	5	5.632	0.156
30"	0.355	0.356	6	6.628	0.184
02'00"	0.480	0.481	8	8.620	0.239
30"	0.605	0.606	9	9.616	0.267
03'00"	0.730	0.731	10	10.612	0.295
30"	0.855	0.856	11	11.608	0.322
04'00"	0.980	0.981	12	12.604	0.350
30"	1.105	1.106	12	12.604	0.350
05'00"	1.230	1.231	13	13.600	0.378
30"	1.355	1.356	14	14.596	0.405
06'00"	1.480	1.481	15	15.592	0.433
30"	1.605	1.606	15	15.592	0.433
07'00"	1.730	1.731	16	16.588	0.461
30"	1.855	1.856	17	17.584	0.488
08'00"	1.980	1.981	18	18.580	0.516

Esfuerzo normal (kg/cm2)	1.000	Esfuerzo cortante (kg/cm2)	0.516
--------------------------	-------	----------------------------	-------

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL MÉTODO PARA EL CORTE DIRECTO N.T.P. 339.171 / ASTM D-3080

		Características de	la muestra inalter	ada	
Área	36.00 cm2	Peso satura	ado (g)	-	
Altura	1.95 cm	Peso después de	el ensayo (g)	129.67	
Volumen	70.20 cm3	Peso seco (g)		106.34	MUESTRA 3
	<u> </u>	Peso agua (g)		23.33	
Velocidad	0.25 mm/min	Humedad 21.90 %		Peso específico	2.68
Tiempo	9.50 min	Saturación	76%	Relación vacíos	0.77
Desplazamiento	2.375 mm	Densidad húmeda	1.85 g/cm3	Densidad seca	1.51 g/cm3
		Volumen del sólido	39.68 cm3	Volumen de vacíos	30.52 cm3
Corrección	dial horizontal	1.00 x + 0.001	Factor ce	lda de carga	0.996 x + 0.652
		ENS	SAYO 3		
Tiempo	Dial Horizontal	Corrección dial	Dial de carga	Corrección dial	Esfuerzo de corte
Hempo	(mm)	horizontal (mm)	(kg)	de carga (kg)	(kg/cm2)
00'00"	0.000	0.000	0	0.000	0.000
30"	0.105	0.106	6	6.628	0.184
01'00"	0.230	0.231	7	7.624	0.212
30"	0.355	0.356	8	8.620	0.239
02'00"	0.480	0.481	9	9.616	0.267
30"	0.605	0.606	11	11.608	0.322
03'00"	0.730	0.731	13	13.600	0.378
30"	0.855	0.856	15	15.592	0.433
04'00"	0.980	0.981	16	16.588	0.461
30"	1.105	1.106	18	18.580	0.516
05'00"	1.230	1.231	20	20.572	0.571
30"	1.355	1.356	20	20.572	0.571
06'00"	1.480	1.481	22	22.564	0.627
30"	1.605	1.606	23	23.560	0.654
07'00"	1.730	1.731	24	24.556	0.682
30"	1.855	1.856	25	25.552	0.710
08'00"	1.980	1.981	26	26.548	0.737
30"	2.105	2.106	26	26.548	0.737
09'00"	2.230	2.231	28	28.540	0.793
30"	2.355	2.356	29	29.536	0.820


Esfuerzo normal (kg/cm2)	2.000	Esfuerzo cortante (kg/cm2)	0.820
--------------------------	-------	----------------------------	-------



ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÍA CIVIL <u>MÉTODO PARA EL CORTE DIRECTO</u> N.T.P. 339.171 / ASTM D-3080

Ensayo	Esfuerzo	Esfuerzo de	Esfuerzo	Esfuerzo de
	normal kg/cm2	corte kg/cm2	normal kPa	corte kPa
1	0.500	0.405	49.033	39.761
2	1.000	0.516	98.067	50.613
3	2.000	0.820	196.133	80.458

Resultados de ensayo	
Cohesión (kPa) = C	24.84
Ángulo de fricción interna = Φ	15.68

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL MÉTODO PARA EL CORTE DIRECTO N.T.P. 339.171 / ASTM D-3080

Calicata	07	Ubicación	Distrito Lambayeque	Estado	0 horas
----------	----	-----------	---------------------	--------	---------

		Características de la	muestra inaltei	rada	
Área	36.00 cm2	Peso humedad r		-	
Altura	1.95 cm	Peso después del ensayo (g)		129.35	
Volumen	70.20 cm3	Peso seco	(g)	106.00	MUESTRA 1
		Peso agua (g)		23.35	
Velocidad	0.25 mm/min	Humedad	22.00 %	Peso específico	2.68
Tiempo	7.50 min	Saturación	76%	Relación vacíos	0.77
Desplazamiento	1.875 mm	Densidad húmeda	1.84 g/cm3	Densidad seca	1.51 g/cm3
		Volumen del sólido	39.55 cm3	Volumen de vacíos	30.65 cm3
Corrección d	Corrección dial horizontal 1.00 x + 0.001 Factor celda de carga		0.996 x + 0.652		
		ENSA	YO 1		
Tiempo	Dial Horizontal (mm)	Corrección dial horizontal (mm)	Dial de carga (kg)	Corrección dial de carga (kg)	Esfuerzo de corte (kg/cm2)
00'00"	0.000	0.000	0	0.000	0.000
30"	0.105	0.106	2	2.644	0.073
01'00"	0.230	0.231	3	3.640	0.101
30"	0.355	0.356	4	4.636	0.129
02'00"	0.480	0.481	5	5.632	0.156
30"	0.605	0.606	6	6.628	0.184
03'00"	0.730	0.731	7	7.624	0.212
30"	0.855	0.856	8	8.620	0.239
04'00"	0.980	0.981	9	9.616	0.267
30"	1.105	1.106	10	10.612	0.295
05'00"	1.230	1.231	11	11.608	0.322
30"	1.355	1.356	11	11.608	0.322
06'00"	1.480	1.481	12	12.604	0.350
30"	1.605	1.606	12	12.604	0.350
07'00"	1.730	1.731	13	13.600	0.378
30"	1.855	1.856	14	14.596	0.405

Esfuerzo normal (kg/cm2)	0.500	Esfuerzo cortante (kg/cm2)	0.405
--------------------------	-------	----------------------------	-------

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL MÉTODO PARA EL CORTE DIRECTO N.T.P. 339.171 / ASTM D-3080

		Características de la	muestra inaltera	ada	
Área	36.00 cm2	Peso satura	do (g)	-	
Altura	1.95 cm	Peso después del	ensayo (g)	129.50	MUESTRA 2
Volumen	70.20 cm3	Peso seco	(g)	106.28	WUESTRA 2
	1	Peso agua	ı (g)	23.22	
Velocidad	0.25 mm/min	Humedad	21.80 %	Peso específico	2.68
Tiempo	8.00 min	Saturación	76%	Relación vacíos	0.77
Desplazamiento	2.000 mm	Densidad húmeda	1.84 g/cm3	Densidad seca	1.51 g/cm3
		Volumen del sólido	39.66 cm3	Volumen de vacíos	30.54 cm3
Corrección o	dial horizontal	1.00 x + 0.001	Factor celda de carga		0.996 x + 0.652
		ENSA	(O 2		
	Dial Horizontal	Corrección dial	Dial de	Corrección dial	Esfuerzo de
Tiempo	(mm)	horizontal (mm)	carga (kg)	de carga (kg)	corte (kg/cm2)
		, ,			, ,
00'00"	0.000	0.000	0	0.000	0.000
30"	0.105	0.106	4	4.636	0.129

Tiempo	Dial Horizontal	Corrección dial	Dial de	Corrección dial	Esfuerzo de
	(mm)	horizontal (mm)	carga (kg)	de carga (kg)	corte (kg/cm2)
00'00"	0.000	0.000	0	0.000	0.000
30"	0.105	0.106	4	4.636	0.129
01'00"	0.230	0.231	5	5.632	0.156
30"	0.355	0.356	6	6.628	0.184
02'00"	0.480	0.481	8	8.620	0.239
30"	0.605	0.606	9	9.616	0.267
03'00"	0.730	0.731	10	10.612	0.295
30"	0.855	0.856	11	11.608	0.322
04'00"	0.980	0.981	12	12.604	0.350
30"	1.105	1.106	12	12.604	0.350
05'00"	1.230	1.231	13	13.600	0.378
30"	1.355	1.356	14	14.596	0.405
06'00"	1.480	1.481	15	15.592	0.433
30"	1.605	1.606	15	15.592	0.433
07'00"	1.730	1.731	16	16.588	0.461
30"	1.855	1.856	17	17.584	0.488
08'00"	1.980	1.981	18	18.580	0.516

Esfuerzo normal (kg/cm2)	1.000	Esfuerzo cortante (kg/cm2)	0.516
--------------------------	-------	----------------------------	-------

07'00"

30"

08'00"

30"

09'00"

30"

1.730

1.855

1.980

2.105

2.230

2.355

UNIVERSIDAD SAN MARTIN DE PORRES

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL MÉTODO PARA EL CORTE DIRECTO N.T.P. 339.171 / ASTM D-3080

Características de la muestra inalterada Área 36.00 cm2 Peso saturado (g) Peso después del ensayo (g) 1.95 cm 129.67 Altura **MUESTRA 3** Volumen 70.20 cm3 Peso seco (g) 106.34 Peso agua (g) 23.33 Velocidad 0.25 mm/min Humedad 21.90 % Peso específico 2.68 76% Saturación Relación vacíos 0.77 9.50 min Tiempo 2.375 mm Densidad húmeda 1.85 g/cm3 Densidad seca 1.51 g/cm3 Desplazamiento Volumen de Volumen del sólido 39.68 cm3 30.52 cm3 vacíos Corrección dial horizontal 1.00 x + 0.001Factor celda de carga 0.996 x + 0.652**ENSAYO 3 Dial Horizontal** Corrección dial Dial de carga Corrección dial Esfuerzo de corte Tiempo (mm) horizontal (mm) (kg) de carga (kg) (kg/cm2) 00'00" 0.000 0.000 0.000 0.000 0 30" 0.106 6 0.184 0.105 6.628 7 01'00" 0.230 0.231 7.624 0.212 30" 0.355 0.356 8 0.239 8.620 02'00" 0.480 0.481 9 9.616 0.267 30" 0.605 0.606 11 11.608 0.322 03'00" 0.731 0.378 0.730 13 13.600 30" 0.855 0.856 15 15.592 0.433 04'00" 0.980 0.981 16 16.588 0.461 30" 1.105 1.106 18 18.580 0.516 05'00" 1.230 1.231 20 20.572 0.571 30" 20 0.571 1.355 1.356 20.572 06'00" 1.480 1.481 22 22.564 0.627 30" 1.605 1 606 23 23.560 0.654

Esfuerzo normal (kg/cm2)	2.000	Esfuerzo cortante (kg/cm2)	0.820

24

25

26

26

28

29

24.556

25.552

26.548

26.548

28.540

29.536

0.682

0.710

0.737

0.737

0.793

0.820

1.731

1.856

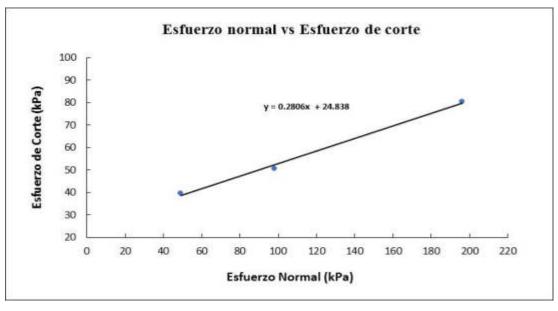
1.981

2.106

2.231

2.356




ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÍA CIVIL MÉTODO PARA EL CORTE DIRECTO

N.T.P. 339.171 / ASTM D-3080

Ensayo	Esfuerzo	Esfuerzo de	Esfuerzo	Esfuerzo de
	normal kg/cm2	corte kg/cm2	normal kPa	corte kPa
1	0.500	0.405	49.033	39.761
2	1.000	0.516	98.067	50.613
3	2.000	0.820	196.133	80.458
	1			

Resultados de ensayo	
Cohesión (kPa) = C	24.84
Ángulo de fricción interna = Φ	15.68

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL MÉTODO PARA EL CORTE DIRECTO N.T.P. 339.171 / ASTM D-3080

Calicata	07	Ubicación	Distrito Lambayeque	Estado	3 horas
----------	----	-----------	---------------------	--------	---------

		Características de la	muestra inalter	rada	
Área	36.00 cm2	Peso humedad r	natural (g)	135.92	
Altura	2.00 cm	Peso después del ensayo (g)		134.39	MUESTRA 1
Volumen	72.00 cm3	Peso seco	(g)	108.57	WUESTRAT
		Peso agua	(g)	25.82	
Velocidad	0.25 mm/min	Humedad	23.80 %	Peso específico	2.68
Tiempo	7.50 min	Saturación	82%	Relación vacíos	0.78
Desplazamiento	1.875 mm	Densidad húmeda	1.87 g/cm3	Densidad seca	1.51 g/cm3
		Volumen del sólido	40.51 cm3	Volumen de vacíos	31.49 cm3
Corrección d	ial horizontal	1.00 x + 0.001	Factor	celda de carga	0.996 x + 0.652
		ENSA	YO 1		
Tiempo	Dial Horizontal	Corrección dial	Dial de carga (kg)	Corrección dial de carga (kg)	Esfuerzo de corte (kg/cm2
	(mm)	,	Jan 94 (119)	Jan 92 (119)	
00'00"	0.000	0.000	0	0.000	0.000
30"	0.105	0.106	1	1.648	0.046
01'00"	0.230	0.231	3	3.640	0.101
30"	0.355	0.356	3	3.640	0.101
02'00"	0.480	0.481	4	4.636	0.129
30"	0.605	0.606	5	5.632	0.156
03'00"	0.730	0.731	6	6.628	0.184
30"	0.855	0.856	7	7.624	0.212
04'00"	0.980	0.981	7	7.624	0.212
30"	1.105	1.106	9	9.616	0.267
05'00"	1.230	1.231	9	9.616	0.267
30"	1.355	1.356	10	10.612	0.295
06'00"	1.480	1.481	10	10.612	0.295
30"	1.605	1.606	11	11.608	0.322
07'00"	1.730	1.731	11	11.608	0.322
30"	1.855	1.856	13	13.301	0.369

Esfuerzo normal (kg/cm2)	0.500	Esfuerzo cortante (kg/cm2)	0.369
--------------------------	-------	----------------------------	-------

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL <u>MÉTODO PARA EL CORTE DIRECTO</u> N.T.P. 339.171 / ASTM D-3080

Características de la muestra inalterada 36.00 cm2 135.93 Área Peso saturado (g) Peso después del ensayo (g) 2.00 cm 134.37 Altura **MUESTRA 2** Volumen 72.00 cm3 Peso seco (g) 108.51 Peso agua (g) 25.86 Velocidad 0.25 mm/min Humedad 23.80 % Peso específico 2.68 8.00 min Saturación 82% Relación vacíos 0.78 Tiempo Desplazamient Densidad húmeda 1.87 g/cm3 Densidad seca 2.000 mm 1.51 g/cm3 Volumen del sólido 40.49 cm3 31.51 cm3 Volumen de vacíos 0.996 x + 0.652 Corrección dial horizontal 1.00 x + 0.001 Factor celda de carga

ENSAYO 2

Tiempo	Dial Horizontal (mm)	Corrección dial horizontal (mm)	Dial de carga (kg)	Corrección dial de carga (kg)	Esfuerzo de corte (kg/cm2)
00'00"	0.000	0.000	0	0.000	0.000
30"	0.105	0.106	3	3.640	0.101
01'00"	0.230	0.231	4	4.636	0.129
30"	0.355	0.356	5	5.632	0.156
02'00"	0.480	0.481	6	6.628	0.184
30"	0.605	0.606	7	7.624	0.212
03'00"	0.730	0.731	7	7.624	0.212
30"	0.855	0.856	9	9.616	0.267
04'00"	0.980	0.981	11	11.608	0.322
30"	1.105	1.106	12	12.604	0.350
05'00"	1.230	1.231	13	13.600	0.378
30"	1.355	1.356	13	13.600	0.378
06'00"	1.480	1.481	14	14.596	0.405
30"	1.605	1.606	15	15.592	0.433
07'00"	1.730	1.731	15	15.592	0.433
30"	1.855	1.856	16	16.588	0.461
08'00"	1.980	1.981	17	17.584	0.488

Esfuerzo normal (kg/cm2)	1.000	Esfuerzo cortante (kg/cm2)	0.488
--------------------------	-------	----------------------------	-------

Corrección dial horizontal

UNIVERSIDAD SAN MARTIN DE PORRES

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÍA CIVIL MÉTODO PARA EL CORTE DIRECTO N.T.P. 339.171 / ASTM D-3080

Características de la muestra inalterada 36.00 cm2 132.77 Área Peso saturado (g) Peso después del ensayo (g) 1.95 cm 131.25 Altura **MUESTRA 3** Peso seco (g) 106.19 Volumen 70.20 cm3 Peso agua (g) 25.06 Velocidad 0.25 mm/min Humedad 23.60 % Peso específico 2.68 9.50 min Saturación 82% Relación vacíos 0.77 Tiempo Desplazamiento 2.375 mm Densidad húmeda 1.87 g/cm3 Densidad seca 1.51 g/cm3 Volumen de

