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1 Centro de Genética y Biologı́a Molecular (CGBM), Facultad de Medicina Humana, Universidad San Martı́n de Porres, Lima, Perú, 2 Laboratory of Molecular Medicine,
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Abstract

Mannose-binding lectin (MBL) is one of the five recognition molecules in the lectin complement pathway. Common variant
alleles in the promoter and structural regions of the human MBL gene (MBL2) influence the stability and serum
concentration of the protein. Epidemiological studies have shown that MBL2 variant alleles are associated with susceptibility
to and the course of different types of infectious and inflammatory conditions. However, it has been suggested that these
alleles are maintained in different populations due to selected advantages for carriers. We investigated the MBL2 allelic
variation in indigenous individuals from 12 different West Central South America localities spanning from the desert coast,
high altitude Andean plates and the Amazon tropical forest within the territories of Peru (n = 249) (Departments of Loreto,
Ucayali, Lambayeque, Junin, Ayacucho, Huancayo and Puno), and Ecuador (n = 182) (Region of Esmeraldas and Santo
Domingo de los Colorados). The distribution of MBL2 genotypes among the populations showed that the defective variant
LYPB haplotype was very common. It showed the highest frequencies in Puno (Taquile (0.80), Amantani (0.80) and Anapia
(0.58) islander communities of the Lake Titicaca), but lower frequencies of 0.22 in Junin (Central Andean highland) and
Ucayali (Central Amazonian forest), as well as 0.27 and 0.24 in the Congoma and Cayapa/Chachis populations in the
Amazonian forest in Ecuador were also observed. Our results suggest that the high prevalence of the MBL2 LYPB variant
causing low levels of functional MBL in serum may mainly reflect a random distribution due to a population bottleneck in
the founder populations.
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Introduction

Mannose-binding lectin (MBL) is a pattern recognition molecule

that recognizes sugars such as terminal mannose and N-acetyl-

glucosamine groups common on the surface of various microor-

ganisms [1]. MBL plays a role in innate immune defence by

mediating activation of the lectin complement pathway via three

associated serine proteases (MASP-1, MASP-2 and MASP-3,

respectively) and by enhancing phagocytosis of microorganisms

and dying host cells [2]. It shares features with other recognition

molecules in the lectin complement pathway, ficolin-1, ficolin-2

and ficolin-3 [3] and collectin-11 [4].

The MBL gene is located at chromosome 10 (10q11.2-q21). In

lower primates and in mammals there are 2 functional MBL genes

while in higher primates and in humans there is only one

functional MBL gene (MBL2) [5]. MBL is primarily expressed and

synthesized by the liver and subsequently released to the blood

stream. Exon 1 encodes the signal peptide, a cysteine rich domain

and seven copies of a repeated Glycine-Xaa-Yaa motif typical for

the triple helix formation of collagen structures (Xaa and Yaa

indicate any amino acid). This pattern is continued by additional

12 Glycine-Xaa-Yaa repeats in exon 2. Exon 3 encodes a neck

region and exon 4 a carbohydrate-binding domain. The resulting

protein consists of oligomers each with 3 identical polypeptide

chains of 25 kD [6]. When isolated from serum the protein

consists of 3 to 6 identical oligomers.

In the general population the protein has been shown to be of

particular importance in protection against bacterial and viral

infections during the vulnerable period of infancy between 6 and

18 months of age prior to establishment of specific immune

protection provided by the adaptive immune system [7]. In

addition, it has been ample documented that low levels of

functional MBL serum are associated with increased risk of

different types of infections in patients with an accompanying

disease or immunodeficiency [8,9]. By contrast it has also been
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shown that high levels MBL might be disadvantage in relation to

certain inflammatory conditions [10].

The genetic basis of reduced serum MBL concentration has

been explained at the molecular level by the identification of 3

missense variant alleles in exon 1, differentially distributed

according to ethno-geographical location [11]. The common

normal allele is called A and the structural variants are called B
(Gly54Asp) (rs1800450); C (Gly57Glu) (rs1800451) and D
(Arg52Cys) (rs5030737) respectively. These variants are dominant

in the Mendelian sense and the mutations are located at the Cys-

and Gly- collagen-like domain regions and even in heterozygotes

the levels of functional serum MBL are diminished 10 times

because the allele hampers the oligomerization of the protein,

which affects the interaction with the MASPs and the opsonization

processes [6]. Three additional promoter single nucleotide

polymorphisms (SNPs) (G to C) that affect serum MBL levels

have been detected at position –550, (named H and L)

(rs11003125), at position –221 (named X and Y) (rs7096206),

and in the 59UTR at position +4 (named P and Q) (rs7095891).

