

FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

INFLUENCIA DE LA MALLA DE ACERO PARA REDUCIR EL COSTO EN LA REHABILITACIÓN DEL PAVIMENTO FLEXIBLE DE LA AV. 200. VENTANILLA – CALLAO

PRESENTADA POR

JHEAN DAVIS BARRERA POMA FREDDY SHAON LIN DIESTRA DE LA CRUZ

ASESOR
ERNESTO ANTONIO VILLAR GALLARDO

TESIS

PARA OPTAR EL TÍTULO PROFESIONAL DE INGENIERO CIVIL

LIMA – PERÚ

2018

CC BY-NC-ND

Reconocimiento - No comercial - Sin obra derivada

El autor sólo permite que se pueda descargar esta obra y compartirla con otras personas, siempre que se reconozca su autoría, pero no se puede cambiar de ninguna manera ni se puede utilizar comercialmente.

http://creativecommons.org/licenses/by-nc-nd/4.0/

ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

INFLUENCIA DE LA MALLA DE ACERO PARA REDUCIR EL COSTO EN LA REHABILITACIÓN DEL PAVIMENTO FLEXIBLE DE LA AV. 200. VENTANILLA – CALLAO

TESIS

PARA OPTAR EL TÍTULO DE INGENIERO CIVIL

PRESENTADA POR

BARRERA POMA, JHEAN DAVIS
DIESTRA DE LA CRUZ, FREDDY SHAON LIN

LIMA – PERÚ

2018

Dedico la presente tesis a Dios, quien me dio la fortaleza para continuar y cumplir todas mis metas. A mi madre Alicia, quien supo formarme con buenos hábitos y valores. A mi padre David, por estar siempre a mi lado brindándome todo el apoyo. A mi abuela Sabina, por las enseñanzas y valores que me inculcó. A mi hermana Jissel y a toda mi familia, por su cariño y apoyo incondicional.

A la Universidad de San Martín de Porres, por inculcarme valores y por la enseñanaza brindada que creó en mí, las bases profesionales y académicas sólidas para el desarrollo de mi carrera.

A Dios, por ser mi guía en todo momento; a mis padres, Hilda y Simeón, por siempre ser mi apoyo y soporte; a mis hermanos, Bruce y Chuan, por ser mi motivación durante este periodo de formación; y a toda mi familia, por confiar en mí y darme palabras de aliento. Dedico también este proyecto a mi alma mater, la Universidad de San Martín de Porres, brindarme formación por una profesional y ética como ingeniero civil.

Freddy Diestra

ÍNDICE

		Página
RESU	MEN	xii
ABSTF	RACT	xiv
INTRO	DUCCIÓN	xvi
CAPÍT	ULO I. PLANTEAMIENTO DEL PROBLEMA	1
1.1.	Situación problemática	1
1.2.	Formulación de Problema	2
1.3	Objetivo general y específicos	2
1.4	Justificación	3
1.5	Alcances y Limitaciones	3
CAPÍT	ULO II. MARCO TEÓRICO	5
2.1	Antecedentes de la investigación	5
2.2	Bases teóricas	6
2.3	Definición de términos básicos	18
2.4	Hipótesis	19
CAPÍT	ULO III. METODOLOGÍA	21
3.1	Diseño de investigación	21

3.2	Variables	22
3.3	Muestra y población	23
3.4	Técnicas de investigación	24
3.5	Instrumentos	24
3.6	Procedimiento	25
3.7	Cronograma de actividades	26
CAPÍT	ULO IV. PRUEBAS Y RESULTADOS	27
4.1	Caso de investigación	27
4.2	Resultado del estudio mecánica de suelos	28
4.3	Resultado del análisis de tráfico	56
4.4	AASHTO 93 para el Diseño de pavimento flexible	62
4.5	Análisis económico	80
CAPÍT	ULO V. DISCUSIÓN	82
CONC	LUSIONES	84
RECO	MENDACIONES	86
FUENT	ES DE INFORMACIÓN	87
ANEXO	os .	89

ÍNDICE DE TABLAS

	Página
Tabla 1. Clasificación de vehículos	11
Tabla 2. Clasificación de vehículos	11
Tabla 3. Clasificación de vehículos	11
Tabla 4. Variables	23
Tabla 5. Cronograma de actividades	26
Tabla 6. Orientación y linderos	28
Tabla 7. Ubicación de las calicatas	29
Tabla 8. Análisis granulométrico C-1	33
Tabla 9. Límites de consistencia C-1	34
Tabla 10. Registro de perfil de suelos C-1	35
Tabla 11. Análisis granulométrico C-2	36
Tabla 12. Límites de consistencia C-2	37
Tabla 13. Registro del perfil de suelos C-2	38
Tabla 14. Análisis granulométrico C-3	39
Tabla 15. Límites de consistencia C-3	40
Tabla 16. Registro de perfil de suelos C-3	41
Tabla 17. Análisis granulométrico C-4	42
Tabla 18. Límites de consistencia C-4	43
Tabla 19. Registro de perfil de suelos C-4	44
Tabla 20. Análisis granulométrico C-5	45