ENSAYO 3

39.62 cm3

vacíos

Factor celda de carga

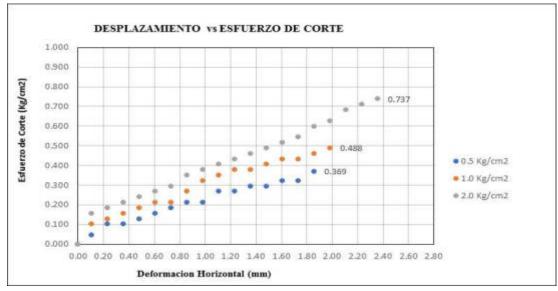
30.58 cm3

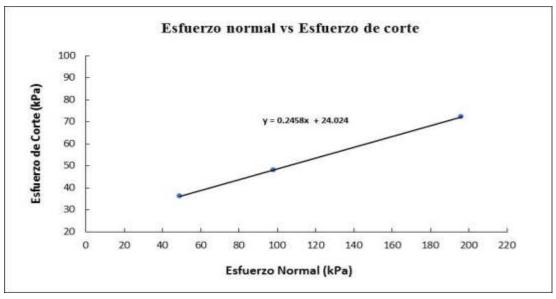
0.996 x + 0.652

Volumen del sólido

1.00 x + 0.001

Tiempo	Dial Horizontal (mm)	Corrección dial horizontal (mm)	Dial de carga (kg)	Corrección dial de carga (kg)	Esfuerzo de corte (kg/cm2)
00'00"	0.000	0.000	0	0.000	0.000
30"	0.105	0.106	5	5.632	0.156
01'00"	0.230	0.231	6	6.628	0.184
30"	0.355	0.356	7	7.624	0.212
02'00"	0.480	0.481	8	8.620	0.239
30"	0.605	0.606	9	9.616	0.267
03'00"	0.730	0.731	10	10.612	0.295
30"	0.855	0.856	12	12.604	0.350
04'00"	0.980	0.981	13	13.600	0.378
30"	1.105	1.106	14	14.596	0.405
05'00"	1.230	1.231	15	15.592	0.433
30"	1.355	1.356	16	16.588	0.461
06'00"	1.480	1.481	17	17.584	0.488
30"	1.605	1.606	18	18.580	0.516
07'00"	1.730	1.731	19	19.576	0.544
30"	1.855	1.856	21	21.568	0.599
08'00"	1.980	1.981	22	22.564	0.627
30"	2.105	2.106	24	24.556	0.682
09'00"	2.230	2.231	25	25.552	0.710
30"	2.355	2.356	26	26.548	0.737


Esfuerzo normal (kg/cm2)	2.000	Esfuerzo cortante (kg/cm2)	0.737
--------------------------	-------	----------------------------	-------



ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÍA CIVIL <u>MÉTODO PARA EL CORTE DIRECTO</u> N.T.P. 339.171 / ASTM D-3080

Ensayo	Esfuerzo normal kg/cm2	Esfuerzo de corte kg/cm2	Esfuerzo normal kPa	Esfuerzo de corte kPa
1	0.500	0.369	49.033	36.233
2	1.000	0.488	98.067	47.900
3	2.000	0.737	196.133	72.319

Resultados de ensayo	
Cohesión (kPa) = C	24.02
Ángulo de fricción interna = Φ	13.81

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL MÉTODO PARA EL CORTE DIRECTO N.T.P. 339.171 / ASTM D-3080

Calicata	07	Ubicación	Distrito Lambayeque	Estado	8 horas
----------	----	-----------	---------------------	--------	---------

		Características de la	muestra inalter	ada	
Área	36.00 cm2	Peso humedad r	natural (g)	139.17	
Altura	2.00 cm	Peso después del ensayo (g)		137.53	MUESTRA 1
Volumen	72.00 cm3	Peso seco (g)		108.60	
		Peso agua	Peso agua (g)		
Velocidad	0.25 mm/min	Humedad	26.60 %	Peso específico	2.68
Tiempo	7.00 min	Saturación	92%	Relación vacíos	0.78
Desplazamiento	1.750 mm	Densidad húmeda	1.91 g/cm3	Densidad seca	1.51 g/cm3
		Volumen del sólido	40.52 cm3	Volumen de vacíos	31.48 cm3
Corrección d	Corrección dial horizontal 1.00 x + 0.001 Factor celda de carga		0.996 x + 0.652		
		ENSA	YO 1		
	Dial	0	D:-I -I-	0	F-4 d-
Tiempo	Horizontal	Corrección dial horizontal (mm)	Dial de carga (kg)	Corrección dial de carga (kg)	Esfuerzo de corte (kg/cm2)
	(mm)	nonzoniai (iiiii)	Carga (kg)	carga (kg)	corte (kg/ciliz)
00'00"	0.000	0.000 0 0.000		0.000	
30"	0.105	0.106	1	1.648	0.046
01'00"	0.230	0.231	2	2.644	0.073
30"	0.355	0.356	3	3.640	0.101
02'00"	0.480	0.481	4	4.636	0.129
30"	0.605	0.606	5	5.632	0.156
03'00"	0.730	0.731	5	5.632	0.156
30"	0.855	0.856	6	6.628	0.184
04'00"	0.980	0.981	7	7.624	0.212
30"	1.105	1.106	7	7.624	0.212
05'00"	1.230	1.231	8	8.620	0.239
30"	1.355	1.356	8	8.620	0.239
06'00"	1.480	1.481	9	9.616	0.267
30"	1.605	1.606	9	9.616	0.267
07'00"	1.730	1.731	10	10.612	0.295

Esfuerzo normal (kg/cm2)	0.500	Esfuerzo cortante (kg/cm2)	0.295

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL MÉTODO PARA EL CORTE DIRECTO N.T.P. 339.171 / ASTM D-3080

		Características de la	muestra inalter	ada	
Área	36.00 cm2	Peso saturad	do (g)	138.98	
Altura	2.00 cm	Peso después del	ensayo (g)	137.29	MUESTRA 2
Volumen	72.00 cm3	Peso seco	(g)	108.37	
		Peso agua (g)		28.92	
Velocidad	0.25 mm/min	Humedad	26.70 %	Peso específico	2.68
Tiempo	7.50 min	Saturación	92%	Relación vacíos	0.78
Desplazamient o	1.875 mm	Densidad húmeda	1.91 g/cm3	Densidad seca	1.51 g/cm3
		Volumen del sólido	40.44 cm3	Volumen de vacíos	31.56 cm3
Corrección o	dial horizontal	1.00 x + 0.001	Factor	celda de carga	0.996 x + 0.652
		ENSAY	O 2		
	Dial Horizontal	Corrección dial	Dial de	Corrección dial	Esfuerzo de
Tiempo	(mm)	horizontal (mm)	carga (kg)	de carga (kg)	corte (kg/cm2
00'00"	0.000	0.000	0	0.000	0.000
30"	0.105	0.106	3	3.640	0.101
01'00"	0.230	0.231	3	3.640	0.101
30"	0.355	0.356	4	4.636	0.129
02'00"	0.480	0.481	5	5.632	0.156
30"	0.605	0.606	6	6.628	0.184
03'00"	0.730	0.731	7	7.624	0.212
30"	0.855	0.856	8	8.620	0.239
04'00"	0.980	0.981	9	9.616	0.267
30"	1.105	1.106	10	10.612	0.295
05'00"	1.230	1.231	11	11.608	0.322
30"	1.355	1.356	12	12.604	0.350
06'00"	1.480	1.481	14	14.596	0.405
30"	1.605	1.606	15	15.592	0.433
07'00"	1.730	1.731	16	16.588	0.461
30"	1.855	1.856	18	18.580	0.516

Esfuerzo normal (kg/cm2)	1.000	Esfuerzo cortante (kg/cm2)	0.516
--------------------------	-------	----------------------------	-------

30"

08'00"

30"

1.855

1.980

2.105

UNIVERSIDAD SAN MARTIN DE PORRES

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL MÉTODO PARA EL CORTE DIRECTO N.T.P. 339.171 / ASTM D-3080

		Características de	la muestra inalter	ada	
Área	36.00 cm2	Peso satura	ado (g)	136.02	
Altura	1.95 cm	Peso después de	el ensayo (g)	134.39	MUESTRA 3
Volumen	70.20 cm3	Peso sec	o (g)	106.23	MUESTRAS
		Peso agua (g)		28.16	
Velocidad	0.25 mm/min	Humedad	26.50 %	Peso específico	2.68
Tiempo	8.50 min	Saturación	92%	Relación vacíos	0.77
Desplazamiento	2.125 mm	Densidad húmeda	1.91 g/cm3	Densidad seca	1.51 g/cm3
		Volumen del sólido	39.64 cm3	Volumen de vacíos	30.56 cm3
Corrección	dial horizontal	1.00 x + 0.001	Factor ce	lda de carga	0.996 x + 0.652
		ENS	AYO 3		
Tiempo	Dial Horizontal (mm)	Corrección dial horizontal (mm)	Dial de carga (kg)	Corrección dial de carga (kg)	Esfuerzo de corte (kg/cm2)
00'00"	0.000	0.000	0	0.000	0.000
30"	0.105	0.106	4	4.636	0.129
01'00"	0.230	0.231	5	5.632	0.156
30"	0.355	0.356	6	6.628	0.184
02'00"	0.480	0.481	7	7.624	0.212
30"	0.605	0.606	8	8.620	0.239
03'00"	0.730	0.731	9	9.616	0.267
30"	0.855	0.856	10	10.612	0.295
04'00"	0.980	0.981	11	11.608	0.322
30"	1.105	1.106	11	11.608	0.322
05'00"	1.230	1.231	13	13.600	0.378
30"	1.355	1.356	14	14.596	0.405
06'00"	1.480	1.481	15	15.592	0.433
30"	1.605	1.606	17	17.584	0.488
07'00"	1.730	1.731	19	19.576	0.544

Esfuerzo normal (kg/cm2)	2.000	Esfuerzo cortante (kg/cm2)	0.654

21

22

23

21.568

22.564

23.560

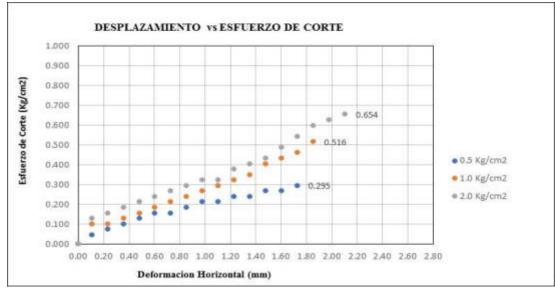
0.599

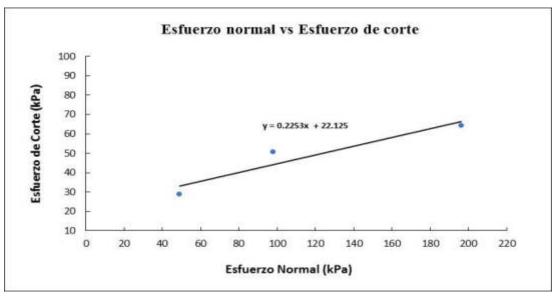
0.627

0.654

1.856

1.981


2.106



ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÍA CIVIL <u>MÉTODO PARA EL CORTE DIRECTO</u> N.T.P. 339.171 / ASTM D-3080

Ensayo	Esfuerzo normal kg/cm2	Esfuerzo de corte kg/cm2	Esfuerzo normal kPa	Esfuerzo de corte kPa
1	0.500	0.295	49.033	28.908
2	1.000	0.516	98.067	50.613
3	2.000	0.654	196.133	64.179

Resultados de ensayo				
Cohesión (kPa) = C	22.12			
Ángulo de fricción interna = Φ	12.70			

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL MÉTODO PARA EL CORTE DIRECTO N.T.P. 339.171 / ASTM D-3080

Recolección de datos y resultados

Calicata	07	Ubicación	Distrito Lambayeque	Estado	15 horas
----------	----	-----------	---------------------	--------	----------

		Características de la	muestra inalter	ada	
Área	36.00 cm2	Peso humedad r	natural (g)	140.74	
Altura	2.00 cm	Peso después del	ensayo (g)	139.02	MUESTRA 1
Volumen	72.00 cm3	Peso seco (g)		107.86	MUESTRA 1
	<u> </u>	Peso agua (g)		31.16	
Velocidad	0.25 mm/min	Humedad	28.90 %	Peso específico	2.68
Tiempo	7.00 min	Saturación	98%	Relación vacíos	0.79
Desplazamiento	1.750 mm	Densidad húmeda	1.93 g/cm3	Densidad seca	1.50 g/cm3
		Volumen del sólido	40.25 cm3	Volumen de vacíos	31.75 cm3
Corrección d	ial horizontal	1.00 x + 0.001	Factor	celda de carga	0.996 x + 0.652
		ENSA	YO 1		
	Dial	0	Di-L-I-		F-6
Tiempo	Horizontal	Corrección dial horizontal (mm)	Dial de carga (kg)	Corrección dial de carga (kg)	Esfuerzo de corte (kg/cm2
	(mm)	nonzontai (iiiii)	Carga (kg)	carga (kg)	corte (kg/ciliz
00'00"	0.000	0.000	0	0.000	0.000
30"	0.105	0.106	1	1.648	0.046
01'00"	0.230	0.231	2	2.644	0.073
30"	0.355	0.356	3	3.640	0.101
02'00"	0.480	0.481	3	3.640	0.101
30"	0.605	0.606	4	4.636	0.129
03'00"	0.730	0.731	5	5.632	0.156
30"	0.855	0.856	5	5.632	0.156
04'00"	0.980	0.981	5	5.632	0.156
30"	1.105	1.106	6	6.628	0.184
05'00"	1.230	1.231	6	6.628	0.184
30"	1.355	1.356	7	7.624	0.212
06'00"	1.480	1.481	7	7.624	0.212
30"	1.605	1.606	8	8.620	0.239
07'00"	1.730	1.731	8	8.620	0.239

Esfuerzo normal (kg/cm2)	0.500	Esfuerzo cortante (kg/cm2)	0.239

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL MÉTODO PARA EL CORTE DIRECTO N.T.P. 339.171 / ASTM D-3080

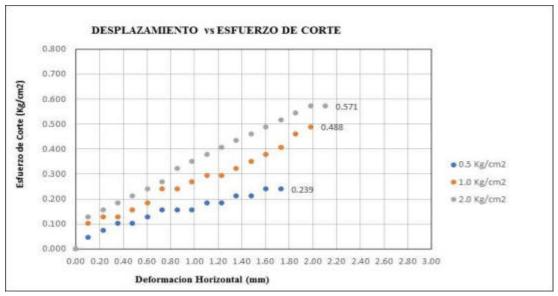
Características de la muestra inalterada 36.00 cm2 Peso saturado (g) 140.91 Área Peso después del ensayo (g) Altura 2.00 cm 139.18 **MUESTRA 2** 72.00 cm3 Peso seco (g) 108.15 Volumen Peso agua (g) 31.03 28.70 % Velocidad 0.25 mm/min Humedad Peso específico 2.68 8.00 min Saturación 98% Relación vacíos 0.78 Tiempo Desplazamiento 2.000 mm Densidad húmeda 1.93 g/cm3 Densidad seca 1.50 g/cm3 Volumen del sólido 40.35 cm3 Volumen de vacíos 31.65 cm3 0.996 x + 0.652 Corrección dial horizontal 1.00 x + 0.001 Factor celda de carga **ENSAYO 2**

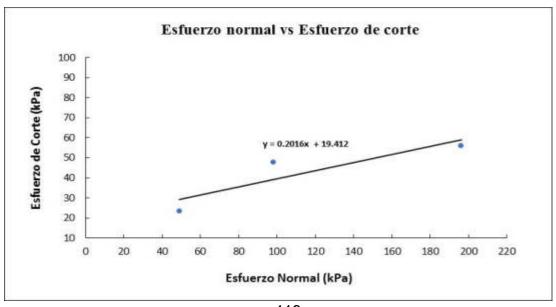
Tiempo	Dial Horizontal (mm)	Corrección dial horizontal (mm)	Dial de carga (kg)	Corrección dial de carga (kg)	Esfuerzo de corte (kg/cm2)
00'00"	0.000	0.000	0	0.000	0.000
30"	0.105	0.106	3	3.640	0.101
01'00"	0.230	0.231	4	4.636	0.129
30"	0.355	0.356	4	4.636	0.129
02'00"	0.480	0.481	5	5.632	0.156
30"	0.605	0.606	6	6.628	0.184
03'00"	0.730	0.731	8	8.620	0.239
30"	0.855	0.856	8	8.620	0.239
04'00"	0.980	0.981	9	9.616	0.267
30"	1.105	1.106	10	10.612	0.295
05'00"	1.230	1.231	10	10.612	0.295
30"	1.355	1.356	11	11.608	0.322
06'00"	1.480	1.481	12	12.604	0.350
30"	1.605	1.606	13	13.600	0.378
07'00"	1.730	1.731	14	14.596	0.405
30"	1.855	1.856	16	16.588	0.461
08'00"	1.980	1.981	17	17.584	0.488

Esfuerzo normal (kg/cm2)	1.000	Esfuerzo cortante (kg/cm2)	0.488
--------------------------	-------	----------------------------	-------

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL MÉTODO PARA EL CORTE DIRECTO N.T.P. 339.171 / ASTM D-3080