These 3 SNP locations together with exon 1 variants were grouped

as four-marker haplotypes and 7 of them have been detected in

different human populations: 4 structurally normal but differen-

tially expressed haplotypes HYPA.LYQA.LYPA.LXPA and 3

structural variant haplotypes LYPB, LYQC and HYPD [12].

The relatively high prevalence of defective low MBL2 alleles (B,

C or D) in most populations studied and their association with

infectious diseases has led to the hypothesis that the presence of

these alleles represent a balanced genetic system with selective

advantages for heterozygotes [13]. Preliminary studies in a few

indigenous populations showed frequencies as high as 0.46 for

allele B at the Southern Cone of South America [12].

To get insight to the distribution of the MBL2 alleles and

haplotypes in different indigenous people of South America we

have investigated populations situated in different regions at the

Pacific desert coast, high altitude Andean plates and the

Amazonian forest within the territories of the Countries of Peru

and Ecuador.

Results

MBL2 genotype and MBL serum oligomerization pattern
correlation

The level of MBL serum concentrations in the tested Peruvian

samples according to the accompanying genotypes are shown in

Figure 1. In Figure 2 is the oligomerization pattern of MBL

according to different MBL genotypes shown.

Haplotypes
In the investigated Peruvian and Ecuadorian populations we

found 7 globally reported haplotypes. No new MBL2 haplotypes

were detected. The exact test for observed and expected

heterozygosity did not show any deviation from the Hardy–

Weinberg equilibrium model (HWE) among all studied popula-

tions (p-value.0.05).

Variant LYPB are common in South Native American
populations with very high frequencies in islanders of the
Lake Titicaca

Examination of MBL2 haplotypes revealed that the LYPB was

common in all of the studied populations, but that the variants

LYQC and HYPD were virtually absent (Table 1). The lowest

frequencies of the LYPB haplotype ranged from 0.22 (0.10

homozygous) in the Peruvian departments of Junin (Central

Andean highland) and Ucayali (Central Amazonian forest), as well

as 0.27 (0.03 homozygous) and 0.24 (0.05) respectively in the

Congoma and Cayapa/Chachis population at the Amazonian

forest in Ecuador. The highest frequencies were recorded at the

islands of the Lake Titicaca (3800 m over the sea level in the

Andes), Taquile and Amantani with a frequency of 0.80 (0.64 of

homozygous), and also at Anapia with a frequency of 0.58.

Native American populations bear mainly haplotypes
HYPA and LYPB

It is noticeable that all the American subpopulations analyzed

here and in previous studies showed that the haplotypes HYPA
and LYPB are the most prevalent. Both Eskimos at the Northern,

and Mapuche and Chiriguanos at the Southern extremes of the

Americas have shown these haplotypes as the most represented in

their population [12]. The present study performed in more

meridional populations indicated that these haplotypes are also

prevalent in groups living in different ecological surrounding (i.e.

warm desert, cold high altitudes and in tropical rain forest

climates).

Genetic variability and differentiation among the
populations

Analysis of Molecular Variance (AMOVA) was performed from

MBL2 haplotype frequencies among the Peruvian and Ecuador-

ian populations and it showed a moderate variation between them

(Fst = 0.127; P,0,00001). The population pairwise WST analyses

showed statistically significant differentiation (Table 2, numbers

below the diagonal) between Taquile/Amantani and other

populations (p,0.05) which is visualized by the non-metric

MDS plot of Reynolds genetic distances (Table 2) and numbers

above the diagonal in Figure 3.

Discussion

MBL is a recognition molecule present in serum of importance

for first line host defence. It was the first recognition molecule to

be discovered in the lectin complement pathway, which now has

turned out to comprise at least 4 other molecules with distinct and

overlapping functions [4,14].

A striking observation with regard to MBL2 is the presence of

three missense variant alleles causing low levels and dysfunctional

folding of MBL that are clustered in exon 1. Our analyses of the

MBL serum concentration and the MBL oligomerization pattern

in native Americans corroborate this notion (figures 1 and 2). The

B allele is frequent in Native Americans as shown by the presence

of up to 12% in Greenland Eskimos, 42% in Chiriguano and 46%

in Mapuche ethnic groups, respectively in the Southern part of the

Andes within Argentina territory [12]. In Eurasian populations the

B allele is found with frequencies between 11% and 25% [15,16].

By contrast the B allele is virtually absent in Sub-Saharan

populations where the C allele is predominant reaching its highest

frequencies in West-Africa (30%) [17]. The D allele is less frequent

than the B and C alleles and has been found in Caucasian and

North-East African populations with an allele frequency of 4–6%,

respectively [18].

To explain this high prevalence in some populations a possible

advantageous effect of the variant alleles has been proposed,

suggesting that they have been evolutionary kept by its capability

to avoid certain infections or diminish the effect of complement

driven inflammatory reactions. However, this assumption has

mounted conflicting results when tested in different populations

and is still a matter of debate [15,19–21].