Tabla 21. Límites de consistencia C-5	. 46
Tabla 22. Registro de perfil de suelos C-5	. 47
Tabla 23. Análisis granulométrico C-6	. 48
Tabla 24. Límites de consistencia C-6	. 49
Tabla 25. Registro de perfil de suelos C-6	. 50
Tabla 26. Contenido de sales solubles C-6	. 51
Tabla 27. Compactación de suelos C-6	. 52
Tabla 28. CBR en laboratorio C-6	. 53
Tabla 29. CBR en laboratorio C-6	. 54
Tabla 30. Resultados de las calicatas	. 55
Tabla 31. Índice medio diario semanal	. 56
Tabla 32. Índice medio diario anual	. 57
Tabla 33. Calculo de tránsito futuro	. 58
Tabla 34. Relación de cargas por eje para determinar ejes equivalentes	S
(EE) para afirmados, pavimentos flexibles y semirrígidos	. 59
Tabla 35. Resultados de los EE	. 60
Tabla 36. Factor de distribución direccional y de carril	. 61
Tabla 37. Categoría de subrasante	. 62
Tabla 38. Valores sugeridos de grado de confiabilidad (10 o 20 años)	. 63
Tabla 39. (Zr)	. 64
Tabla 40. (Pi)	. 66
Tabla 41. (ΔPSI)	. 68
Tabla 42. Espesores mínimos recomendados	. 70
Tabla 43. Condiciones de drenaje	. 70
Tabla 44. Coeficientes de drenaje recomendados, (mi)	. 71
Tabla 45. (a1)	. 72
Tabla 46. (a2)	. 73
Tabla 47. (a3)	. 74
Tabla 48. Variación de espesores	. 78
Tabla 49. Prepuesto del pavimento flexible sin malla de acero	. 80
Tabla 50. Presupuesto del pavimento flexible con la malla de acero	. 81

ÍNDICE DE FÓRMULAS

	Página
Fórmula 1. Diseño estructural del pavimento flexible	15
Fórmula 2. Módulo de resilencia	16
Fórmula 3. Número estructural requerido	17
Fórmula 4. Índice diario anual	56
Fórmula 5. Calculo del índice de crecimiento y proyección	58
Fórmula 6. Determinar EE	61
Fórmula 7. Determinar la Esal	61
Fórmula 8. Determinar Mr	62
Fórmula 9. Número estructural requerido	75
Fórmula 10. Número estructural sustituyente a la base granular	75
Fórmula 11. Cálculo del actual grosor de la base granular	76
Fórmula 12. Cálculo de aporte estructural de la capa reforzada	77
Fórmula 13. Cálculo de nuevo grosor de la base granular y sub base	9
granular	77

ÍNDICE DE FIGURAS

	Páginas
Figura 1. Malla de acero	13
Figura 2. Técnicas de investigación	24
Figura 3. Ubicación de la carretera	27
Figura 4. Calicata N°1	29
Figura 5. Calicata N°2	30
Figura 6. Calicata N°3	30
Figura 7. Calicata N°4	31
Figura 8. Calicata N°5	31
Figura 9. Calicata N°6	32
Figura 10. Grafica del índice medio diario anual	57
Figura 11. Ábaco para determinar el número estructural requerido	o 69
Figura 12. Determinar LCR	76
Figura 13. Corte transversal del pavimento flexible tradicional	79
Figura 14. Corte transversal del pavimento flexible con malla de a	acera 79

RESUMEN

Esta investigación tiene por objetivo determinar el efecto de la malla de acero en la reparación de pavimentos flexibles de la Av. 200 en el distrito de Ventanilla, para lograrlo, se realizó una encuesta de tráfico de una semana (del 4 al 10 de octubre de 2018) y el número de eje equivalente (Esal) fue de 5,475,116,602, asimismo, se realizó una investigación de suelos, para lo cual se tomaron tres muestras, cuyos resultados arrojaron que de acuerdo con la clasificación SUCS, los principales tipos de suelo son: arena de mala calidad y 8,9% de pavimento CBR.

En base al estudio de suelo y a los datos obtenidos de tráfico, se diseñaron dos alternativas de pavimento: el diseño de pavimento flexible convencional según AASHTO y el diseño de pavimento flexible reforzado con una malla de acero.

Después de los diseños, se realizó un análisis técnico, este concluyó que al aplicar la malla de acero se reducen las capas granulares, por ende, la medida de la base sin malla es de 15.24 cm y la medida de la subbase sin malla es de 39.03 cm; mientras que utilizando la malla de acero, la medida de la base es de 15.24 cm y la medida de la subbase es de 22.25 cm. En consecuencia, se redujo la capa granular en 16.78 cm.

Finalmente, se realizó la comparación económica de los dos diseños, y se aprecia que el pavimento flexible convencional tiene un costo de 11.99% más que el pavimento flexible con la malla de acero.

Palabras claves: Pavimento flexible, malla de acero, estudio suelos, y estudio de tráfico.