		Camastaníaticas de	la			
,	, <u></u>	Características de			T	
Área	36.00 cm2	Peso satura	ado (g)	137.32		
Altura	1.95 cm	Peso después de	el ensayo (g)	135.57	MUESTRA 3	
Volumen	70.20 cm3	Peso sec	:o (g)	105.30		
		Peso agu	Peso agua (g)			
Velocidad	0.25 mm/min	Humedad	28.70 %	Peso específico	2.68	
Tiempo	8.50 min	Saturación	98%	Relación vacíos	0.79	
Desplazamiento	2.125 mm	Densidad húmeda	1.93 g/cm3	Densidad seca	1.50 g/cm3	
		Volumen del sólido	39.29 cm3	Volumen de vacíos	30.91 cm3	
Corrección	dial horizontal	1.00 x + 0.001	Factor ce	lda de carga	0.996 x + 0.652	
		ENS	SAYO 3		l	
	Dial Horizontal	Corrección dial	Dial de carga Corrección dial		Esfuerzo de corte	
Tiempo	(mm)	horizontal (mm)	(kg)	de carga (kg)	(kg/cm2)	
	()	,	(9)	as our gu (rig)	(9, 5=)	
00'00"	0.000	0.000	0	0.000	0.000	
30"	0.105	0.106	4	4.636	0.129	
01'00"	0.230	0.231	5	5.632	0.156	
30"	0.355	0.356	6	6.628	0.184	
02'00"	0.480	0.481	7	7.624	0.212	
30"	0.605	0.606	8	8.620	0.239	
03'00"	0.730	0.731	9	9.616	0.267	
30"	0.855	0.856	11	11.608	0.322	
04'00"	0.980	0.981	12	12.604	0.350	
30"	1.105	1.106	13	13.600	0.378	
05'00"	1.230	1.231	14	14.596	0.405	
30"	1.355	1.356	15	15.592	0.433	
06'00"	1.480	1.481	16	16.588	0.461	
30"	1.605	1.606	17	17.584	0.488	
07'00"	1.730	1.731	18	18.580	0.516	
30"	1.855	1.856	19	19.576	0.544	
08'00"	1.980	1.981	20	20.572	0.571	
30"	2.105	2.106	20	20.572	0.571	


Esfuerzo normal (kg/cm2)	2.000	Esfuerzo cortante (kg/cm2)	0.571



ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÍA CIVIL <u>MÉTODO PARA EL CORTE DIRECTO</u> N.T.P. 339.171 / ASTM D-3080

Ensayo	Esfuerzo normal kg/cm2	Esfuerzo de corte kg/cm2	Esfuerzo normal kPa	Esfuerzo de corte kPa
1	0.500	0.239	49.033	23.481
2	1.000	0.488	98.067	47.900
3	2.000	0.571	196.133	56.040

Resultados de ensayo	
Cohesión (kPa) = C	19.41
Ángulo de fricción interna = Φ	11.40

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL MÉTODO PARA EL CORTE DIRECTO N.T.P. 339.171 / ASTM D-3080

Recolección de datos y resultados

Calicata	07	Ubicación	Distrito Lambayeque	Estado	1 semana
----------	----	-----------	---------------------	--------	----------

		Características de la	muestra inalte	rada	
Área	36.00 cm2	Peso humedad r	natural (g)	140.22	
Altura	2.00 cm	Peso después del ensayo (g)		138.40	MUESTRA 1
Volumen	72.00 cm3	Peso seco	(g)	107.39	MUESTRAT
		Peso agua	(g)	31.01	
Velocidad	0.25 mm/min	Humedad	28.90 %	Peso específico	2.68
Tiempo	7.00 min	Saturación	97%	Relación vacíos	0.80
Desplazamient o	1.75 mm	Densidad húmeda	1.92 g/cm3	Densidad seca	1.49 g/cm3
		Volumen del sólido	40.07 cm3	Volumen de vacíos	31.93 cm3
Corrección di	al horizontal	1.00 x + 0.001	Factor	celda de carga	0.996 x + 0.652
		ENSA	YO 1		
Tiempo	Dial Horizontal (mm)	Corrección dial horizontal (mm)	Dial de carga (kg)	Corrección dial de carga (kg)	Esfuerzo de corte (kg/cm2
00'00"	0.000	0.000	0	0.000	0.000
30"	0.105	0.106	1	1.648	0.046
01'00"	0.230	0.231	2	2.644	0.073
30"	0.355	0.356	2	2.644	0.073
02'00"	0.480	0.481	3	3.640	0.101
30"	0.605	0.606	3	3.640	0.101
03'00"	0.730	0.731	4	4.636	0.129
30"	0.855	0.856	4	4.636	0.129
04'00"	0.980	0.981	5	5.632	0.156
30"	1.105	1.106	5	5.632	0.156
05'00"	1.230	1.231	6	6.628	0.184
30"	1.355	1.356	6	6.628	0.184
06'00"	1.480	1.481	7	7.624	0.212
		4.000	7	7.624	0.212
30"	1.605	1.606	,	7.024	0.212

Esfuerzo normal (kg/cm2)	0.500	Esfuerzo cortante (kg/cm2)	0.212
--------------------------	-------	----------------------------	-------

30"

1.855

UNIVERSIDAD SAN MARTIN DE PORRES

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL MÉTODO PARA EL CORTE DIRECTO N.T.P. 339.171 / ASTM D-3080

_		Características de la	musatra inaltar	ada	
Área	36.00 cm2	Peso saturado (g)		140.00	
Altura	2.00 cm	Peso después del ensayo (g)		138.17	MUESTRA 2
Volumen	72.00 cm3	Peso seco	(g)	107.12	
		Peso agua	ı (g)	31.05	
Velocidad	0.25 mm/min	Humedad	29.00 %	Peso específico	2.68
Tiempo	7.50 min	Saturación	97%	Relación vacíos	0.80
Desplazamient	1.88 mm	Densidad húmeda	1.92 g/cm3	Densidad seca	1.49 g/cm3
0	1.00 11111	Denoidad Hameda	1.02 g/01110	Bensidad seca	1.45 g/6/116
		Volumen del sólido	39.97 cm3	Volumen de vacíos	32.03 cm3
Corrección o	dial horizontal	1.00 x + 0.001	Factor	celda de carga	0.996 x + 0.652
		ENSA	/O 2		
	Dial Horizontal	Corrección dial	Dial de	Corrección dial	Esfuerzo de
Tiempo	(mm)	horizontal (mm)	carga (kg)	de carga (kg)	corte (kg/cm2)
	()	nonzontar (mm)	carga (kg)	ue ourgu (kg)	corte (Rgreinz)
00'00"	0.000	0.000	0	0.000	0.000
30"	0.105	0.106	2	2.644	0.073
01'00"	0.230	0.231	4	4.636	0.129
30"	0.355	0.356	5	5.632	0.156
02'00"	0.480	0.481	6	6.628	0.184
30"	0.605	0.606	7	7.624	0.212
03'00"	0.730	0.731	8	8.620	0.239
30"	0.855	0.856	9	9.616	0.267
04'00"	0.980	0.981	9	9.616	0.267
30"	1.105	1.106	10	10.612	0.295
05'00"	1.230	1.231	11	11.608	0.322
30"	1.355	1.356	12	12.604	0.350
06'00"		4 404	13	13.600	0.378
00 00	1.480	1.481	13	13.000	0.070
30"	1.480 1.605	1.481	14	14.596	0.405

Esfuerzo normal (kg/cm2)	1.000	Esfuerzo cortante (kg/cm2)	0.461
--------------------------	-------	----------------------------	-------

16

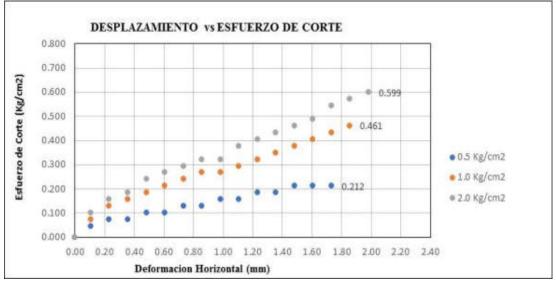
16.588

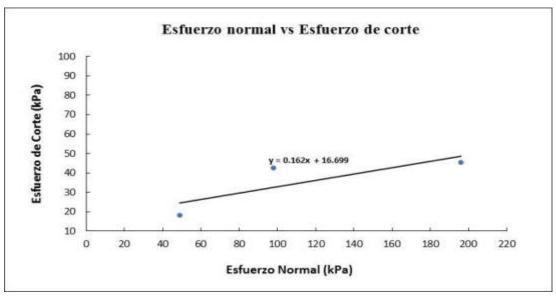
0.461

1.856

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL MÉTODO PARA EL CORTE DIRECTO N.T.P. 339.171 / ASTM D-3080

		Características de	la muestra inalter	ada	
Área	36.00 cm2	Peso satura	ado (g)	136.74	
Altura	1.95 cm	Peso después de	el ensayo (g)	134.89	
Volumen	70.20 cm3	Peso sec	:o (g)	104.87	MUESTRA 3
	I .	Peso agu	ıa (g)	30.02	
Velocidad	0.25 mm/min	Humedad	28.60 %	Peso específico	2.68
Tiempo	8.00 min	Saturación	97%	Relación vacíos	0.79
Desplazamien to	2.00 mm	Densidad húmeda	1.92 g/cm3	Densidad seca	1.49 g/cm3
		Volumen del sólido	39.13 cm3	Volumen de vacíos	31.07 cm3
Corrección	dial horizontal	1.00 x + 0.001	Factor ce	lda de carga	0.996 x + 0.652
		ENS	SAYO 3		
	Dial Horizontal	Corrección dial	Dial de carga	Corrección dial	Esfuerzo de corte
Tiempo	(mm)	horizontal (mm)	(kg)	de carga (kg)	(kg/cm2)
	, ,	, ,	, 0,		, ,
00'00"	0.000	0.000	0	0.000	0.000
30"	0.105	0.106	3	3.640	0.101
01'00"	0.230	0.231	5	5.632	0.156
30"	0.355	0.356	6	6.628	0.184
02'00"	0.480	0.481	8	8.620	0.239
30"	0.605	0.606	9	9.616	0.267
03'00"	0.730	0.731	10	10.612	0.295
30"	0.855	0.856	11	11.608	0.322
04'00"	0.980	0.981	11	11.608	0.322
30"	1.105	1.106	13	13.600	0.378
05'00"	1.230	1.231	14	14.596	0.405
30"	1.355	1.356	15	15.592	0.433
06'00"	1.480	1.481	16	16.588	0.461
30"	1.605	1.606	17	17.584	0.488
07'00"	1.730	1.731	19	19.576	0.544
30"	1.855	1.856	20	20.572	0.571
08'00"	1.980	1.981	21	21.568	0.599


Esfuerzo normal (kg/cm2)	2.000	Esfuerzo cortante (kg/cm2)	0.599
--------------------------	-------	----------------------------	-------



ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÍA CIVIL MÉTODO PARA EL CORTE DIRECTO N.T.P. 339.171 / ASTM D-3080

Ensayo	Esfuerzo normal kg/cm2	Esfuerzo de corte kg/cm2	Esfuerzo normal kPa	Esfuerzo de corte kPa
1	0.500	0.212	49.033	20.768
2	1.000	0.461	98.067	45.187
3	2.000	0.516	196.133	50.613

Resultados de ensayo	
Cohesión (kPa) = C	18.06
Ángulo de fricción interna = Φ	10.30

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL MÉTODO PARA EL CORTE DIRECTO N.T.P. 339.171 / ASTM D-3080

Recolección de datos y resultados

Calicata	07	Ubicación	Distrito Lambayeque	Estado	1 mes
----------	----	-----------	---------------------	--------	-------

		Características de la	muestra inalter	ada	
Área	36.00 cm2	Peso humedad r	natural (g)	139.66	
Altura	2.00 cm	Peso después del ensayo (g)		137.74	MUESTRA 1
Volumen	72.00 cm3	Peso seco	(g)	105.84	WUESTRAT
		Peso agua	(g)	31.90	
Velocidad	0.25 mm/min	Humedad	30.10 %	Peso específico	2.68
Tiempo	6.50 min	Saturación	98%	Relación vacíos	0.82
Desplazamiento	1.63 mm	Densidad húmeda	1.91 g/cm3	Densidad seca	1.47 g/cm3
		Volumen del sólido	39.49 cm3	Volumen de vacíos	32.51 cm3
Corrección d	ial horizontal	1.00 x + 0.001	Factor	celda de carga	0.996 x + 0.652
		ENSA	YO 1		
Tiempo	Dial Horizontal (mm)	Corrección dial horizontal (mm)	Dial de carga (kg)	Corrección dial de carga (kg)	Esfuerzo de corte (kg/cm2)
00'00"	0.000	0.000	0	0.652	0.018
30"	0.105	0.106	1	1.648	0.046
01'00"	0.230	0.231	1	1.648	0.046
30"	0.355	0.356	2	2.644	0.073
02'00"	0.480	0.481	2	2.644	0.073
30"	0.605	0.606	3	3.640	0.101
03'00"	0.730	0.731	4	4.636	0.129
30"	0.855	0.856	5	5.632	0.156
04'00"	0.980	0.981	5	5.632	0.156
30"	1.105	1.106	5	5.632	0.156
05'00"	1.230	1.231	5	5.632	0.156
30"	1.355	1.356	6	6.628	0.184
06'00"	1.480	1.481	6	6.628	0.184
30"	1.605	1.606	6	6.628	0.184

Esfuerzo normal (kg/cm2)	0.500	Esfuerzo cortante (kg/cm2)	0.184

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL MÉTODO PARA EL CORTE DIRECTO N.T.P. 339.171 / ASTM D-3080

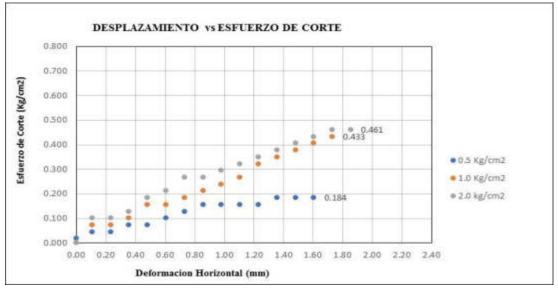
		Características de la	muestra inaltera	ada		
Área	36.00 cm2	Peso saturado (g)		139.24		
Altura	2.00 cm	Peso después del	ensayo (g)	137.31	MUECTRA	
Volumen	72.00 cm3	Peso seco (g)		105.12	MUESTRA 2	
		Peso agua (g)		32.19		
Velocidad	0.25 mm/min	Humedad	30.60 %	Peso específico	2.68	
Tiempo	7.00 min	Saturación	98%	Relación vacíos	0.84	
Desplazamiento	1.75 mm	Densidad húmeda	1.91 g/cm3	Densidad seca	1.46 g/cm3	
		Volumen del sólido	39.22 cm3	Volumen de vacíos	32.78 cm3	
Corrección dial horizontal		1.00 x + 0.001	Factor celda de carga		0.996 x + 0.652	
ENSAYO 2						
Tiemno	Dial Horizontal	Corrección dial	Dial de	Corrección dial	Esfuerzo de	

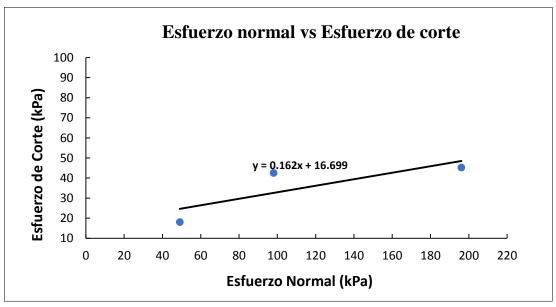
Tiempo	Dial Horizontal (mm)	Corrección dial horizontal (mm)	Dial de carga (kg)	Corrección dial de carga (kg)	Esfuerzo de corte (kg/cm2)
00'00"	0.000	0.000	0	0.000	0.000
30"	0.105	0.106	2	2.644	0.073
01'00"	0.230	0.231	2	2.644	0.073
30"	0.355	0.356	3	3.640	0.101
02'00"	0.480	0.481	5	5.632	0.156
30"	0.605	0.606	5	5.632	0.156
03'00"	0.730	0.731	6	6.628	0.184
30"	0.855	0.856	7	7.624	0.212
04'00"	0.980	0.981	8	8.620	0.239
30"	1.105	1.106	9	9.616	0.267
05'00"	1.230	1.231	11	11.608	0.322
30"	1.355	1.356	12	12.604	0.350
06'00"	1.480	1.481	13	13.600	0.378
30"	1.605	1.606	14	14.596	0.405
07'00"	1.730	1.731	15	15.592	0.433

Esfuerzo normal (kg/cm2)	1.000	Esfuerzo cortante (kg/cm2)	0.433
--------------------------	-------	----------------------------	-------

ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÌA CIVIL <u>MÉTODO PARA EL CORTE DIRECTO</u> N.T.P. 339.171 / ASTM D-3080