High Prevalence of a Defective MBL2 Genotype in South America
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We corroborated that the B allele was present at very high

frequencies in all the South American populations analyzed and

propose that this pattern is extended to most populations of the

continent, as already shown in Southern Argentina populations

and Eskimos [12]. It is noticeable that in some populations the

allele B was the most prevalent compared with the ‘‘normal’’ A
allele, reaching allele frequencies up to 80% and homozygosity

frequencies of around 64% in the islands of Taquile and Amantani

in the Lake Titicaca.

We find that several South American populations have higher

frequencies of a defective allele of MBL2 than any other

population from other continent registered so far. After the

observation of a major prevalence of this variant defective allele it

is tempting to propose a still unknown protective effect is being

exerted in these islands as well as the island of Anapia and in the

Mapuche population with frequencies of LYPB reaching 0.58 and

0.46 respectively. However, it is remarkable that the island ‘‘Los

Uros’’, which is geographically very close to Taquile and

Amantani, the LYPB haplotype has a frequency of only 0.35,

which is difficult to conceal with the hypothesis of a specific

selective effect. Thus, our hypothesis regarding ‘‘Los Uros’’ and

the groups of Taquile, Amantani and Anapia is that the difference

is caused by a genetic founder effect instead of a genetic

advantage.

Historical and anthropological evidence suggest that Taquile

and Amantani were repopulated after the Spanish conquerors

expulsed the original populations and imposed new settlers in

these islands in mid XVI century [22]. Our previous results with

other genetic markers indicate that Taquile and Amantani

populations are genetically very homogeneous probably originated

from a reduced number of settlers [23]. Using the AMOVA test

suggests that Quechua and Aymara speaking individuals are

moderately differentiated (Fst = 0.18, p,0.01). In addition we

have some evidence with mtDNA and microsatellite polymorphic

markers that the Los Uros community is at least partially

genetically differentiated in relation to their neighbours [24].

However, it is still possible that ancestral life style could promote

differences in their genetic distribution. Taquile, Amantani and

Anapia are land islands dedicated mostly to agriculture; whereas

the population of ‘‘Los Uros’’ mainly live in artificial hay-made

islands where the microenvironment, including pathogens, could

be different.

Figure 1. Mannose-binding lectin serum concentrations correlated with MBL2 promoter and structural genotypes in 7 native
Peruvians. Horisontal line indicates either actual concentration or mean from 2 individuals.
doi:10.1371/journal.pone.0108943.g001

Figure 2. Variations in Mannose-Binding Lectin Oligomeriza-
tion according to the MBL2 haplotypes HYPA/HYPA, HYPA/LYPB
and LYPB/LYPB from 3 different individuals.
doi:10.1371/journal.pone.0108943.g002
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It is conceivable that the microbial challenge that met the first

settlers first in North America and then subsequently at the

Central and South American continent thousands of years ago

may have selected different alleles to become prevalent combined

with bottleneck effects. It is known that there are at least 2 events

in South America history showing bottleneck effects, first, the

peopling the Americas about 18000 years ago by a small effective

population size (estimated between 70 to 5000) [25]. And more

recently around 500 years ago, in coincidence with European

colonization [26]. The dramatic influence exerted by the Spanish

invasion may have affected the autochthonous population

dynamics. Among the most important reasons were warfare,

new agriculture and ungulated farming practices, abusive colonial

ruling; and probably the main cause: infectious diseases [27,28].

The native American population shrunk dramatically after the

Spanish conquest, for example in the Inca population (including

modern Peru and Ecuador territories) was estimated around 17

million individuals, and this number was reduced to a little more

than 1 million, one hundred years after the colonial invasion [27].

Some authors claim that the immunogenetic constitution of

autochthonous Americans were so different that some Old World’s

diseases ravaged when passed to the Americas (virgin soil
epidemics) [29]. Although several infectious diseases were known

in the Americas like Chagas, leishmaniasis, Carrion’s disease; it is

considered that smallpox, measles, typhus, malaria and other

‘‘new’’ infectious diseases were more lethal than the firearms of the

Spanish conquistadors [30].

The South American populations studied here and probably

most Native American populations, have a very high prevalence of

defective variant B allele being the most prevalent in some groups.

It is also interesting to corroborate that all the previous and present

Native American population studied have a prevalence of both

LYPB and HYPA and the presumed intermediary LYPA

haplotype is rather scarce. Based on our study it is most likely

that this reflects a random distribution due to population

bottleneck effects in the founder population. But it cannot be

excluded that part of the observed distribution could be due to a

selection against specific pathogens found among the ancestors of

the autochthonous Americans or due to specific exposures before,

during and after the Spanish invasion. In any case, the observed

genetic pattern suggest that this co-prevalence of HYPA and

LYPB was built in the Asian migrants before the passage to the

American continent. A comparative analysis of Pre Columbian

ancient DNA and modern indigenous populations would help to

solve that enigma.