ABSTRACT

The objective of this research is to determine the effect of using steel mesh to repair the flexible pavement of Av. 200 in Ventanilla district; to achieve this, a one-week traffic survey was carried out (from October 4 to 10, 2018) and the equivalent axis number (Esal) was 5,475,116,602; likewise, a soil investigation was carried out, for which three samples were taken, whose results showed that according to the SUCS classification, the main types of soil are: poor quality sand and 8.9% CBR pavement.

Based on soil study and traffic data, two pavement alternatives were designed: conventional flexible pavement design according to AASHTO and flexible pavement design reinforced with steel mesh.

After making designs, a technical analysis was carried out which concluded that by applying a steel mesh, the granular layers are reduced; therefore, base measurement without mesh is 15.24 cm and subbase measurement without mesh is 39.03 cm; while using steel mesh, base measurement is 15.24 cm and subbase measurement is 22.25 cm. Consequently, the granular layer was reduced by 16.78 cm.

Finally, economic comparison of the two designs was made, and it was concluded that conventional flexible pavement has a cost of 11.99% more than flexible pavement with steel mesh.

Keywords: Flexible pavement, steel mesh, soil study, and traffic study.

INTRODUCCIÓN

El distrito de Ventanilla, debido a su ubicación geográfica, presenta tipos de suelos variados, por lo que el profesional responsable tiene dificultades durante los procesos constructivos de los distintos tipos de obras.

Las vías de acceso del distrito de Ventanilla sufren un constante deterioro, causado por el incremento vehicular, clima y topografía; considerando esta problematica, la presente tesis propone diseñar un pavimento flexible incorporando una malla de acero, debido a que actualmente este tipo de construcción se considera más resistente, eficiente y económicamente viable.

En este proyecto se utiliza la malla de acero debido a que limita la deformación del asfalto, absorbe las tensiones en la parte inferior de la capa de asfalto y otorga una tenacidad a toda la estructura.

Antes de realizar el diseño con las mallas de acero en pavimento, es importante precisar que se tiene que realizar el estudio de suelo obteniendo los parámetros de CBR; asimismo, se tiene que realizar el estudio de tráfico mediante el conteo de vehículos.

Esta tesis de investigación presenta los siguientes capítulos: el Capítulo I contiene los problemas que dan origen al tema de tesis, también contiene el objetivo de la tesis; el Capítulo II contiene el marco teórico

destinado a la revisión de la literatura, allí se describen y analizan los estudios realizados con relación al objeto de estudio; el Capítulo III contiene la metodología que permite llevar a cabo la investigación con los lineamientos de investigación científica; el Capítulo IV contienen los resultados obtenidos en los ensayos; el Capítulo V contiene las discusiones y aplicaciones que analizan con la finalidad de interpretar los resultados.

CAPÍTULO I

PLANTEAMIENTO DEL PROBLEMA

1.1. Situación problemática

En la actualidad la Av. 200 está ubicada en el distrito de Ventanilla, provincia constitucional del Callao. La Av. 200 se encuentra en malas condiciones, la carpeta de rodadura no permite una buena circulación del tránsito, lo que genera un malestar a los habitantes y usuarios de la vía.

Es oportuno precisar que este trabajo de investigación está centrado en el área de la Av. 200 que corresponde a uno de los asentamientos humanos más grandes de Ventanilla, denominado Pachacútec, también conocido por la población como: Ciudad de Pachacútec; sobre esta área cabe indicar que cuenta con muy poca carretera asfaltada y la cantidad de vehículos que la transitan se ha incrementado a lo largo de los años, lo que ha originado su creciente deterioro; fue esta situación la que motivó la propuesta del uso en el área señalada (Av. 200 del AA. HH. Pachacútec) de la malla de acero para reducir los costos en la construcción de pavimento flexible reforzado.

El área que se ha precisado en el párrafo anterior, contaba con un estudio de suelo (CBR) y tráfico vehicular del 2005, al momento de iniciar esta investigación; no obstante, se pudo determinar

que ambos estudios estaban mal desarrollados porque no habían aplicado criterios como el tiempo de vida útil de la estructura analizada, además las conclusiones a las que arribaron en el 2005 resultaban obsoletas por el paso del tiempo.

1.2. Formulación de Problema

a) Problema principal

¿En qué medida influye la malla de acero para reducir el costo en la rehabilitación del pavimento flexible de la Av. 200 Ventanilla – Callao?

b) Problema específicos

¿En qué medida el **estudio de mecánica de suelos** influye para la rehabilitación del pavimento flexible de la Av. 200 Ventanilla – Callao?

¿En qué medida el **estudio de tráfico** influye para la rehabilitación del pavimento flexible de la Av. 200 Ventanilla – Callao?

¿En qué medida se **reducirá las capas granulares** para la rehabilitación del pavimento flexible usando la malla de acero de la Av. 200 Ventanilla - Callao?

1.3 Objetivo general y específicos

a) Objetivo general

Determinar la influencia de la malla de acero para reducir el costo en la rehabilitación del pavimento flexible de la Av. 200. Ventanilla – Callao.

b) Objetivos específicos

Determinar la influencia del estudio mecánico de suelos para la rehabilitación del pavimento flexible de la Av. 200. Ventanilla – Callao.

Determinar la influencia del estudio de tráfico para la rehabilitación del pavimento flexible de la Av. 200. Ventanilla – Callao.