		Características de	la muestra inalter	ada .		
Área	36.00 cm2	Peso satura		135.91		
Altura	1.95 cm	Peso después del ensayo (g)		134.00		
Volumen 70.20 cm3		Peso sec		102.49	MUESTRA 3	
		Peso agu		31.51		
Velocidad	0.25 mm/min	Humedad	30.70 %	Peso específico	2.68	
Tiempo	7.50 min	Saturación	98%	Relación vacíos	0.84	
Desplazamien to	1.88 mm	Densidad húmeda	1.91 g/cm3	Densidad seca	1.46 g/cm3	
		Volumen del sólido	38.24 cm3	Volumen de vacíos	31.96 cm3	
Corrección	dial horizontal	1.00 x + 0.001	Factor ce	lda de carga	0.996 x + 0.652	
		ENS	AYO 3			
Tiempo	Dial Horizontal	Corrección dial	Dial de carga	Corrección dial	Esfuerzo de corte	
	(mm)	horizontal (mm)	(kg)	de carga (kg)	(kg/cm2)	
00'00"	0.000	0.000	0	0.000	0.000	
30"	0.105	0.106	3	3.640	0.101	
01'00"	0.230	0.231	3	3.640	0.101	
30"	0.355	0.356	4	4.636	0.129	
02'00"	0.480	0.481	6	6.628	0.184	
30"	0.605	0.606	7	7.624	0.212	
03'00"	0.730	0.731	9	9.616	0.267	
30"	0.855	0.856	9	9.616	0.267	
04'00"	0.980	0.981	10	10.612	0.295	
30"	1.105	1.106	11	11.608	0.322	
05'00"	1.230	1.231	12	12.604	0.350	
30"	1.355	1.356	13	13.600	0.378	
06'00"	1.480	1.481	14	14.596	0.405	
30"	1.605	1.606	15	15.592	0.433	
07'00"	1.730	1.731	16	16.588	0.461	
30"	1.855	1.856	16	16.588	0.461	


Esfuerzo normal (kg/cm2)	2.000	Esfuerzo cortante (kg/cm2)	0.461
--------------------------	-------	----------------------------	-------



ESCUELA DE INGENIERÍA CIVIL TÍTULO EN INGENIERÍA CIVIL <u>MÉTODO PARA EL CORTE DIRECTO</u> N.T.P. 339.171 / ASTM D-3080

Ensayo	Esfuerzo normal kg/cm2	Esfuerzo de corte kg/cm2	Esfuerzo normal kPa	Esfuerzo de corte kPa
1	0.500	0.184	49.033	18.055
2	1.000	0.433	98.067	42.474
3	2.000	0.461	196.133	45.187

Resultados de ensayo	
Cohesión (kPa) = C	16.70
Ángulo de fricción interna = Φ	9.20

ANEXO 10: PANEL FOTOGRÁFICO

ENSAYO DE CONTENIDO DE HUMEDAD

FOTOGRAFÍA N° 01: Taras clasificadas con numeración para realizar el ensayo y llevar un mejor control, para de esta manera llegar a los resultados correctos.

FOTOGRAFÍA N° 02: Se procedió a pesar cada tara en la balanza, se anotaron en una libreta los pesos de la tara sola y la tara con muestra de cada calicata.

FOTOGRAFÍA N° 03: Una vez pesada todas las taras, se colocaron en una bandeja y fueron llevadas al horno por un tiempo de 24 horas.

 $\textbf{FOTOGRAFÍA N}^{\circ} \ \textbf{04:} \ \text{Con los implementos adecuados, una vez concluido el tiempo, se sacó la bandeja con taras del horno con sumo cuidado.}$

FOTOGRAFÍA N° 05: Las muestras fueron llevadas a la mesa y se ordenaron para pesarlas nuevamente.

FOTOGRAFÍA N° 06: Se pesaron, obteniendo un nuevo peso, el cual se determinó como peso seco, se anotó en la libreta y se procedió a realizar los cálculos.

ENSAYO DE GRANULOMETRÍA

FOTOGRAFÍA N° 07: Las muestras se colocaron en bandejas, debidamente identificadas, para ser secadas al aire libre.

FOTOGRAFÍA N° 08: Seco el suelo, se procedió a disgregar el terreno. Concluido se colocaron las muestras en sus respectivas bolsas ziploc, debidamente identificadas. Se colocó un poco de muestra sobre una superficie plana para realizar el cuarteo.

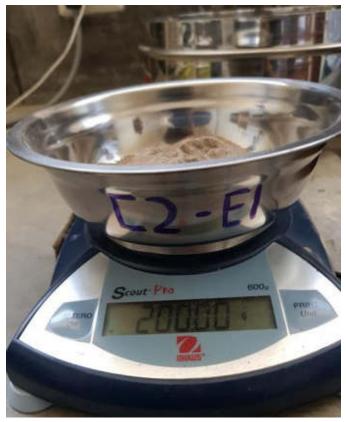
FOTOGRAFÍA N° 09: Se realizó el cuarteo de las muestras con ayuda de una regla metálica, se escogieron dos extremos del cuarteo para el ensayo.

FOTOGRAFÍA N° 10: De los extremos del cuarteo se colocó en una tara unos 200g de muestra, teniendo en cuenta que no se consideró el peso de la tara al momento de pesar, solo el de la muestra.

FOTOGRAFÍA N° 11: Con los 200 g se procede con ayuda del tamiz $N^{\circ}200$ (de dimensión mayor al estándar) a lavar la muestra.

FOTOGRAFÍA N° 12: La muestra previamente lavada, se llevó al horno, pasado 24 horas, se saca. Se ordena los tamices según la NTP 339.128 y se procede a colocar la muestra para realizar el tamizado.

FOTOGRAFÍA N° 13: Se procede a realizar el tamizado de la muestra, moviéndola homogéneamente de un lado para otro, 60 veces por 1 minuto.



FOTOGRAFÍA N° 14: Se pesa la muestra retenida, esto se realiza para cada tamiz utilizado para el ensayo. Se anotaron estos datos ordenadamente.

ENSAYO DE LIMITE LÍQUIDO, LIMITE PLASTICO E INDICE DE PLASTICIDAD

FOTOGRAFÍA N° 15: Se utilizó la malla N°40 para este ensayo, se pesó 200g de muestra que pasó este tamiz.

FOTOGRAFÍA N° 16: Se pesan los 200g sin considerar el peso de la tara, se le adiciona agua destilada y se mezcló. Se envolvió con un poco de rollo film y se dejó por 24 horas.

FOTOGRAFÍA N° 17: Pasado 24 horas, se enumeraron las taras pequeñas, cada una con el respectivo rango, para el ensayo de límite líquido. Se procedió a sacar la muestra que se dejó envuelta.

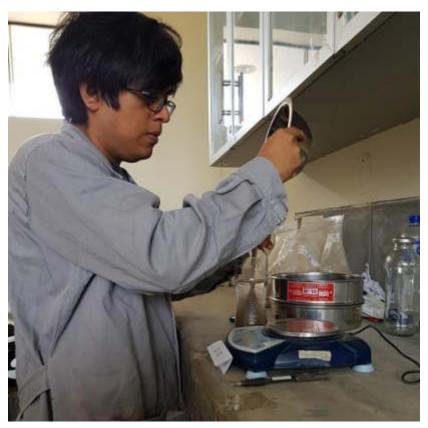
FOTOGRAFÍA N° 18: Se utilizó la Copa de Casagrande para realizar el ensayo de límite líquido, realizando los golpes respectivos que se encuentren en el intervalo requerido de 15-20; 20-25; 25-30 y 30-35.

FOTOGRAFÍA N° 19: Encontrado los rangos, se colocan en sus respectivas taras, estas fueron llevadas al horno por 24 horas, se volvieron a pesar y se halló su contenido de humedad.

FOTOGRAFÍA N° 20: De la muestra empleada en límite líquido, se utilizó 20g para realizar el ensayo de límite plástico, enrollando la muestra en un vidrio esmerilado, hasta que alcance el diámetro de la varilla de 3.2 mm, se coloca en una tara, se pesa y se lleva al horno por 24 horas. Cumplido el tiempo se saca y se vuelve a pesar.

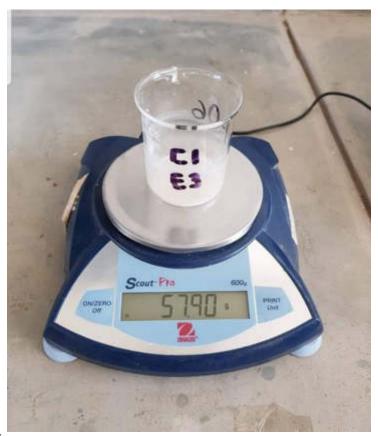
ENSAYO DE CONTENIDO DE SALES SOLUBLES

FOTOGRAFÍA N° 21: Para el ensayo de contenido de sales, se necesitaron botellas de vidrio (debidamente identificadas), papel filtro, balanza, embudo, matraz, beaker y tamiz N°10.

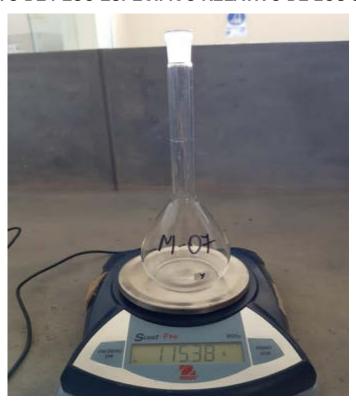

FOTOGRAFÍA N° 22: Se pasó por el tamiz N°10, la muestra a ensayar y se tomó 100g de esta, este proceso se realizó para cada estrato de cada calicata.

FOTOGRAFÍA N° 23: Con ayuda de la balanza, se tomó 100g de muestra, sin considerar el peso de la tara.

FOTOGRAFÍA N° 24: La relación que se tuvo fue de 1:3, se vertió en la botella 300 ml de agua destilada.


FOTOGRAFÍA N° 25: Con ayuda de un embudo se coloca la muestra de 100g en la botella con agua destilada, con cuidado de no perder muestra.

FOTOGRAFÍA N° 26: Se agitan las muestras por un periodo de 1 hora, de manera homogénea, con un movimiento continuo.



FOTOGRAFÍA N° 27: Concluida la agitación de las muestras en la botella, se dejó reposar estas por 24 horas.

FOTOGRAFÍA N° 28: Con ayuda de un embudo se vertió la solución de la botella, con ayuda de un papel filtro y un embudo en los matraces, para luego ser colocado en los beakers. Llevarlo al horno por 24 horas, pasado este tiempo, se saca, pesa y se halló la masa de sales.

ENSAYO DE PESO ESPECÍFICO RELATIVO DE LOS SOLIDOS

FOTOGRAFÍA N° 29: Se realizó la calibración de las 11 fiolas, que se utilizaron para el respectivo ensayo. Se determinó el precio de cada una y se anotó.

FOTOGRAFÍA N° 30: Se llenó con agua destilada cada fiola con 3/4 de su contenido, con ayuda de una piseta.

FOTOGRAFÍA N° 31: Las fiolas fueron colocadas en la cocina, se dejaron calentar hasta que se produzca una ebullición en estas, con el fin de que se elimine el aire que tienen en el interior.

FOTOGRAFÍA N° 32: Una vez producida la ebullición, se sacaron de la cocina y se tomó la temperatura. Se enraso hasta que esta llega a una temperatura ambiente.

FOTOGRAFÍA N° 33: Se utilizó la malla N°4 para realizar el ensayo, con la muestra que pase esta malla.

FOTOGRAFÍA N° 34: Se utilizó 30g de muestra representativa que pasa por el tamiz N° 4

 $\textbf{FOTOGRAFÍA N} \textbf{° 35:} \ \, \textbf{Se vierte la muestra en las fiolas, junto con el agua destilada, con ayuda de un embudo.}$

FOTOGRAFÍA N° 36: Las fiolas son colocadas en la cocina, una vez producida la ebullición en estas se sacan y se dejan enfriar.

FOTOGRAFÍA N° 37: Con ayuda de un termómetro, se mide la temperatura. Teniendo siempre en cuenta que se midió a una misma altura.

 $\begin{tabular}{ll} FOTOGRAFÍA N° 38: Se tomó la temperatura de la fiola, se pesó y se enraso, hasta que se encuentre en una temperatura ambiente. \\ \end{tabular}$

ENSAYO DE PESO ESPECÍFICO VOLUMETRICO DE UN SUELO COHESIVO

FOTOGRAFÍA N° 39: Se talló la muestra inalterada con el molde destinado para realizar el ensayo.

FOTOGRAFÍA N° 40: Se disolvió un poco de parafina en una olla previamente calentada. Se amarro la muestra con un poco de nailon y se colocó en la olla, observando que todos los vacíos se llenen de parafina.

FOTOGRAFÍA N° 41: Bañada la muestra en parafina se sacó y se procedió a tomar su peso respectivo.

FOTOGRAFÍA N° 42: Se colocó en una probeta graduada la muestra, anotando previamente el volumen inicial que este tiene.

 $\textbf{FOTOGRAFÍA N}^{\circ} \textbf{ 43:} \text{ Al desplazar el agua, se toma un nuevo volumen, el cual vendría a ser el volumen final.}$

 $\textbf{FOTOGRAF\'{I}A N° 44:} \ \ \text{Con sumo cuidado se toma los valores dados, y la muestra se lleva al horno por 24 horas.}$

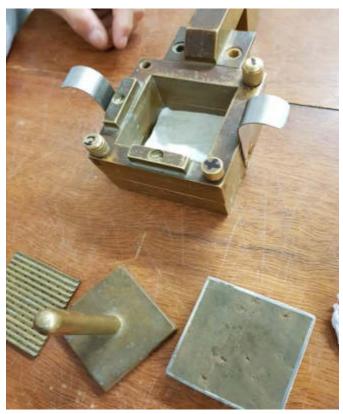
ENSAYO DE CORTE DIRECTO

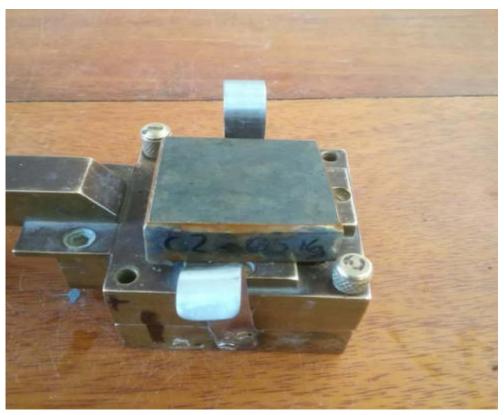
FOTOGRAFÍA N° 45: Se talló con un molde cuadrado la muestra inalterada.

FOTOGRAFÍA N° 46: Se colocó las bridas una arriba y la otra abajo del molde cuadrado, colocando previamente sobre y debajo del molde cuadrado papel filtro. Se aseguró con tornillos y tuercas.

FOTOGRAFÍA N° 47: Se catalogó cada molde cuadrado con los respectivos pesos a los que serían ensayados, para llevar un óptimo control.

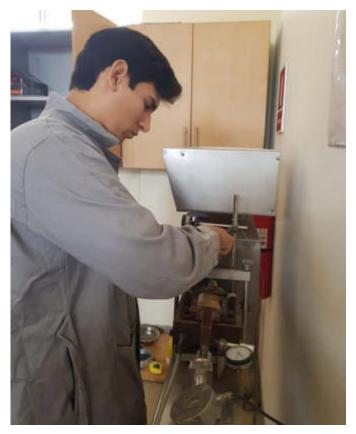
FOTOGRAFÍA N° 48: Se colocó en baldes identificados con el tiempo que se va a saturar la muestra.


FOTOGRAFÍA N° 49: Se dejan los moldes con sumo cuidado.


FOTOGRAFÍA N° 50: Se forró con rollo film el balde con el fin de evitar que agentes externos alteren la muestra.

FOTOGRAFÍA N° 51: Concluido el tiempo establecido, se sacaron los moldes que se encontraban saturándose.


FOTOGRAFÍA N° 52: Se ensambla la caja de corte directo, donde se colocará la muestra que se ensayará.


 $\textbf{FOTOGRAFÍA N}^{\circ} \textbf{ 53:} \ \text{Con sumo cuidado se coloca la muestra, en la caja de corte.}$

FOTOGRAFÍA N° 54: Con ayuda de un extractor de muestra se coloca la muestra en la caja de corte directo.

 $\textbf{FOTOGRAFÍA N}^{\circ} \ \textbf{55:} \ \text{Se coloca la placa de transferencia de carga y se lleva a la máquina de corte directo.}$

FOTOGRAFÍA N° 56: Se ensambla la caja de corte directo.

 $\textbf{FOTOGRAFÍA N}^{\circ} \ \textbf{57:} \ \textbf{Se cercioro que tanto caja de corte como dial se encuentran correctamente instalados.}$

FOTOGRAFÍA N° 58: Se procedió a colocar el peso respectivo, para el ensayo a realizar.

FOTOGRAFÍA N° 59: Se enciende la máquina y se anotan los valores que tanto la maquina como el dial arrojen, teniendo en cuenta que la maquina trabaja con una velocidad de $0.25\ \text{mm/min}$.

FOTOGRAFÍA Nº 60: Concluido el ensayo, se procedió a sacar la caja de corte directo.

FOTOGRAFÍA Nº 61: Con sumo cuidado se desensamblo la caja de corte directo.

 ${\bf FOTOGRAFÍA~N^\circ~62:}$ Se observó el corte que realizo la maquina a la muestra ensayada.

FOTOGRAFÍA Nº 63: Esta muestra ensayada se pesó.

FOTOGRAFÍA N° 64: Por último, se llevó al horno por 24 horas. Concluido este periodo de tiempo, se sacó la muestra y se volvió a pesar, esto con el fin de hallar el contenido de humedad.