Materials and Methods

Population studied
A total of 429 individuals of allegedly autochthonous American

and admixed populations from different climatic and altitudinal

regions of Peru and Ecuador were investigated. The majority of

samples were collected in relatively isolated villages of the native

participants, who were interviewed in order to assess the birthplace

and ethnicity of their parents and grandparents, and to certify that

at least three preceding generations of their ancestors had been

living in the same locality. Relatives to the 3rd degree were

avoided. Samples were collected from individuals living in

different regions of Peru: Departments of Loreto (Northern

Amazonian forest, n = 30 from Iquitos), Ucayali (Central Amazo-

nian forest, n = 20 from Pucallpa), Lambayeque (Northern desert

coast, n = 34), Junin and Ayacucho (Central Andes, 3,600 mts

above sea level, cold weather, n = 20 from Huancayo and n = 40

from Ayacucho) and Puno (islanders of the Lake Titicaca,
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Southeast Andes at 3880 mts above sea level, cold weather,

n = 105). Samples from the Department of Puno were taken from

2 islands speaking Quechua (Taquile, n = 30 and Amantani,

n = 30) and from 2 islands speaking Aymara (Isla Los Uros, n = 26

and Anapia, n = 19). We also collected 182 samples from the

region of Esmeraldas (Rı́o Cayapa) and Santo Domingo de los

Colorados in the Amazonian forest of the Republic of Ecuador.

Five ml of blood was drawn to obtain DNA using standard

protocols from CGBM (USMP) and Department of Biology

(Universita Tor Vergata) laboratories in the few cases where also

serum was obtained which were isolated and snap frozen otherwise

DNA samples were extracted from buccal swabs using standard

procedures.

Sampling was done after verbal and written informed consent.

The consent has been recorded in data sheets for each participant.

The approvals of the project and the information procedure as

well as ethical approval were given by Centro de Genética y

Biologı́a Molecular (CGBM), Facultad de Medicina Humana,

Universidad San Martı́n de Porres, Lima, Peru, local ethical

committee and institutional review board.

Determination of MBL2 alleles by sequence specific
priming PCR

MBL2 single SNPs in the form of the structural variants named

B (codon 54), C (codon 57), and D (codon 52) as well as the

regulatory variants named H/L (2550), X/Y (2221), and P/Q (+4)

were typed by PCR using sequence specific priming (PCR-SSP),

which includes 12 reactions according to the method described in

[8]. As internal positive control we included a PCR covering exon

4 of the MBL2 gene. The PCRs were performed essentially as

previously described [31], except that the concentration of dNTPs

was reduced to 0.7 mM, and the PCR products were analysed by

a 2% agarose gel electrophoresis. Although the typing was

performed as SNP-typing the results were combined in haplotypes,

based on strong linkage disequilibrium between the SNPs that

gives the seven known haplotypes: Four functional haplotypes

LXPA, LYPA, LYQA, and HYPA (the common allele is designated

‘‘A’’), and three ‘‘novo variants’’ haplotypes; LYPB, LYQC, and

HYPD [12]. Pilot assays to optimize annealing conditions at the

Lima laboratory were performed using 7 control samples

representing each of the 7 known haplotypes mentioned above.

Products of the PCR amplification were individually loaded in a

2% agarose gel, stained with ethidium bromide, visualized over a

UV transilluminator and recorded in a photodocumentation

system. MBL serum concentrations and SDS-PAGE (NuPAGE 3–

8%) and western blotting of 7 and 3 sera, respectively from

genotyped native Peruvians were performed following standard-

ized protocols [32–34].

Statistical analysis
HWE and the exact test using Markov chain was performed for

MBL2 genotypes. Haplotype frequencies were also obtained by

direct counting and tests of population structure and differentia-

tion using Arlequin 3.5 software [35]. To estimate the differen-

tiation intra- and inter- populations we use the analysis AMOVA,

where Fst indices were obtained to evaluate the genetic

differentiation of the 12 communities. We used genetic distances

linearized with population divergence times, converting WST

Figure 3. nmMDS among the Peruvian and Ecuadorian populations (stress = 0.011) using Reynolds Fst genetic distances. In black
circles, Peruvian subpopulations; in white-Ecuadorian subpopulations. In the bidimensional space the Taquile/Amantani population showed that they
are distant from other communities due to high frequency of the defective MBL2 haplotype LYPB.
doi:10.1371/journal.pone.0108943.g003
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distances into Reynolds’ coancestry coefficients in Arlequin, which

were used in non-metric MDS analyses (nmMDS) calculated with

PAST software (http://folk.uio.no/ohammer/past) [24].
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