Determinar la reducción de las capas granulares para la rehabilitación del pavimento usando la malla de acero de la Av. 200. Ventanilla – Callao.

1.4 Justificación

La aplicación de la malla de acero en esta tesis principalmente abarca en la rehabilitación con una nueva tecnología, rápida, económica y eficiente. Teniendo como objetivo principal la disminución de espesores del pavimento y por ende una menor cuadrilla de trabajadores, materiales y transporte, dando una mayor utilidad al momento del presupuesto.

La carretera de la Av. 200 ubicada en el distrito de Ventanilla - Callao es una carretera que pertenece a la ciudad emergente de Pachacútec debido a la población que tiene una tasa de crecimiento alto y al comercio que se está implantando.

Actualmente la Av. 200 está en un completo deterioro ya que miles de personas pasan por la avenida, y estas sienten el abandono ya que no hay una mejora en las pistas, pero con este proyecto que proponemos disminuirá el presupuesto en su ejecución con esta tecnología de la malla de acero.

Posteriormente, todos estos aspectos mencionados van a ayudar a que los beneficiarios directos e indirectos puedan reducir los índices de pobreza y asimismo lograr un desarrollo económico social para esta ciudad

1.5 Alcances y Limitaciones

En el presente trabajo se tomó muestras de calicatas de la zona de Pachacútec luego se trasladó a la empresa TECNOVIAS Y SERVICIOS GENERALES S.R.L. para los respectivos

ensayos de laboratorio asimismo poder diseñar el pavimento en la Av. 200, Pachacútec.

En la presente tesis se limitó en la aplicación de la malla de acero en el pavimento flexible regido por el método de AASHTO.

Para el estudio de tráfico se hizo mediante un análisis de campo.

Para el diseño del pavimento asfaltico se utilizó el método AASHTO al igual que en el diseño de pavimento asfaltico con malla de acero.

CAPÍTULO II

MARCO TEÓRICO

2.1 Antecedentes de la investigación

El uso de la malla de acero en el pavimento flexible se viene usando desde el año 2010 en el Perú, sin embargo, no es nuevo en países del primer mundo.

Como investigaciones previas, se tienen los siguientes trabajos relacionados con la aplicación de la malla de acero en la rehabilitación del pavimento flexible.

Yarango Serrano, E. (2014) presentó un informe titulado "Restauración de las vías de acceso de la Asociación Minera Cerro Verde (SMCV), que se ubica a kilómetros de la región de Uchimayo en Arequipa. 0 + 1000 al km 1 + 900 km. Utilice el sistema bitufor para reducir el reflejo de las grietas y prolongar la vida útil de la carretera".

La investigación plantea el uso del método Bitufor como solución para tratar de retrasar la presencia de grietas, también propone el correcto proceso constructivo, además tener en cuenta las traslapes adecuados para reducir las fallas.

Rengifo Arakaki, K. (2014) presentó una tesis denominada "Diseño de los pavimentos de la nueva carretera panamericana norte en el tramo de Huacho a Pativilca (km 188 a 189)"

Esta tesis propuso comparar económica y tecnológicamente el pavimento flexible con el pavimento rígido y establecer cual de las dos es la mejor opción para la localidad.

Gavilanes Dávila, N. (2012) presentó la tesis denominada "Diseño de la estructura del pavimento con reforzamiento de geosintéticos aplicado a un tramo de la carretera Zumbahua - La Maná – Ecuador" Esta tesis propuso la realización del pavimento con uso de los diferentes tipos de geomallas sintéticas.

2.2 Bases teóricas

A continuación con el objeto de ayudar a resolver la problemática planteada, se presentan los aspectos generales sobre la estructura del pavimento, además se explican un cúmulo de conceptos y propuestas que contienen un punto de vista determinado sobre el tema en cuestión. Este subcapítulo se encuentra dividido en: pavimentos, estudio de suelos, estudio de tráfico y malla de acero, y estos a su vez, se encuentran subdivididos de acuerdo a las características que presentan.

2.2.1 Pavimentos

Cuando se mencionan los pavimentos flexibles en Latinoamérica, uno de los referentes en la última década que ha cobrado importancia por su investigación de los pavimentos, es el investigador e ingeniero civil Miguel Angel Tapia, quien estudio con el apoyo de la Universidad Nacional Autónoma de Mexico, la respuesta de los pavimentos. Es oportuno mencionar que para Vergara, el pavimento está constituido por un conjunto de capas estructurales que se colocan unas sobre otras, de forma horizontal y su diseño técnico contiene los materiales adecuados y debidamente compactados. Acerca de la resistencia de los pavimentos, Tapia sostiene que:

Estas estructuras estratificadas se apoyan sobre la subrasante de una vía obtenida por el movimiento de tierras en el proceso de exploración y que han de resistir adecuadamente los esfuerzos que las cargas repetidas del tránsito le transmiten durante el periodo para el cual fue diseñada la estructura del pavimento. (2011, p. 8)

a)Pavimentos Flexibles

Es una estructura conformada por capas, cuya estructura total se deflecta o flexiona, Tapia sostiene que:

Cuenta con una capa de rodamiento constituida por mezcla asfáltica, por lo que también se les conocen como pavimentos asfálticos. Resultan económicos en su construcción inicial, pero tienen la desventaja de requerir mantenimiento constante para cumplir con su vida útil. (2011, p. 8)

a.1) Subrasante

La subrasante es una de las capas que resiste la carpeta asfáltica, la base y la sub base. Dependiendo de las características del suelo encontrado, esta capa se puede modelar en forma de corte o relleno. Después de la compactación, se obtiene las características de la carretera, secciones transversales y pendientes designadas. El espesor o medida del pavimento está influenciada por la particularidad de la subrasante, dado que esta sujeto a las normas las cuales son: estabilidad, incomprensibilidad y resistencia.

a.2) Subbase granular

Es la capa que se encuentra debajo de la base y esta capa está construida sobre la capa de subrasante. Cuando la capacidad de carga de la subrasante es alta, esta capa puede no ser necesaria. Su función es proporcionar una base unificada para la base y formar un soporte de trabajo adecuado a fin de colocar y compactar.

Idealmente, también tiene función de drenaje, por lo que el material utilizado debe estar libre de particulas menores a 0.075 mm. generalmente, una base granular tiene que estar compuesta por materiales tamizados o parcialmente triturados, suelo estabilizado con cemento.

a.3) Base granular

Es una de las partes principales del pavimento situado bajo la superficie de transmisión carga y su función principal es soportar, distribuir y transferir la carga a la subbase.

Compuesta de materiales granulares; otro compuesto para la elaboración de la base granular es de materiales asfálticos o cal, cemento Portland y llevar la denominación de material base estable y tiene que ser lo suficientemente fuertes para soportar la carga superficial y transferirla a la capa inferior del paquete estructural.

a.4) Carpeta Asfáltica

Es el ultimo recubrimiento del paquete estructural, y suministra un área de rodamiento al pavimento y distribuye las cargas a las capas inferiores. Una de sus principales funciones es impermeabilizar la superficie para asi evitar que el agua ingres a la base y sub base granular, ya que al ingresar el agua podría debilitar el paquete estructural del pavimento.

2.2.2 Estudio Mecánico de Suelos

Este estudio es necesario para identificar los tipos de suelos, características y problemas geotécnicos que existen, con dichos datos podremos determinar la resistencia de del terreno.

a.1) Ensayo granulométrico

Dentro de los ensayos de granulometría su material de terreno ya sea natural o de subrasante el cual es especificado por las técnicas generales de construcción de carreteras como lo muestra la (EG-2000) del MTC llegando a cumplirse la granulometría específica para su agregado siendo considerado ser aceptado en la cual especifica sus requisitos.

a.2) Límites de Atterberg

Permitiendo darse a conocer sus propiedades de los materiales como sus elementos límites que son: plástico, su índice de plasticidad y a su vez los suelos cohesivos

a.3) Ensayo de compactación Proctor modificado (Método C)

La finalidad del ensayo es establacer la densidad seca máxima que logra alcanzar la estructura inferior del pavimento y a la vez su porcentaje de humedad permitido para las condiciones. Esta prueba está especificada en el estándar MTC.

a.4) CBR

Relaciona el desempeño entre un suelo dado y la grava de grado estándar. Una determinada carga se aplicó a una muestra que

antes había sido compactada por la prueba Proctor, dicha muestra también se saturó en agua durante 4 días, y la carga requerida para penetrar el material se registró a intervalos de 0.1 " a 0.5". Para todas las muestras compactas con diferentes densidades, después de obtener los valores de carga necesarios para producir los valores de carga de 0.1" y 0.2", divida por 1000 (psi) para el primer suceso y divida en el segundo suceso por 1500 (psi) . La cantidad es expresada en porcentaje y es representada por el CBR del suelo. Con la finalidad de llegar a la densidad deseada, elija la cantidad de CBR más elvado entre 0.1" y 0.2", siendo esta la cantidad de CBR. Según la norma MTC E 132 la densidad seca máxima tiene un valor de 95%.

2.2.3 Estudio de tráfico

Ayuda a determinar el flujo de vehículos. De acuerdo con la clasificación de la normativa vehicular nacional, este es el tipo de vehículo que pasa por el área de análisis y la frecuencia de ejecución. Nuevamente, una vez obtenida los datos de campo, se evalua la tasa de crecimiento para predecir el flujo de vehículos en el año considerado para el proyecto.

La corriente del vehículo está representada por un parámetro llamado carga equivalente para un solo eje lo cual se estima un valor en el eje de 18 bloqueos cuyo valor interpreta el efecto destructivo de los vehículos en la acera. De lo contrario, si se utiliza el método PCA, se reduce el consumo de fatiga y corrosión.

a.1) Clasificación de vehículos

Es basado en el Reglamento Nacional de Vehículos, que incluye tipos de eje (eje simple, eje doble, tres lejes) y número. El peso total máximo es de 48 toneladas y el peso máximo autorizado es el siguiente:

Simple:

Para 2 neumáticos	7 ton.
Para 4 neumáticos	11 ton.