ANEXO 11: C	ALIBRACIÓN	I MÁQUINA	S DE LABO	RATORIO U	SMP-FN

MAQUINA DE CORTE DIRECTO

ORION LABORATORIOS E.I.R.L.

Calibración, Ensayos de Laboratorio Suelos, Concreto y Asfalto

Febrero 2019.

CERTIFICADO DE CALIBRACIÓN Nº 002-19 CD

SOLICITANTE

: UNIVERSIDAD DE SAN MARTIN DE PORRES

ATENCION

: UNIVERSIDAD DE SAN MARTIN DE PORRES

TITULO

: Calibración de Sistema Digital de Corte Directo

Celda de Carga

Marca

: AEP Transducer

Serie Capacidad : 518655 500 Kgr

DIAL Desplazamiento Horizonal

Marca

: Mitutoyo

Serie

: JGG635

Rango

: 0.01 mm

DIAL Desplazamiento Vertical

Marc

: Mitutoyo

Serie

: KSK 327

Rango

: 0.01 mm

Pantalla

Marca

: MCC - -

Modelo

: SAFIR

FECHA

: Huachipa, 13 de Febrero del 2019

Ing. Luis Tabnada Palacias

Los Huertos de Huachipa Mz. E.L. 15 - Lurigancho | Teif. 371 0531 - 371 0475 | Entel: 971 707 204 - 936 601 894 - 945 101 989 | Industrio@orionrep.com | areatecnica@orionrep.com | ventas@orionrep.com | www.orionrep.com

Calibración, Ensayos de Laboratorio Suelos, Concreto y Asfalto CERTIFICADO DE CALIBRACIÓN Nº 002-19 CD

INFORMACION DEL EQUIPO

I.- GENERALIDADES

A solicitud de UNIVERSIDAD DE SAN MARTIN DE PORRES, se procedió a verificar el comportamiento del Sistema Digital en la ciudad de Chiclayo. La Caliibración se realizó el 13 de Febrero del 2019.

2.- DEL SISTEMA A CALIBRAR

Celda de Carga AEP Transducer

Serie 518655

500 Kgr Capacidad Dial Desplazamiento Horizontal

Serie JGG635

Rango 0.01 mm Dial Desplazamiento vertical

Serie : KSK327

0.01 mm Rango

Pantalla

Marca MCC Modelo Safir

3.- DEL SISTEMA DE CALIBRACIÓN

Dispositivo : Celda de Carga Dispositivo Dial Digital Fabricante AEP TRANSDUCER Fabricante Mitutoyo

(Japón).

1D-C112M Tipo C2S-10T Modelo Serie Nº 205775 Serie Nº 08150 Incertidumbre:

0.001 mm.

Carga Nominal : 10 TN Modalidad Compresión

Digital AEP Transducer Indicador

Modelo MP10.

: 6181-2006-06 Nº Serie

Calibración realizado en el Laboratorio de Estructuras Antisísmicas de la Pontificia Universidad Católica. - Expediente ..: INF-LE 0117-18B.

Cuadrante Indicador Calibrado en el Laboratorio de Longitud y Angulo acreditado por INACAL - Certificado MS-153-2018.

El procedimiento toma como referencia a la norma ASTM E4-07 y la Norma NTP ISO/IEC 17025. Se aplicaron tres series de carga al Anillo mediante la misma prensa. En cada serie se registraron las lecturas de las cargas.

5.- RESULTADOS

En la Tabla Nº 1 se muestran las tres series de carga y la serie promedio correspondiente. En el Gráfico Nº1 se muestra la curva de regresión y la ecuación de ajuste correspondientes a la 327 presente calibración.

Los Huertos de Huachipa Mz. E Lt. 15 - Lurigancho Telf. 371 0531 - 371 0475 Entel: 971 707 204 - 536 601 894 - 945 101 989 laboratorio a orionrep.com areatecnica gorionrep.com ventas gorionrep.com www orionrep.com

Calibración, Ensayos de Laboratorio Suelos, Concreto y Asfalto

Ing. Link Tabanda Felacios

X:Lectura de la pantalia Y:fuerza promedio (KG)

Ecuación de ajuste:

Dende:

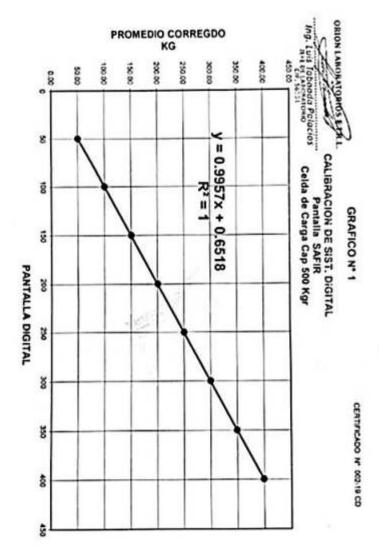
X: Lectura

y = 0,9957x + 0.6518

Coeficiente Correlación

.

.v. 30 256 200 150 100 8 SERVE (1) 250.00 200.50 150.00 299 50 100.00 50.00 SERIE (2) SERIES DE CALBRACIÓN (KG) 250.00 150 50 100.00 50.00 ERROR (1) 0.00 0.00 ERROR (2) CORREGIDO PROMEDIO 349.00 299 50 100.00 250.00 200.25 150.25 50.00 ŝ ERROR ¥ # 0.00 0.13 0.17 0.00


CALIBRACION DE SISTEMA DIGITAL Ceida de Carga Cap 500 Kgr

RPTBLO Rp CERTIFICADO DE CALIBRACIÓN Nº 002-19 CD

Los Huertos de Huachipa Mz. E.L. 15 - Lurigancho | Telf. 371 0531 - 371 0475 | Entel: 971 707 204 - 935 601 894 - 945 101 989 | Inhoratorio@orionrep.com | areatecnica@orionrep.com | ventas@orionrep.com | www.rionrep.com

Calibración, Ensayos de Laboratorio Suelos, Concreto y Asfalto

Los Huertos de Huachipa Mz. E.L., 15 - Lurigancho | Telf. 371 0531 - 371 0475 | Entel: 971 707 204 - 936 601 894 - 945 101 989 | laboratorio@orionrep.com | areatecnica@orionrep.com | ventas@orionrep.com | www.erionrep.com

Calibración, Ensayos de Laboratorio Suclos, Concreto y Asfalto

CERTIFICADO DE CALIBRACIÓN Nº 002-19 CD

VERIFICACION DE DIAL HORIZONTAL

Mitutoyo, Modelo 2046S N* Serie JGG 635 Sensibilidad 0.01mm

DIAL COMPARADOR	LECTURA DEL PATRON MM			SERIE	
DIVIS.	SERIE (1)	SERIE (2)	SERIE (3)	PROMEDIO MM	
0.5	0.498	0.500	0.500	0.499	
1	0.995	1.000	1.002	0.999	
1.5	1.498	1,499	1,500	1.499	
2	1.996	1.998	2.004	1.999	
2.5	2.498	2.497	2.503	2.499	
3	3.000	3.000	3.001	3.000	
3.5	3.502	3.499	3.506	3.502	
4	4.001	4.000	4.004	4.002	
4.5	4.500	4.501	4.502	4.501	
5	4.998	4.997	5.006	5.000	
5.5	5.498	5.500	5.508	5.502	
6	5.975	6.002	6.000	5.992	
6.5	6.490	6.503	6.501	6.498	
7	6.977	7.003	7.006	6.995	
7.5	7.490	7.508	7.502	7.500	
8	7.975	8.010	8.004	7,996	
8.5	8.498	8.512	8.499	8.503	
9	8.990	9.010	9.001	9.000	
9.5	9.495	9.508	9.502	9.502	
10	10.000	10.003	10.002	10.002	

coeficiente de correlación:

 $R^2 = 1$

Ing. Luis Taboada Felocias

Recta de ajuste:

y = 1.00x + 0.001

Donde:

X : Lectura del dial (mm)

Y :Promedio de lectura Patrón mm

Los Huertos de Huachipa Mz. E Lt. 15 - Lurigancho | Teif. 371 0531 - 371 0475 | Entel: 971 707 204 - 926 601 894 - 945 101 989 | laboratorio@orionrep.com | areatecnica@orionrep.com | ventas@orionrep.com | www.ecionrep.com

Calibración, Ensayos de Laboratorio Suelos, Concreto y Asfalto

CERTIFICADO DE CALIBRACIÓN Nº 002-19 CD

VERIFICACION DE DIAL VERTICAL

Mitutoyo, Modelo 2046S N° Serie KSK 327 Sensibilidad 0.01mm

DIAL COMPARADOR	LE	CTURA DEL PA	ATRON MM	SERIE
DIVIS.	SERIE (1)	SERIE (2)	SERIE (3)	PROMEDIO MM
0.5	0.500	0.500	0.500	0.500
1	1.001	0.999	1.002	1.001
1.5	1.499	1.498	1.501	1.499
2	1.990	1.995	2.006	1.997
2.5	2.496	2.492	2.508	2.499
3	2.988	2.998	3.006	2.997
3.5	3.491	3.496	3.512	3.500
4	3.996	4.000	4.010	4.002
4.5	4.490	4.501	4.512	4.501
5	4.998	4.995	5.009	5.001
5.5	5.491	5.498	5.512	5.500
6	5.996	5.992	6.010	5.999
6.5	6.492	6.500	6.504	6.499
7	6.993	6.996	7.004	6.998
7.5	7.490	7.498	7.508	7.499
8	7.991	7.993	8.010	7.998
8.5	8.499	8.498	8.508	8.502
9	9.000	8.997	9.006	9.001
9.5	9.492	9.498	9.506	9.499
10	9.996	9.997	10.004	9.999

coeficiente de correlación:

 $R^2 = 1$

Recta de ajuste:

y = 1.000x - 0.000

Donde:

X : Lectura del dial (mm)

Y :Promedio de lectura Patrón mm

Los Huertos de Huachipa Mz. E. Lt. 15 - Lurigancho | Telf. 371 0531 - 371 0475 | Entel: 971 707 204 - 934 601 894 - 945 101 989 | laboraturio@orionrep.com | areatecnica@orionrep.com | ventas@orionrep.com | www.orionrep.com

Calibración, Ensayos de Laboratorio Suelos, Concreto y Asfalto

febrero 2019. Gozte Directo - DIOL

CERTIFICADO DE CALIBRACIÓN Nº 020-19 DD

SOLICITANTE: UNIVERSIDAD DE SAN MARTIN DE PORRES

TITULO : 0

: Calibración de Dial Indicador

Dial

: MITUTOYO

Modelo

: 2050S

Rango

: 30 mm

Sensibilidad : 0.01mm

Serie

: JGG635 - Dercolibrade.

FECHA

: Huachipa, 13 de Febrero del 2019

Ing Luis Tabaada Palacios

Los Huertos de Huachipa Mz. E Lt. 15 - Lurigancho | Telf. 371 0531 - 371 0475 | Entel: 971 707 204 - 9. 6 601 894 - 945 101 989 | laboratorio@orionrep.com | areatecnica@orionrep.com | ventas@orionrep.com | www.wionrep.com

Calibración, Ensayos de Laboratorio Suelos, Concreto y Asfalto

CERTIFICADO DE CALIBRACIÓN Nº 020-19 DD

CALIBRACIÓN

1.- GENERALIDADES.

A solicitud de SAN MARTIN DE PORRES se procedió a calibrar el comportamiento de un Dial Indicador.

2.- DEL SISTEMA A CALIBRAR.

Dial

Marca

: MITUTOYO

Modelo Rango

2050S 30 mm

Sensibilidad Serie

0.01 mm JGG635 Ing. Luis Tabaada Paiccio

3.- DEL SISTEMA DE CALIBRACIÓN.

Dispositivo

Dial Digital

Fabricante

Mitutoyo (Japón).

Modelo

1D - C112M

Serie N° Incertidumbre

: 08150 : 0.001 mm.

Cuadrante Indicador Calibrado en el Laboratorio de Longitud y Angulo acreditado por INACAL - Certificado MS-153-2018.

4.- PROCEDIMIENTO

Se determinó el error de indicación del Dial por comparac ón con nuestro Patrón Digital. Se aplicaron tres series de medición al dial mediante el mismo mecanismo de desplazamiento. En cada serie se registraron las lecturas correspondientes.

5.- RESULTADOS

En la Tabla Nº 1 se muestran las tres series de medición y la serie promedio correspondiente.

En el Gráfico Nº1 se muestra la curva de regresión y la ecuación de ajuste correspondiente a la presente calibración

Los Huertos de Huachipa Mz. E Lt. 15 - Lurigancho | Telf. 371 0531 - 371 0475 | Entel: 971 707 204 - 9: 6 601 894 - 945 101 989 | | laboratorio@orionrep.com | areatecnica@orionrep.com | ventas@orionrep.com | www.rionrep.com

Calibración, Ensayos de Laboratorio Suclos, Concreto y Asfalto

CERTIFICADO DE CALIBRACIÓN Nº 020-19 DD

TABLA Nº 1

CALIBRACION DE DIAL INDICADOR Dial Marca MITUTOYO, Modelo 2050S Sensibilidad 0.01mm

DIAL COMPARADOR	LE	SERIE		
DIVIS, MM	SERIE (1)	SERIE (2)	SERIE (3)	PROMEDIO

0.5	0.498	0.500	0.500	0.499
1	0.995	1.000	1.002	0.939
1.5	1,498	1.499	1.500	1,499
2	1.996	1.998	2 004	1.999
2.5	2.498	2.497	2 503	2.499
3	3.000	3.000	3.001	3,000
3.5	3.502	3.499	3.506	3 502
4	4 001	4.000	4.004	4 002
4.5	4.500	4.501	4 502	4 501
5	4.998	4.997	5.006	5 000
5.5	5 498	5.500	5.508	5.502
6	5 975	6 002	6 000	5.992
6.5	6.490	6.503	6.501	6 498
7	6.977	7.003	7.006	6.995
7.5	7.490	7.508	7.502	7.500
8	7.975	8.010	8.004	7.996
8.5	8.498	8.512	8.499	8 503
9	8.990	9.010	9 001	9.000
9.5	9.495	9.508	9.502	9.502
10	10.000	10.003	10.002	10 002

coeficiente de correlación:

R1 -1

Recta de ajuste:

y = 1.000x + 0.001

Donde:

X : Lectura del dial (mm)

Y :Promedio de lectura Patrón mm

Ing. Luis Tabanda Pelacios

Los Huertos de Huachipa Mz. E Lt. 15 - Lurigancho | Telf. 371 0531 - 371 0475 | Entel: 971 707 204 - 9.6 601 894 - 945 101 985 |
Inhoratorio Forionrep.com | areatecnica Forionrep.com | ventas Forionrep.com | www.prionrep.com

Calibración, Ensayos de Laboratorio Suelos, Concreto y Asfalto PROMEDIO DEL PATRON (mm)

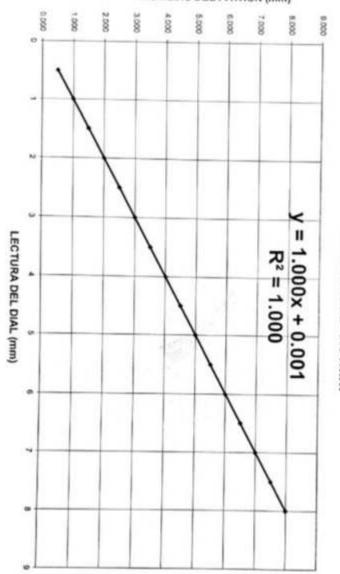


GRAFICO Nº 1
CALIBRACION DE DIAL INDICADOR
Dial MITUTOYO, Modelo 2050S
Sensibilidad 0.01mm

Les Huertes de Huachipa Mz. E.Lt. 15 - Lurigancho | Telf. 371 0531 - 371 0475 | Entel: 971 707 204 - 93 5 601 894 - 945 101 989 laboratorio@orinnrep.com | areatecnica@orionrep.com | ventas@orionrep.com | www.erionrep.com

Calibración, Ensayos de Laboratorio Suelos, Cencreto y Asfalto

Febrero 2019. Conte Direch - Diac

CERTIFICADO DE CALIBRACIÓN Nº 021-19 DD

SOLICITANTE: UNIVERSIDAD DE SAN MARTIN DE POR RES

TITULO

: Calibración de Dial Indicador

Dial

: MITUTOYO

Modelo

: 2050S

Rango

: 30 mm

Sensibilidad : 0.01mm

Serie

: KSK32

FECHA

: Huachipa, 13 de Febrero del 2019

Ing. Luis Toboada Palacias

Calibración, Ensayos de Laboratorio Suelos, Concreto y Asfalto

CERTIFICADO DE CALIBRACIÓN Nº 021-19 DD

CALIBRACIÓN

1.- GENERALIDADES.

A solicitud de UNIVERSIDAD DE SAN MARTIN DE PORRES se procedió a calibrar el comportamiento de un Dial Indicador.

2.- DEL SISTEMA A CALIBRAR.

Dial

Marca : MITUTOYO

Modelo : 2050S

Rango : 30 num Sensibilidad : 0.01 mm

Serie : KSK 327

3.- DEL SISTEMA DE CALIBRACIÓN.

Dispositivo : Dial Digital

Fabricante : Mitutoyo (Japón).

Modelo : 1D - C112M Serie Nº : 08150

Incertidumbre : 0.001 mm.