Tabla 1. Clasificación de vehículos Elaborado por: los autores

Doble:

Para 6 neumáticos	16 ton.
Para 4 neumáticos	12 ton.
Para 8 neumáticos	18 ton.

Tabla 2. Clasificación de vehículos Elaborado por: los autores

Triple

Para 6 neumáticos	16 ton.
Para 10 neumáticos	23 ton.
Para 12 neumáticos	25 ton.

Tabla 3. Clasificación de vehículos Elaborado por: los autores

Con estos cuadros de la tabla 1, tabla 2 y tabla 3 se determina que modelo de vehículos transitan por la avenida 200, los tipos de ejes y la cantidad. Con los datos obtenidos se determina el factor destructivo de la vía.

a.2) Tasa de crecimiento

Es necesario aportar antecedentes para poder estimar el crecimiento y la cuantía de todos los vehículos que circulan por la

carretera o en todo caso hacer un conteo diario para obtener cuantos carros pasan por la vía a estudiar.

a.3) Factor destructivo

A fin de determinar la cantidad de ejes equivalentes, inicialmente debemos unificar las clases de vehículos para estandarizarlos. La norma se expresa por el factor de carga equivalente en cada eje, tomando a modo referencial a 80 kN u 18 kip .

a.4) Proyección de tráfico

Se necesita los factores de carga equivalentes, el tránsito diario anual de la zona y la tasa de crecimiento a cada eje y vehículo, con estos datos se procede a implantar los criterios de diseño.

2.2.4 Malla de acero

La malla de acero absorbe las tensiones ocasionadas por el pase de vehículos, su instalación es la clave del éxito en esta operación.

a) Malla Metálica

Es una malla de acero que tiene una geometría hexagonal, con refuerzo horizontal y compuestos de espacios regulados con barras planas torsionadas continuamente que se entrepuestan con la malla asi poder lograr un buen anclaje y tenga una adecuada distribución uniforme ante una carga. La malla de refuerzo es elaborada de alambre de acero revestidos con Bezinal®, este revestimiento especial aumentara su resistencia a la corrosión y características mecánicas

Figura 1. Malla de acero Fuente: Manual de Diseño Prodac, 2018

b) Principales funciones

- -Limitar al mínimo la deformación del asfalto
- -Absorbe la tensión debajo de la capa de asfalto.
- -Fijar el agregado asfáltico a la rejilla de la red (compartimento).
- -Asegurar una distribución óptima de la carga.
- -Proporcionar resistencia adicional a toda la estructura.

c) Ventajas

- Económico

Reducción en el costo del proyecto: menor labor de instalación, menor movimiento de tierra, menor material de reemplazo y menor tiempo de ejecución.

Evita numerosas y repetitivas reparaciones, garantiza durabilidad a largo plazo.

Ahorro en el espesor del asfalto (debido a la tenacidad).

- Eficiente

Aumenta considerablemente la capacidad de carga de la carretera y asegura una óptima distribución de carga debido al refuerzo de acero.

Aumento de la tenacidad y resistencia estructural del terreno.

Incrementa la resistencia a la fatiga en la parte inferior de la estructura de la carretera.

Retarda la propagación de fisuras, limita las deformaciones en ampliaciones de carreteras y permite una unión uniforme al material existente.

- Rápido

Fácil y rápida instalación de la malla, se reduce el tiempo de preparación en obra.

Reduce el mínimo la interrupción de las carreteras durante el periodo de trabajo. Por día, se pueden instalar hasta 10,000m2 de Mesh Track.

- Ecológico

Reduce al mínimo la cantidad de demolición (profundidad de excavación) y transporte de material nuevo. Los materiales utilizados, tanto el acero como el asfalto pueden ser 100% reciclados.

d) Importancia de la malla de acero en la subrasante

La subrasante puede resistir tensiones que evitan la deformación de las carreteras y proporciona a la pista un dispositivo de alta resistencia mecánica del material granular.

2.2.5 Método AASHTO

Se usa para diseñar y tener procedimiento fundamentado en pautas que se desarrollaron en función al rendimiento del pavimento, resistencia de la sub rasante y las cargas vehiculares, obteniendo asi las medidas de los espesores.

a) Periodo de Diseño

Los siguientes cuadros proporcionan información sobre aceras flexibles para el período de diseño disponible. Para carreteras de bajo costo la cual consta de 2 etapas el máximo es de 10 años y la segunda etapa de 20 años. Al diseñar el pavimento se puede ajustar el ciclo del proyecto según las condiciones específicas del proyecto y las necesidades del cliente o la entidad.

b.) Variable

Para poder determinar el diseño estructural del pavimento flexible se utiliza la siguiente fórmula:

$$\log_{10}(W_{18}) = Z_R S_O + 9.36 \log_{10}(SN + 1) - 0.2 + \frac{\log_{10}(\frac{\Delta PSI}{4.2 - 1.5})}{0.4 + \frac{1094}{(SN + 1)^{5.19}}} + 2.32 \log_{10}(M_R) - 8.07$$

Fórmula 1. Diseño estructural del pavimento flexible Fuente: Manual de Carreteras, Suelos, Geología, Geotecnia y Pavimentos del MTC, 2013

b.1) W18

Cantidad transitada de ejes equivalentes simples igual a 18,000 libras (80 kN) durante la fase del proyecto, lo que corresponde al número de repeticiones (EE) de 8.2 tn.

b.2) Módulo de Resilencia (MR)

Rigidez del suelo de la subrasante y su cálculo será usando la fórmula relacionada con CBR.

Mr(psi)=2555*CBR^{0.64}

Fórmula 2. Módulo de resilencia Fuente: Manual de Carreteras, Suelos, Geología, Geotecnia y Pavimentos del MTC, 2013

b.3) Confiabilidad (%R):

Es la confianza para poder determinar el comportamiento probable de una estructura en su fase de diseño.

b.4) Desviación Estándar Normal:

(Zr) indica la cuantía de confiabilidad determinada, para un totalidad de datos obtenidos en una distribución numérica normal.

b.5) Desviación Estándar Combinada:

(So) es una cuantía que considera los cambios esperados de los pronósticos de tráfico y otros factores que alteran el desempeño de las aceras, como la construcción, el medio ambiente y la incertidumbre del modelado. Para caminos flexibles se recomienda utilizar las pautas AASHTO, con un valor (So) entre 0.40 y 0.50 y 0.45 para los dibujos recomendados en este manual.

b.6) Índice de Serviciabilidad Presente (PSI):

Es el desplazamiento ofrecida al usuario según su comodidad. Dado su cuantía tiene un rango entre 0 a 5. Una cuantía de 5 representa el mejor confort teórico (poco probable de conseguir), en cambio, una cuantía de 0 representa el deficiente confort teórico.

- Serviciabilidad Inicial (Pi):

El (Pi) indica las condiciones de una nueva via recientemente construida.

- Serviciabilidad Final o Terminal (PT):

El (PT) mide las condiciones de una via para determinar si requiere de alguna reconstrucción o rehabilitación.

b.7) Variación de Serviciabilidad (ΔPSI)

Diferencia entre (PI) y (PT) identificada del proyecto o diseño en desarrollo.

b.8) SNR:

EL número estructural requerido abreviada a SNR son cifras antes obtenidas, se aplican en la fórmula AASHTO para poder obtener los espesores de la estructura, con dichas cifras podemos obtener el espesor del pavimento, el cual debe convertirse al espesor efectivo de cada capa que conforman el pavimento. Es la ruta del asfalto, base y subbase. Usando el coeficiente estructural, este cambio se puede obtener empleando la siguiente fórmula.

$SN = a_1d_1 + a_2d_2m_2 + a_3d_3m_3$

Fórmula 3. Número estructural requerido
Fuente: Manual de Carreteras, Suelos, Geología, Geotecnia y Pavimentos del MTC,
2013

- a₁, a₂, a₃ = coeficientes estructurales de las capas: superficial, base y subbase, respectivamente
- d₁, d₂, d₃ = espesores (en centímetros) de las capas: superficial, base y subbase, respectivamente
- m₂, m₃ = coeficientes de drenaje para las capas de base y subbase, respectivamente

b.9) Drenaje:

Es la cantidad de tiempo en la que el pavimento se encuentra exponiendose a niveles altos de humedad próximos a la saturación. En la presente tesis, el factor de drenaje tanto como la base y la subbase asumiremos que fue de 1.

2.3 Definición de términos básicos

- Afirmado: Es una capa del pavimento que soporta directamente las cargas y esfuerzo del tránsito, otras de sus funciones es de servir como calzada en trochas carrozables y carreteras.
- **Ahuellamiento:** Son surcos, rastros o huellas que aparecen en la calzada de la carretera.
- **Asfalto:** Material químicamente compuesto por hidrocarburos de origen natural.
- **Bache:** Formación de desniveles en la calzada, producto del uso continuo de la misma.
- **Base:** Capa previamente seleccionada y procesada que será colocada entre la subbase o de la subrasante y la calzada.
- Calicata: Son excavaciones que se hacen a un terreno, con la finalidad de obtener muestras de diferentes profundidades.
- Carril: Parte de la calzada por donde circulan vehículos en el mismo sentido.
- California Bearing Ratio (CBR): Cifra relativa de soporte de determinado suelo, esta se mide mediante la introdcción de una fuerza, colocandolo dentro de una porción se suelo.
- Contenido de humedad: Es número agua o humedad que comprende un material.
- Corte (directo): En este ensayo se aplica una carga normal a una porsión de suelo para determinar si falla al trasladarse una sección con relación a otra.

- **Fatiga:** Es la reducción de la resistencia de un material, ya que esta sometida a solicitaciones repetidas.
- Fisura: Es una fractura, que tiene distintos orígenes, es un ancho menor o igual a 3mm.
- **Grieta:** Es una fractura, que tiene distintos origines, tienen un ancho mayor a 3mm.
- **Índice medio diario anual (IMDA):** Es el promedio de vehículos que transitan durante 24 horas de una muestra vehicular, la cual dará un periodo anual.
- MCSGGP: Manual de Carreteras Suelos, Geología, Geotecnia y Pavimentos.
- Napa freática: Distancia entre la superficie de terreno y el agua subterránea.
- NEE: Número de eje equivalentes.
- **Sección transversal:** Es un corte que se le hace a la carretera para mostrarnos las distintas capas que la conforman.
- **Subbase:** Es uno de los nivels que conforman la estructura del pavimento flexible, se encuntra entre la base granular y la sub rasante.
- **Subrasante:** Terreno natural de la carretera, sobre la cual se construirá la estructural del pavimento.
- Tramo: Fracción de una carretera.
- **Tránsito:** Es la circulación de vehículos y personas por una determinado camino.