Cuadrante Indicador Calibrado en el Laboratorio de Longitud y Angulo acreditado por INACAL - Certificado MS-153-2018.

4.- PROCEDIMIENTO

Se determinó el error de indicación del Dial por comparación con nuestro Patrón Digital. Se aplicaron tres series de medición al dial mediante el mismo mecanismo de desplazamiento. En cada serie se registraron las lecturas correspondientes.

5,- RESULTADOS

En la Tabla Nº 1 se muestran las tres series de medición y la serie promedio correspondiente.

En el Gráfico Nº1 se muestra la curva de regresión y la ecuación de ajuste correspondiente a la presente calibración

Calibración, Ensayos de Laboratorio Suelos, Concreto y Asfalto

CERTIFICADO DE CALIBRACIÓN Nº 021-19 DD

TABLA Nº 1

CALIBRACIÓN DE DIAL INDICADOR

Dial Marca MITUTOYO, Modelo 2050S Sensibilidad 0.01mm

DIAL COMPARADOR	LE	CTURA DEL P	SERIE		
DIVIS. MM	SERIE (1)	SERIE (2)	SERIE (3)	PROMEDIO	

0.5	0.500	0.500	0.500	0.500
1	1,001	0.999	1.002	1.001
1.5	1,499	1.498	1,501	1.499
2	1.990	1.995	2.006	1.997
2.5	2,496	2.492	2.508	2.499
3	2.988	2.998	3.006	2.997
3.5	3.491	3.496	3.512	3.500
4	3,996	4.000	4.010	4.002
4.5	4.490	4,501	4.512	4.501
5	4.998	4.995	5.009	5.001
5.5	5.491	5.498	5.512	5.500
6	5.996	5.992	6.010	5.999
6.5	6.492	6.500	6.504	6.499
7	6.993	6.996	7.004	6.998
7.5	7.490	7.498	7,508	7.499
8	7.991	7.993	8.010	7.998
8.5	8.499	8.498	8.508	8.502
.9	9.000	8.997	9.006	9.001
9.5	9.492	9.498	9.506	9.499
10	9.996	9.997	10.004	9.999

coeficiente de correlación:

R1 = 1

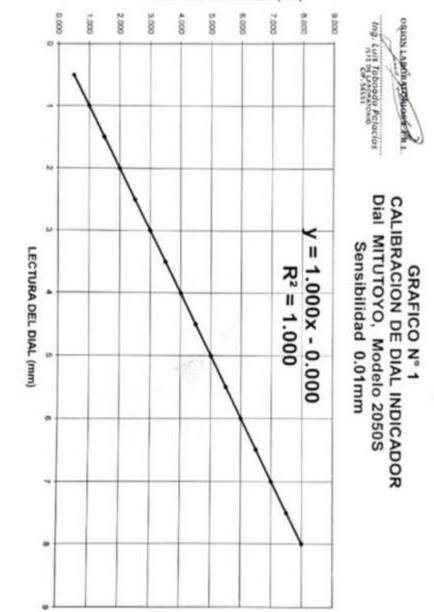
Recta de ajuste:

y = 1.000x + 0.000

Donde:

X : Lectura del dial (mm)

Y :Promedio de lectura Patrón mm


ORION LABORATORIOS E. P. L.

(ag. Luis Tabaada Palacia:

Los Huenos de Huachipa Mz. E. Lt. 15 - Lurigancho | Telf. 371 0531 - 371 0475 | Entel: 971 707 204 - 536 601 894 - 945 101 989 |
| laboratorio@orionrep.com | areatecnica@orionrep.com | ventas@orionrep.com | www.orionrep.com

Calibración, Ensayos de Laboratorio Suclos, Concreto y Asfalto PROMEDIO DEL PATRON (mm)

Los Huertos de Huachipa Mz. E.Lt. 15 - Lurigancho | Telf. 371 0531 - 371 0475 | Entel: 971 707 204 - 536 601 894 - 945 101 989 |
| Inhoratorio@orionrep.com | areatecnica@orionrep.com | ventas@orionrep.com | www.orionrep.com

ANEXO 12: ENCUESTA EXPERTOS

CUESTIONARIO

TITULO DE TESIS: "PARAMETROS DE RESISTENCIA AL CORTE, CON DIFERENTES GRADOS DE SATURACIÓN EN SUELOS COHESIVOS DE LA REGIÓN LAMBAYEQUE – PERÚ"

Instrucciones:

1. Datos del encuestado:

El presente cuestionario, es parte de un proceso de investigación por el Bach. Guido Renzo Alarcón Pejerrey y el Bach. Jhoan Wilfredo Terán Cotrina; para su proyecto de tesis.

La información que se nos brinde será usada solo con fines académicos. Nos interesa su opinión de las preguntas planteadas. Por favor, responda a las preguntas de manera clara y concisa. No hay respuestas correctas o equivocadas.

1.1. Nombres y apellidos: César Edvordo Zepatel Sovaluz
1.2.Especialidad o Profesión: Tru, Gril
1.3. Grado académico: Titulo en ig. 60.1
1.4.Años de colegiado: 40 años
1.5.Código CIP: 17 258
2. Características del lugar de trabajo: 2.1. Lugar de trabajo (marcar y describir tipo de empresa) (X) Universidad: USMP - FN
() Empresa privada:
() Empresa pública:
(X) Otros: Consulton grivado
Página 1

2.2. Puesto que ocup	a en la empresa:			
Docute tran	po complete	·		
2.3. ¿Ha tenido algu (X)Si	na experiencia er	n su centro de labor	res, respecto al te	ma de tesis?
Mencione el tipo de				
fisma potro	returned Sebr	r terrenos con	quelo, coh	misos y west fresh
a 1 metro.				
		words to the state of the		¥0'
2.4. ¿Tiene estudios		lación al tema de te	esis mencionado'	,
	(<u>X</u>) №			
Mencione el tipo de	estudio:			
	71			
en la región de Lami Preocupante	ria usted que se tico en zonas de bayeque? () Grave	pueda ver alterada inestabilidad geoló () Normal	la resistencia de	el suelo a medida que haya as fuertes lluvias ocurridas
Justifique la alternat	iva marcada ante	riormente:		
Por asurtam	ientos de la	o estatos de d	melos you	ongive diplazioninto
er w show	hu en l	enjusto por	accions f	inites suedo
gradur ger	oners lice	vefración.		ongira doplazunia to
	-			
		Página 2		

suelo?	to a la pregunta anterior, ¿a qui	e tipo sue	o afecta mas	ei verse aiterada	la resistencia al
(X) Suclos F	inos () Suclos Grue	sos			
Justifique su					
하는 100 등이 있는 100 등이 되었다면 하는 것이다.		and			49000
pore	unastre de liquisdo	1	aro las L	ues 1000	1.67
** 6 ''					ont • second data Medici o • soo
	ra que debería analizarse la s gión de Lambayeque?	ituación, r	especto al pro	oblema de las III	ivias, en suelos
(≯) Si	_ No				
	ala de 1 a 5 ¿Qué tan beneficio rior?	oso seria re	alizar un estu	dio en lo mencio	onado en la
	y ángulo de fricción:				
4.1. En la esc	ala de 1 a 10 ¿Qué tanto conoc	e usted so	bre el ensayo	de corte directo	7-6-
4.2. Y sobre	sus parámetros fundamentales:	la cohesió	n y el ángulo	de fricción; que	tanta
importancia c	ree usted que tenga el grado d	e saturació	n. (Marcar co	on X)	
		NULO	NORMAL	MPORTANTE	
	COHESIÓN		11.010.010	X	
	ÁNGULO DE FRICCIÓN			X	
Justifique su	respuesta: Ourse fenóminos la	nivo	con news	la precuer	163
_		Página :	3		

4.3. ¿Conoce algun metodo de saturación de suelos?
(x) Si Métodos: for pitruis en superficer 7 get known
(_) No
42 -0 1
4.3. ¿Qué antecedentes conoce sobre el tema elegido?
(_) Internacionales:
() Locales: (Limboto, browsterning do viv, endrs se pulo, a ca losso
(_) Locales:
4.4. ¿Cree usted que el tema de tesis presentado es innovador?
4.5. ¿Qué opina usted respecto al tema de tesis planteada en la presente encuesta?
FS interesente e inavados, sobretalo les condumenes se perode
tommes come advertises for les jutins construcciones de
In Zours a labelin
4.6. ¿Qué recomendaciones daría respecto al tema de tesis planteada en la presente encuesta?
Zapatel Soraluz Cesar Eduardo INGENIERO CIVIL R C.I.P. 17258 SELLO Y FIRMA
Désis d

PROBLEMA: INESTABILIAD DE LA RESISTENCIA DE SUELOS COHESIVOS EN LAMBAYEQUE

I.MAQUINARIA:	2.MANO DE OBRA:
•	of falts de more de obre alfed in la borations de enseges par
✓	v corr.
✓ ·	1
~	~
3.MATERIA PRIMA:	4. METODOS:
of Fulk de magninos por ania)	· · · · · · · · · · · · · · · · · · ·
·	~
✓	~
√ 3	-
5. MEDICIÓN:	6. MEDIO AMBIENTE:
Variation particular gestion tobered y fingula pricul	in I llovin del mão costero
·	y Feromen de mão
✓	V Crameto vibano

Zapatel Sorafuz Crisar Eduard INGENIERO CIVIL SELLACYPITANIA 1705

CUESTINONARIO

TITULO DE TESIS: "PARAMETROS DE RESISTENCIA AL CORTE, CON DIFERENTES GRADOS DE SATURACIÓN EN SUELOS COHESIVOS DE LA REGIÓN LAMBAYEQUE – PERÚ"

Instrucciones:

El presente cuestionario, es parte de un proceso de investigación por el Bach. Guido Renzo Alarcón Pejerrey y el Bach. Jhoan Wilfredo Terán Cotrina; para su proyecto de tesis.

La información que se nos brinde será usada solo con fines académicos. Nos interesa su opinión de las preguntas planteadas. Por favor, responda a las preguntas de manera clara y concisa. No hay respuestas correctas o equivocadas.

1. Datos del encuesta	do:
1.1.Nombres y apellid	ofesión: Ing. CVI / Geofecuia
1.2.Especialidad o Pro	ofesión: Ing. Civil / Geofecuia
1.3.Grado académico:	Magister.
1.4.Años de colegiado	
	101909
	(marcar y describir tipo de empresa) LISMP-FN USS (Voure served Section & Ligeria)
() Empresa privad	a:
() Empresa públic	a:
() Otros:	

Director de souvola USS / Dounte trempo parmal USMP
2.3. ¿Ha tenido alguna experiencia en su centro de labores, respecto al tema de tesis?
⊗si () No
Mencione el tipo de experiencia:
Acres de la
Assor de tens en mecania de suelos, jete de laboratores
2.4. ¿Tiene estudios realizados en relación al tema de tesis mencionado?
∑)Si □ No
Mencione el tipo de estudio:
Gestermin (cavacterización hidromeranica de un suelo vo fatrono par fines de afficación a supremo)
fatorios para lines de afficación a supresas!
3. Región de Lambayeque - Cambio Climático y crecimiento urbanístico
3.1. ¿Cómo calificaria usted que se pueda ver alterada la resistencia del suelo a medida que ha
crecimiento urbanístico en zonas de inestabilidad geológica a pesar de las fuertes lluvias ocurrio
en la región de Lambayeque?
Justifique la alternativa marcada anteriormente:
Porque manto huy examens Hours la preson holostate en la mesa de serelo ammenta, dismenoyando la prosis
en la mero de serelo aumenta, distrinuyando la prosio
efective, lo que lence que la disminution de los gran
solder del serelose produces une mayor ejectividad junto
colo dos del suclose produzea en mayor ejectividad junto
I puelo llegue a su votura
Página 2

3.2. Respecto a la pregunta anterior, suelo?	a qué tipo suelo	afecta más	el verse alterada la re	esistencia al
Suclos Finos (_) Suclos	Gruesos			
Justifique su respuesta:	Gruesos			
	. P reals	tion of		100
my a part out for	11 James	1 1	line dogs	0.00
Ya gre a parte del que efectivo, los presences des que hay más presences de	4900 1070	Transe	a punctury to	им
ous nay was presence de	ancilla.			
-				
3.3. ¿Considera que debería analizarse finos en la región de Lambayeque?	e la situación, re	especto al pr	oblema de las lluvia	s, en suelos
XSi ∪No				
3.4. En la escala de 1 a 5 ¿Qué tan ben	eficioso seria re	alizar un este	idio en lo mencionad	lo en la
pregunta anterior? 5				
4. Cohesión y ángulo de fricción:				
4,1. En la escala de 1 a 10 ¿Qué tanto o	conoce usted sol	ore el ensayo	de corte directo? 1	0
4.2. Y sobre sus parámetros fundamen			DOWN DIVINORS LINE MIND COLUMN	ta
importancia cree usted que tenga el gra	ido de saturación	n. (Marcar co	on X)	
	NULO	NORMAL	MPORTANTE	
COHESIÓN	As.		×	
ÁNGULO DE FRICCI	ON			
Justifique su respuesta:				
for que el suelo sero se	comporte	Como	un folido , lo	gur
Ligrafica que el angulo	de Incasi	, po une	you au sex	io que
1ste paradmente satu	1200 45	aturado	, dond Il.	augue 4
forgue el suelo sero se significa que el angulo este provincionente sato , fricción ha dismondo	delado a	gur ju	10/100 20 M	chow down
		7		
	Página 3			

(X) №	
4.3. ¿Qué antecedentes conoce sobre el tema elegido?	
(_) Internacionales:	
(_) Nacionales:	
(_) Locales:	
4.4. ¿Cree usted que el tema de tesis presentado es innovador?	(ST)
4.5. ¿Qué opina usted respecto al tema de tesis planteada en la presen	ite encuesta?
Fo um feri que esta ajuntada a la r	calidal, ya gine
al momento de real ser una escaración no tax	es losseylos esten
foo's saturdos o estado crítico, fol somo lo leste directo (ASTA) por determina	al Payel de facion y le when
4.6. ¿Qué recomendaciones daria respecto al tema de tesis planteada d	
Esta teris plantenda abarca la cierca de los se una mecanica de suelos no tradicional en donde el	outor us superios que es
una mecanica de suites no traducional su donde el	sul le sulvidonnos in 4 fores
Fare solida, for liquela, for gancer y membran contraction	1) of wal se necessary
quipos especiales por podes medir la pueva que se	produce in le minorine coursell
31	
	—
Mag Ing. (EEPecu	CO TOUR MANAGERY A

1.MAQUINARIA:	2.MANO DE OBRA:
· No existe maquehans	~
account have	*
/	~
*	~
3.MATERIA PRIMA:	4. METODOS:
/	· No existe.
/	~
/	~
·	~
5. MEDICIÓN:	6. MEDIO AMBIENTE:
r Para metros de resistencia	- Hours del mão
¥	- Musius mão losters
•	+ Commenta urbano
~	. *

Mag hay Chal Stones P. Madax Pérez ESPECIALISTA EN GEOTECNIA S £191.90° Y 91938 M.A.

TITULO DE TESIS: "PARAMETROS DE RESISTENCIA AL CORTE, CON DIFERENTES GRADOS DE SATURACIÓN EN SUELOS COHESIVOS DE LA REGIÓN LAMBAYEQUE -PERÚ"

Instrucciones:

1. Datos del encuestado:

El presente cuestionario, es parte de un proceso de investigación por el Bach. Guido Renzo Alarcón Pejerrey y el Bach. Jhoan Wilfredo Terán Cotrina; para su proyecto de tesis.

	: BORIS ENRIQUE OBLITAS GASTELO sión: INGENIERO CIVIL
	MAGISTER
1.4.Años de colegiado: _	12 años
1.5.Código CIP:	91869
(X) Universidad:	arcar y describir tipo de empresa) Universidad De San Martin de Porres
	Universidad Tecnologica del Perú
() Empresa privada:	0
(X) Empresa pública:	Controloria General de la República
() Otros:	
	Página 1

2.2. Puesto que ocup	a en la empresa:	4		
Jejedo Ora	ano de Co	ntrol Instituc	ionol	
1 ()			
2.3. ¿Ha tenido algur	na experiencia er	n su centro de labor	res, respecto al te	ma de tesis?
(X)Si	(_) No			
Mencione el tipo de	experiencia:			
Evaluacióny	Revisión do	Estudios ole	Mecánica d	o duelos
2.4. ¿Tiene estudios	realizados en re	lación al tema de te	esis mencionado'	,
(X)Si	(_) No	increm ar tenia de te	os meneronado	
Mencione el tipo de				
Docente de		locario le s	in los	
	· carso ca		00 10 1	
an secretary and a second second	ico en zonas de			l suelo a medida que haya as fuertes lluvias ocurrida: () Muy poco
Justifique la alternati	iva marcada ante	eriormente:		
Scentiende	Que serel	liorena una in	estabilidad	Geoloxea" 4 zonos
contaludos	(Storade Lo	Imboreave) u	our el sulos	Geologica" a zonis and agus podeus unas Abdatias
aunoros dos	rumbos os	vetar o los vivie	nder on b 20	nos Obdation
0)	•
		Página 2		

suelo?	a la pregunta anterior, ¿a qu				
() Suelos Fir	nos () Suelos Grues	sos			
Justifique su re					
Ambos 6	elagua opta do depor	ente tor	mao am	bestipes do	Sculo.
,	0 1	- 1		U	
	a que debería analizarse la s ón de Lambayeque?	ituación, r	especto al pro	oblema de las ll	uvias, en suelos
(<u>></u> ∕) Sí	(_) No				
3.4. En la escal	la de 1 a 5 ¿Qué tan benefício	oso sería re	alizar un esti	idio en lo menci	onado en la
pregunta anteri	ior? <u>5</u>				
4. Cohesión y	ángulo de fricción:				
4.1. En la esca	la de 1 a 10 ¿Qué tanto conoc	e usted so	bre el ensayo	de corte directo	?_8_
4.2. Y sobre su	s parámetros fundamentales:	la cohesió	n y el ángulo	de fricción; que	tanta
importancia cr	ee usted que tenga el grado d	e saturació	n. (Marcar co	on X)	
		NULO	NORMAL	MPORTANTE	1
	COHESIÓN	Nobo	THOTALLE	×	
	ÁNGULO DE FRICCIÓN			×	
Justifique su re	espuesta:				
	- MI				
	The sections				110
		Página :			00000

4.3. ¿Conoce algún método de saturación de suelos	,
() Si Métodos: Lo sofuración controlado	notienous metodo espectivo
(≱) No	1 1
4.3. ¿Qué antecedentes conoce sobre el tema elegid	0?
() Internacionales:	
() Nacionales:	
(_) Locales:	
4.4. ¿Cree usted que el tema de tesis presentado es i	innovador? (S1)
4.5. ¿Qué opina usted respecto al tema de tesis plan	teada en la presente encuesta?
Interesente e innovador. Losatura	ruén obovoroción dificantenido
_ de humedad de un suclo fino time tiempos	may voriables, pudiende llegar
ase timpo polonjados	, ,,
1 1 0	
4.6. ¿Qué recomendaciones daría respecto al tema d	
	SELLOY FIRMA Phonic Ensigne Collins Gastolo INGENIERO CIP. N° 9155.3

1.MAQUINARIA:	2.MANO DE OBRA:
· falto de aquepo, que primitor epituariminales de conte directo condiprente grados de saturación.	v Especial stosen Heconia do Salos
×	~
3.MATERIA PRIMA:	4. METODOS:
/—	r Metodos standort
/	~
·	~
1	~
5. MEDICIÓN:	6. MEDIO AMBIENTE:
/	r Fremenco del Tenonone Wine
~	~
/	~
~	~

SELLO Y FIRMA

Rotis Ensique Oblitas Gastelo INGENIERO CIVIL REG. CIP. Nº 91569

TITULO DE TESIS: "PARAMETROS DE RESISTENCIA AL CORTE, CON DIFERENTES GRADOS DE SATURACIÓN EN SUELOS COHESIVOS DE LA REGIÓN LAMBAYEQUE – PERÚ"

Instrucciones:

1. Datos del encuestado:

El presente cuestionario, es parte de un proceso de investigación por el Bach. Guido Renzo Alarcón Pejerrey y el Bach. Jhoan Wilfredo Terán Cotrina; para su proyecto de tesis.

1.2.Especialidad o Profesión:	1.1.Nombres y apellidos	OPAR CORONADO ZULDETA
1.4.Años de colegiado: 15 A No. 1.5.Código CIP: 60 756 2. Características del lugar de trabajo: 2.1. Lugar de trabajo (marcar y describir tipo de empresa) (X) Universidad: VNPRG	1.2.Especialidad o Profes	sión: INGENSIA COUEL
1.4.Años de colegiado: 15 A No. 1.5.Código CIP: 60 756 2. Características del lugar de trabajo: 2.1. Lugar de trabajo (marcar y describir tipo de empresa) (X) Universidad: 18 NPRG	1.3.Grado académico:	Doctor
2. Características del lugar de trabajo: 2.1. Lugar de trabajo (marcar y describir tipo de empresa) (★) Universidad: ○ NPRG	1.4.Años de colegiado: _	
2.1. Lugar de trabajo (marcar y describir tipo de empresa) (X) Universidad: VNPCG	1.5.Código CIP:	80756
		UNPRG.
A CONTRACTOR OF THE STATE OF TH	() Empresa privada:	
() Empresa pública:	() Empresa pública:	
() Otros:	() Otros:	

2.2. Pue	esto que ocup	a en la empr	esa:				
	OORDINA	DOR S	DE MARSHA	11			
2.3. ¿H. (X)Sí Mencio H) J	a tenido algu ne el tipo de FFSIS OS SOFI	na experienc experiencia: DOC1(D) PAR	ia en su centro d No DRAL ARI R ESTAGO en relación al ter	J (AN I	9F)A€ 00	AJAS T	s?
(X)Si			No				
	ne el tipo de						
	t spectal	I GUEE	r JOFLOS				
crecimi en la re		tico en zonas	s de inestabilida	ad geológi		las fuertes	nedida que haya Iluvias ocurridas uy poco
Justifiq	ue la alternat	iva marcada	anteriormente:				
47	CHIACTO	AD DE	SOPORTE	Des	gyoute	con &	L AGUA
_							
			P/	igina 2			

Sucros 1	nos	(_) Suelos (Gruesos				
Justifique su r	espuesta:						
AVAJ	Los	titres .	DFL	SUF	10		
3.3. ¿Conside finos en la reg	0 - C - T - C - C - C - C - C - C - C - C	eberia analizarse ambayeque?	la situa	ción, re	specto al pro	oblema de las l	luvias, en suelo
(∑) Si		○ No					
3.4 En la esc			finings	caria ra	alizar un esti	idio en lo menc	ionado en la
pregunta ante	[일일 [17] 영요 11 17]		HCIOSO	Setia Tea	iiizii iii est		
pregunta ante	rior?	4_					337507457430;243754
pregunta ante 4. Cohesión y 4.1. En la esca	rior?	de fricción:	onoce u	sted sot	ore el ensayo	de corte directo	o?
4. Cohesión y 4.1. En la esca 4.2. Y sobre s	rior?	de fricción: 10 ¿Qué tanto c	onoce u	sted sot	ore el ensayo n y el ángulo	de corte directo de fricción; qu	o?
4. Cohesión y 4.1. En la esca 4.2. Y sobre s	rior?	de fricción: 10 ¿Qué tanto c etros fundament	onoce u ales: la c do de sa	sted sot	ore el ensayo n y el ángulo	de corte directo de fricción; qu on X)	o? <u>B</u> e tanta
4. Cohesión y 4.1. En la esca 4.2. Y sobre s	rior? rángulo e ala de 1 a us parám ree usted	de fricción: 10 ¿Qué tanto c etros fundament que tenga el gra	ales: la c	sted sob cohesión uturación	ore el ensayo n y el ángulo n. (Marcar co	de corte directo de fricción; qu on X)	o? <u>B</u> e tanta
4. Cohesión y 4.1. En la esca 4.2. Y sobre s	rior? rángulo e ala de 1 a us parám ree usted	de fricción: 10 ¿Qué tanto c etros fundament que tenga el gra	ales: la c	sted sob cohesión uturación	ore el ensayo n y el ángulo n. (Marcar co	de corte directo de fricción; qu on X)	o? <u>B</u> e tanta
4. Cohesión y 4.1. En la esca 4.2. Y sobre s importancia c	rior? rángulo e nla de 1 a us parám ree usted	de fricción: 10 ¿Qué tanto c etros fundament que tenga el gra COHESIÓN ULO DE FRICCIO	ales: la c	sted sob cohesión uturación	ore el ensayo n y el ángulo n. (Marcar co	de corte directo de fricción; qu on X)	o? <u>B</u> e tanta
4. Cohesión y 4.1. En la esca 4.2. Y sobre s importancia c	rior? rangulo e ala de 1 a us param ree usted ANG	de fricción: 10 ¿Qué tanto c etros fundament que tenga el gra COHESIÓN ULO DE FRICCIO	ales: la do de sa	sted sob cohesión turación IULO	n y el ángulo n. (Marcar co	de corte directo de fricción; qu on X) MPORTANTE X	o? 8 e tanta
4. Cohesión y 4.1. En la esca 4.2. Y sobre s importancia c Justifique su i	rior? fangulo fangu	de fricción: 10 ¿Qué tanto c etros fundament que tenga el gra COHESIÓN ULO DE FRICCIO	ales: la c do de sa	sted sob cohesión turación IULO	n y el ángulo n. (Marcar co NORMAL	de corte directo de fricción; qu on X) MPORTANTE X	o? 8 e tanta
4. Cohesión y 4.1. En la esca 4.2. Y sobre s importancia c Justifique su i	rior? fangulo fangu	de fricción: 10 ¿Qué tanto c etros fundament que tenga el gra COHESIÓN ULO DE FRICCIO E DINEC	do de sa	sted solvenies sturación	n y el ángulo n. (Marcar co NORMAL	de corte directo de fricción; qu on X) MPORTANTE X CALCULO	e tanta
4. Cohesión y 4.1. En la esca 4.2. Y sobre s importancia c Justifique su i	rior? fangulo fangu	de fricción: 10 ¿Qué tanto c etros fundament que tenga el gra COHESIÓN ULO DE FRICCIO E DINEC	do de sa	sted solvenies sturación	n y el ángulo n. (Marcar co NORMAL	de corte directo de fricción; qu on X) MPORTANTE X	e tanta

 .3. ¿Conoce algún mé X) Sí Métodos: _ ∫ 						
No						
4.3. ¿Qué antecedentes	conoce so	bre el tema ele	gido?			
(X) Internacionales:						
() Nacionales:						
() Locales:						
4.4. ¿Cree usted que el 4.5. ¿Qué opina usted i					nte encuesta?	(12)
QUE NO H	717					
		ACTORISM MATERIAL STATE				encuesta?
4.6. ¿Qué recomendaci P\$&LJZAA		respecto al ten 手わらみりひ				encuesta?
2 1900 To 2000 DO ASIA NO SUBSTITUTE		ACTORISM MATERIAL STATE				encuesta?
		ACTORISM MATERIAL STATE				encuesta?
4.6. ¿Qué recomendaci		ACTORISM MATERIAL STATE				encuesta?
		ACTORISM MATERIAL STATE				encuesta?
2 THE R. P. LEWIS CO., LANSING MICH. LANSING.		ACTORISM MATERIAL STATE		LA		
2 THE R. P. LEWIS CO., LANSING MICH. LANSING.		ACTORISM MATERIAL STATE		LA	N+0	

LMAQUINARIA:	2.MANO DE OBRA:
NO EXISTR LA PAQUE NA FORESTAL PAQUE NA PRUESAS PAL FXACTAS EN LANAYERUE	VID HAY TECUJOS ESPE CJALJADOS V
MATERIA PRIMA:	4. METODOS:
- QUE NO SE FLOFTING	. No se to nan las
LEL SUELD EN EL	, CONDICTO WES DENUEL
Momento De LA	, DEL SUELO AL
EXPLORACTON	REALTEAN EL
~	ELSAND DE COURE
MEDICIÓN:	6. MEDIO AMBIENTE:
~ NO HAY REDUCEDONES	AC VUET DE HURSAIN
THE ST-IN DE HOVEDNO	SHONELIE & DISHOUTE
DUNALTE 145 CONTROLLIONS	A WINEL DE CHARMECTO
	PAN NO CONSTDERAN LAN
V	(KEDITCHOLE) RENLEY,
	ONTGINAND MAYOU MOUTHA

TITULO DE TESIS: "PARAMETROS DE RESISTENCIA AL CORTE, CON DIFERENTES GRADOS DE SATURACIÓN EN SUELOS COHESIVOS DE LA REGIÓN LAMBAYEQUE – PERÚ"

Instrucciones:

El presente cuestionario, es parte de un proceso de investigación por el Bach. Guido Renzo Alarcón Pejerrey y el Bach. Jhoan Wilfredo Terán Cotrina; para su proyecto de tesis.

1. Datos del encuestado:
1.1. Nombres y apellidos: Carlos Locuando Rames Broat
1.2. Especialidad o Profesión: Aspesedo Quel
1.3. Grado académico: Backellen - Ladulano
1.4.Años de colegiado: 13
1.5.Código CIP: 81556
2. Características del lugar de trabajo: 2.1. Lugar de trabajo (marcar y describir tipo de empresa) (**X*) Universidad: Seus Hertan Pa Porcas - Filial Morta
(d) Empresa privada: Da su Construcción + 101.
() Empresa pública:
() Otros: Consultan Portsoulog 44 of mon por
Página 1

2.2. Puesto que ocupa e	n ia empresa:	e	100	11 0 11
Coordinator	Асьпенис	o - Elitc	EPA / Co	ozulton - Progratal
2.3. ¿Ha tenido alguna o	vneriencia en	su centro de labor	es respecto al ter	na de tesis?
(⊁)Si	(_) No	sa cento de moor	es, respecto arter	nd de tesis.
Mencione el tipo de exp			+ 1	+
+ Dub=12		3. 70 CG	even of =	6m4n/05
de Four	LCioi.			
	50 00 00	0.0	0 0 00	
2.4. ¿Tiene estudios rea	ilizados en rela	ición al tema de te	sis mencionado?	
(≥)Sí	(_) No			
Mencione el tipo de est	SULSPEND	* 33100		
- Cureor o		contración	- CHI-	-Penu.
crecimiento urbanistico en la región de Lambay	usted que se pu en zonas de in	ueda ver alterada	la resistencia del	stico suelo a medida que haya s fuertes lluvias ocurridas () Muy poco
Justifique la alternativa Do biolo & g do lo Hapo	marcada anteri	iormente:	Astudio	la Prosevais
de la Papa	Treation	ohovoolo	ola Pors	win de
Muvies propi	w sol el	Sund : have	u due	la copiedal
postonte del	Lenenc	so peda	1360 W	a oduoledad
1st Line	UNO G	entidad of	est bicos	gue han
Commendo o	presentas	osen famini	to a proo	a al hom side
Constaido h	are Lake	s and s.	, ,	
		Página 2		

Justifique su respues	() Suelos Grue	sos			
11 546	ta: Line Line		200 000	e. e. i	
Sebiolo a	fin find	1	ogers.	30_+3fut	
	debería analizarse la s	ituación, r	especto al pr	oblema de las l	luvias, en suelo
finos en la región de	Lambayeque?				
(∑) S i	○ No				
4.2. Y sobre sus para		la cohesió	n y el ángulo	de fricción; qu	
importancia cree uso	ed que tenga el grado d	me recessor a			
ĀN	COHESIÓN GULO DE FRICCIÓN	NULO	NORMAL	MPORTANTE	
	ta:/	=		eto os of august Saturalis	

4.3. ¿Conoce algún método de saturación de suelos?
Sí Métodos:
(★) No
4.3. ¿Qué antecedentes conoce sobre el tema elegido?
Nacionales:
() Locales:
4.4. ¿Cree usted que el tema de tesis presentado es innovador? 4.5. ¿Qué opina usted respecto al tema de tesis planteada en la presente encuesta? 2 problemo fici g' fim La Sar la Bajin 20 mayorgue, mos concretoment la cipulad de Charleyo Ultima o la grassencia de Mara Frenchera
4.6. ¿Qué recomendaciones daria respecto al tema de tesis planteada en la presente encuesta?
Condiciones de las Domas de estentio.
Constituents of 102 domes to estable.
SELLO Y FIRMA
Página 4

TITULO DE TESIS: "PARAMETROS DE RESISTENCIA AL CORTE, CON DIFERENTES GRADOS DE SATURACIÓN EN SUELOS COHESIVOS DE LA REGIÓN LAMBAYEQUE – PERÚ"

Instrucciones:

1. Datos del encuestado:

El presente cuestionario, es parte de un proceso de investigación por el Bach. Guido Renzo Alarcón Pejerrey y el Bach. Jhoan Wilfredo Terán Cotrina; para su proyecto de tesis.

1.1. Nombres y apellidos: EITHEL WON MEDRANO LIZARZABURI
1.2. Especialidad o Profesión: INCIENTERO CIVIL
1.3.Grado acadêmico: MAESTEO
1.4.Años de colegiado: 20 años
1.5.Código CIP: REG CIP Nº 59091
2. Características del lugar de trabajo:
2.1. Lugar de trabajo (marcar y describir tipo de empresa)
(X) Universidad: UNIVERSIDAD SON MARTIN DE FORRES
FILIAL NORTE
Empresa privada:
() Empresa pública:
() Otros:
Página 1

2.2. Puesto que ocupa en la empresa: DOCENTE, TIEMPO COMPLETO
2.3. ¿Ha tenido alguna experiencia en su centro de labores, respecto al tema de tesis?
(X)Si (_)No
Mencione el tipo de experiencia:
MASS DE DIEZ AJOS COMO JEFE DE LABORATORI
ASC EXPLORACIONES GEOTECNICAS
2.4. ¿Tiene estudios realizados en relación al tema de tesis mencionado?
(X)Si (_)No
Mencione el tipo de estudio:
ESTUDIOS DE MECANICA DE SUELOS
EN LA VOCALIDAD DE CHICLAYO
3.1. ¿Cómo calificaría usted que se pueda ver alterada la resistencia del suelo a medida que ha crecimiento urbanístico en zonas de inestabilidad geológica a pesar de las fuertes lluvias ocurrio en la región de Lambayeque? () Preocupante (X) Grave () Normal () Poco () Muy poco
Justifique la alternativa marcada anteriormente: NIVEL TERATICO TIENE INFLIENCIA EN LOS
quelos DE LA LOCALIDAD, PARA DISEÑO
EN LA CIMENTACION CON APORTE DEL
CORTE DIRECTO QUE EVAUA
Página 2

(X) Suelos Finos	() Suelos Gri	uesos			
Justifique su respues		31848			
rasanque su respue	TENEMOS	SUFFICE	61.15	/. A I ESS	N=
	Poca Cap				
	VALOR PI			California and annual control of the California and	
HOUSE CONTRACTOR SHOW IN A BUILDING HOLD	debería analizarse la	situación, re	specto al pr	oblema de las	lluvias, en suel
finos en la región de	: Lambayeque?				
X∕) Sí	(_) No				
3.4. En la escala de	l a 5 ¿Qué tan benefic	cioso sería rea	lizar un estu	idio en lo meno	cionado en la
pregunta anterior?	4_				
4. Cohesión y ángu	lo de fricción:				
					a 10
	lo de fricción: 1 a 10 ¿Qué tanto con	oce usted sob	re el ensayo	de corte direct	07_10_
4.1. En la escala de	1 a 10 ¿Qué tanto con				
4.1. En la escala de	1 a 10 ¿Qué tanto con ámetros fundamentale	es: la cohesión	y el ángulo	de fricción; qu	
4.1. En la escala de	1 a 10 ¿Qué tanto con	es: la cohesión	y el ángulo	de fricción; qu	
4.1. En la escala de	1 a 10 ¿Qué tanto con ámetros fundamentale	es: la cohesión	y el ángulo	de fricción; qu	ne tanta
4.1. En la escala de 4.2. Y sobre sus pari	1 a 10 ¿Qué tanto con ámetros fundamentale ted que tenga el grado COHESIÓN	es: la cohesión de saturación NULO	y el ángulo . (Marcar co	de fricción; qu on X)	ne tanta
4.1. En la escala de 4.2. Y sobre sus pari	1 a 10 ¿Qué tanto con ámetros fundamentale ded que tenga el grado	es: la cohesión de saturación NULO	y el ángulo . (Marcar co	de fricción; qu on X)	ne tanta
4.1. En la escala de 4.2. Y sobre sus para importancia cree ust	1 a 10 ¿Qué tanto con ámetros fundamentale ted que tenga el grado COHESIÓN	es: la cohesión de saturación NULO	y el ángulo . (Marcar co	de fricción; qu on X)	ne tanta
4.1. En la escala de 4.2. Y sobre sus para importancia cree ust	1 a 10 ¿Qué tanto con ámetros fundamentale ted que tenga el grado COHESIÓN NGULO DE FRICCIÓN	es: la cohesión de saturación NULO	y el ángulo . (Marcar co NORMAL X	de fricción; qu on X) MPORTANTE	e tanta
4.1. En la escala de 4.2. Y sobre sus para importancia cree ust	1 a 10 ¿Qué tanto con ámetros fundamentale ded que tenga el grado COHESIÓN NGULO DE FRICCIÓN sta:	s: la cohesión de saturación NULO SUMERS	y el ángulo . (Marcar co	de fricción; quon X) MPORTANTE X	TUREDO
4.1. En la escala de 4.2. Y sobre sus para importancia cree ust	1 a 10 ¿Qué tanto con ámetros fundamentale ted que tenga el grado COHESIÓN NGULO DE FRICCIÓN sta: UN SUETO (U) RESP	SUMERS	y el ángulo . (Marcar co NORMAL X	de fricción; quon X) MPORTANTE X OMO Se	TURADO
4.1. En la escala de 4.2. Y sobre sus para importancia cree ust	1 a 10 ¿Qué tanto con ámetros fundamentale ded que tenga el grado COHESIÓN NGULO DE FRICCIÓN sta:	SUMERS	y el ángulo . (Marcar co NORMAL X	de fricción; quon X) MPORTANTE X OMO Se	TURADO
4.2. Y sobre sus pare	1 a 10 ¿Qué tanto con ámetros fundamentale ted que tenga el grado COHESIÓN NGULO DE FRICCIÓN sta: UN SUETO (U) RESP	SUMERS	y el ángulo . (Marcar co NORMAL X	de fricción; quon X) MPORTANTE X OMO Se	TURADO

4.3. ¿Conoce algún método de saturación de suelos?	
Si Métodos:	
(X) No	
4.3. ¿Qué antecedentes conoce sobre el tema elegido?	
_) Internacionales: CIUDED DE MEXICA	0
Nacionales: Jaen	
4.4. ¿Cree usted que el tema de tesis presentado es innov	
4.5. ¿Qué opina usted respecto al tema de tesis planteada COLAGORA EN CONOCER REALIE	
APORTA A LA BRALIDAD LOCAL	EESPOETTA GEL SOCIO
4.6. ¿Qué recomendaciones daría respecto al tema de tes COMPARAL LAS MUESTRAS CO	N UN RESULTADO REFERENCIA
TENER PRESENTE UN VOLOR	
DE ACUERDO A LA SATURA	cion
EITHELYVAN NEORANO LIZARZAGURU INGENIERO CIVIL Rea, dal Geòrgio de Ingeniana Nº 50001	SELLOY FIRMA DEG, CIP 59091
	ING. CIVIL
Dágina A	

1.MAQUINARIA:	2.MANO DE OBRA:
FALTA DE LABORATORIOS SERVICIOS SIN LORRE DIRECTO	V NO TENEMOS M.O. COLIGIADA
✓	~
/	
·	×
3.MATERIA PRIMA:	4. METODOS:
1	NORMAN DE
/	·
✓	V
1	~
5. MEDICIÓN:	6. MEDIO AMBIENTE:
★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★	√ FONOMONO EL NIÑO
VERIFICACION DE PERMETROS DE ESTUDIO	V TENENENO CORTERO
~	V LLUVIAS ESTACIONARIOS
1	~

ETHEL WAN NEDRANOLIZADARU
INGENIERO CIVIL
INGENIERO CIVIL
INGENIERO CIVIL
INGENIERO CIVIL
INGENIERO DE PAGINA 1

TITULO DE TESIS: "PARAMETROS DE RESISTENCIA AL CORTE, CON DIFERENTES GRADOS DE SATURACIÓN EN SUELOS COHESIVOS DE LA REGIÓN LAMBAYEQUE – PERÚ"

Instrucciones:

1. Datos del encuestado:

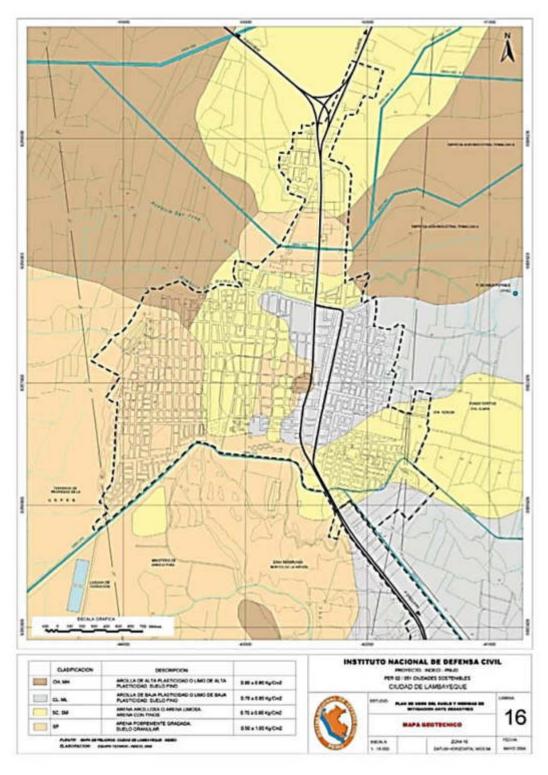
El presente cuestionario, es parte de un proceso de investigación por el Bach. Guido Renzo Alarcón Pejerrey y el Bach. Jhoan Wilfredo Terán Cotrina; para su proyecto de tesis.

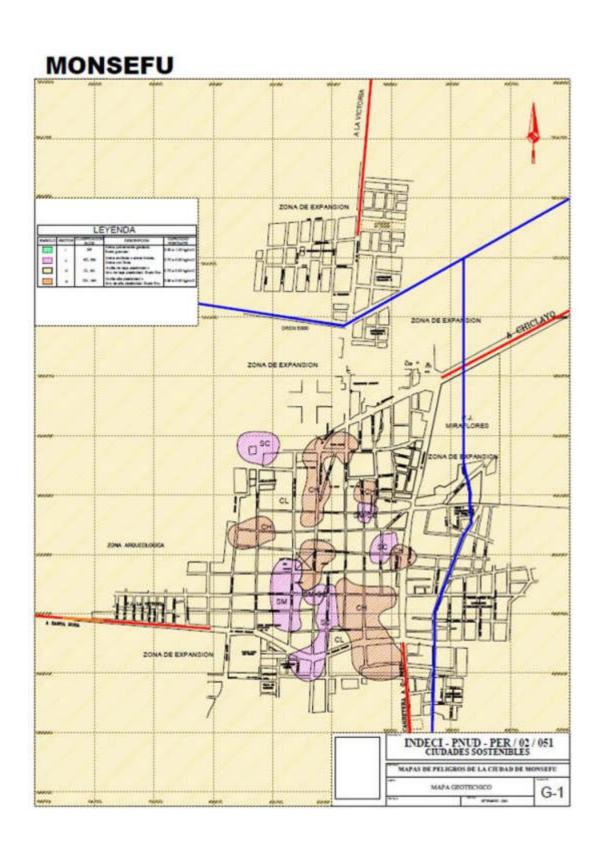
1.1.Nombres y apellidos:	RICARDO ANTONIO SOSA SANDOLOL
1.2.Especialidad o Profesio	in: Ingeniero Civil
	DR. EN Ciencias ANBIENTALES
1.4.Años de colegiado:	20 años
1.5.Código CIP:	45581
	car y describir tipo de empresa) ACIONAL PEDRO RUIZ GALLO - LAMBAYEQUE
() Empresa privada:	
() Empresa pública:	
(X) Otros: CONSU	top PRIVADO.
-	Página 1

2.2. Puesto que ocu	Meno operation and processing			
Proyecti	STA			
2.3. ¿Ha tenido algi	una experiencia er	su centro de labo	res, respecto al te	ema de tesis?
(x)Sí	(_) No			
Mencione el tipo de	e experiencia:			
Estudio de	MECÁNICA	DE Suelo	78123S - 2	MISSART LIG along
2.4. ¿Tiene estudio	s realizados en re	lación al tema de t	esis menejanada	2
()Si	(x) No	actor at terms de t	esis inchesoridado	53
Mencione el tipo de	375 30			
A. () () () () () () () () () (
		70 Talla		
3. Región de Lamb	bayeque – Cambi	o Climático y cre	cimiento urban	ístico
3.1. ¿Cómo califica	uria usted que se j	oueda ver alterada	la resistencia de	el suelo a medida que haya
crecimiento urbanis	stico en zonas de i	inestabilidad geoló	gica a pesar de	las fuertes lluvias ocurridas
en la región de Lan	ibayeque?			
(X) Preocupante	(_) Grave	(_) Normal	() Poco	Muy poco
Justifique la alterna	tiva marcada ante	riormente:		
No SE Ton	an Mesica	S DE PREVE	NCION Y SI	CONTINUA CON
El MISMO	CRITERIO			
		Página 2		
		Lagura &		W-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1

X) Suelos Finos () Suelos Grue				
A) Sucios Citac	2505			
ustifique su respuesta:				
EN ESTE CASO POR LA VAR	11/18/11	DE (A)	STRATOS Y CONG	NA-
TIQUES DE los % de An	cillas	y Limos	Así como de	20
EN ESTE CASO por la Van Flours DE los % de An	Cren.A	sentem	lientos.	
3.3. ¿Considera que debería analizarse la sinos en la región de Lambayeque?	situación, r	especto al pr	oblema de las lluvias, en	suelo
X) Si (_) No				
1.4. En la escala de 1 a 5 ¿Qué tan benefici pregunta anterior?	oso sería re	alizar un est	adio en lo mencionado en	la
l. Cohesión y ángulo de fricción:				
1.1. En la escala de 1 a 10 ¿Qué tanto cono	ce usted so	bre el ensayo	de corte directo? _5_	
1.2. Y sobre sus parâmetros fundamentales	· la cobesió	n v el ánculo	de fricción: que tanta	
mportancia cree usted que tenga el grado c				
infortuneia eree asieo dos ienga er grano e				
	NULO	NORMAL	MPORTANTE >	
COHESIÓN				
COHESIÓN ÁNGULO DE FRICCIÓN			×	
ÁNGULO DE FRICCIÓN			X	
ANGULO DE FRICCIÓN Justifique su respuesta:				
ANGULO DE FRICCIÓN Justifique su respuesta:	tos 2	persi	etios, al camb	ec
ÁNGULO DE FRICCIÓN	tos Z	Person	eties, al camb	ec
ANGULO DE FRICCIÓN Justifique su respuesta:	itos Z	Perso	etios, al camb	ec
ANGULO DE FRICCIÓN Justifique su respuesta:	itos Z	Person	eties, al camb	ec

4.3. ¿Conoce algún método de saturación de suelos?	
(_) Sí Métodos:	
(X) No solo Procodimentos como e	I casa de las formadacione
4.3. ¿Qué antecedentes conoce sobre el tema elegido?	
(_) Internacionales:	
() Nacionales:	
(X) Locales: Surlos No SATURAJOS de	el tre Socrates Muños
4.4. ¿Cree usted que el tema de tesis presentado es inno	vador? (S.)
45. ¿Qué opina usted respecto al tema de tesis plantead Pen mitrair En combre la relection de Settracien y los parámetos Conte	in directe entre el grad
4.6. ¿Qué recomendaciones daria respecto al tema de te Difundir los Resultados Re aplicació en los Diseño	경우를 가게 하는데 시작하게 보고하다면 하고 하다 하는데 사이지를 하고 하고 있다면 한 경우를 하고 있다.
	SELLO Y FIRMA
Página 4	

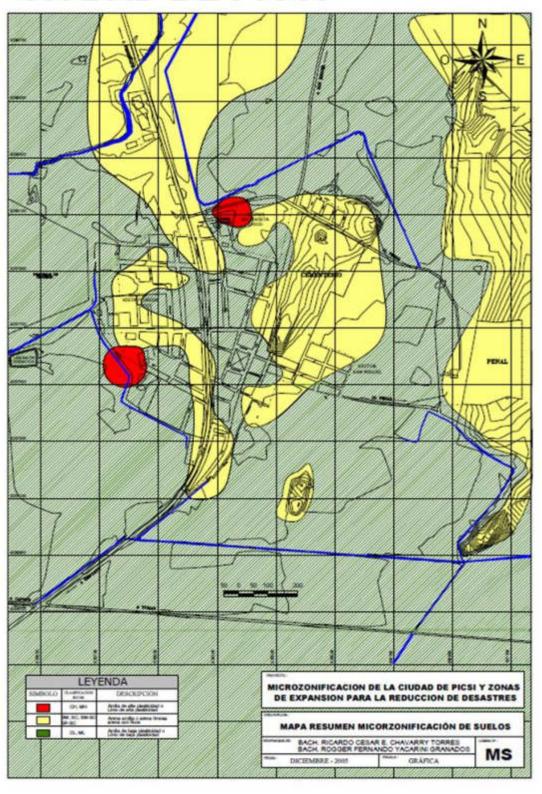


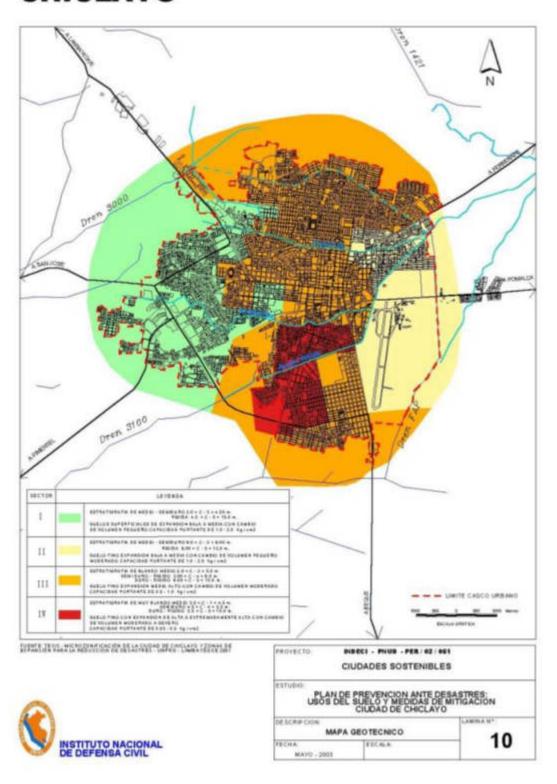

LMAQUINARIA:	2.MANO DE OBRA:
· Inchabiage	1 SIN Capaciteción
	7
/	
/	
3.MATERIA PRIMA:	4. METODOS:
· Disposible.	· No Difundidos.
•	
·	/
5. MEDICIÓN:	6. MEDIO AMBIENTE:
- No usada.	· CONDICIONES Climáticas
/	· Fenómeno del Miño
/	

SELLO Y FIRMA

ANEXO 13: PLANOS DE INDECI

LAMBAYEQUE




CIUDAD ETEN

CIUDAD DE PICSI

CHICLAYO