2.4.1 Hipótesis General

La malla de acero sí influye en la reducción de los costos para la rehabilitación del pavimento flexible en la Av. 200 del distrito de Ventanilla - Callao.

2.4.2 Hipótesis Específicas

El estudio mecánico de suelos influye directamente en la rehabilitación del pavimento flexible de la Av. 200 del distrito de Ventanilla - Callao.

El estudio de tráfico influye directamente en la rehabilitación del pavimento flexible de la Av. 200 del distrito de Ventanilla - Callao.

La malla de acero reducirá el espesor de la subbase entre 40% a 50% para la rehabilitación del pavimento flexible de la Av. 200 del distrito de Ventanilla - Callao.

CAPÍTULO III

METODOLOGÍA

3.1 Diseño de investigación

Es observacional de tipo longitudinal y prospectivo.

- Se entiende como **observacional** ya que no se manipuló la variable independiente.
- Es longitudinal porque se recolecta datos cada cierto tiempo.
- Es **prospectivo** debido a que la información es captada y analizada en el presente.

3.1.1 Nivel de investigación

De nivel **descriptivo** debido a que se investiga la incidencia de distintos niveles de las variables para el tema de estudio, con un análisis descriptivo de su recolección de datos.

3.1.2 Tipo de investigación

Se define como investigación aplicada, debido que la investigación genera nuevos conocimientos y orientados a un objetivo práctico, de enfoque cuantitativo.

Es cuantitativa porque se toman resultados de los análisis en el laboratorio y se utiliza la estadística.

3.2 Variables

En la presente tesis se ha identificado el objeto de estudio, la variable dependiente y la variable independiente.

- a) Objeto de estudio: Determinar la influencia de la malla de acero para reducir el costo en la rehabilitación del pavimento flexible de la Av. 200.
 Ventanilla – Callao.
- b) Variable independiente: Malla de acero.
- c) Variable dependiente: Reducir el costo en la rehabilitación del pavimento flexible.

Variable Variable Independiente	Indicadores	Índices	Instrumentos
---------------------------------	-------------	---------	--------------

	Reducir el costo len la	Estudio mecánico de suelos	 Ensayo de granulométrico. CBR Límites de Atterberg. Ensayo de compactación Proctor modificado (Método IC). Elemento de crecimiento 	
Malla de acero	rehabilitación del pavimento flexible.	Estudio de tráfico	 Elemento de distribución direccional Elemento en la distribución de carril. Tiempo de diseño. 	
		Reducción de las capas granulares	Diseño de pavimento Gabir	ete

Tabla 4. Variables Elaborado por: los autores

3.3 Muestra y población

- La población fue tomada del distrito de Ventanilla, en este estudio se consideró como población a los vehículos que transitan por la Av. 200 del distrito de Ventanilla - Callao
- La muestra de la investigación son los 4.5 Km de la Av. 200 del distrito de Ventanilla - Callao

3.4 Técnicas de investigación

Para la verificación de la hipótesis se siguió el proceso que se muestra a continuación.

Figura 2. Técnicas de investigación Elaborado por: los autores

3.5 Instrumentos

- Manual de Carreteras Suelos, Geología, Geotecnia y Pavimentos
- Ensayo granulométrico
- Estudio mecánico de suelos
- Límites de Atterberg
- Proctor modificado
- CBR
- Estudio de tráfico
- Método Aashto

3.6 Procedimiento

El procedimiento en este proyecto consiste en cuatro pasos, estos son los siguientes.

- Realizar el estudio de suelos
- Realizar estudio de tráfico
- Diseñar el pavimento flexible usando el método convencional
- Diseñar el pavimento flexible usando la malla de acero

3.7 Cronograma de actividades

									Sem	anas								
	S. 1	S. 2	S. 3	S. 4	S. 5	S. 6	S. 7	S. 8	S. 9	S. 10	S. 11	S. 12	S. 13	S. 14	S. 15	S. 16	S. 17	S. 18
Actividades	01/08/2018	06/08/2018	13/08/2018	20/08/2018	27/08/2018	03/09/2018	10/09/2018	17/09/2018	24/09/2018	01/10/2018	08/10/2018	15/10/2018	22/10/2018	29/10/2018	05/11/2018	12/11/2018	19/11/2018	26/11/2018
Propuesta de tema																		
Definición de título (planteamiento del problema nominal y operacional y formulación de objetivos)																		
Recopilación de datos y redacción de tesis																		
Trabajo en campo y recopilación de datos																		
Procesamiento de información y elaboración de conclusiones																		
Levantamiento de observaciones de los jurados																		
Sustentación																		

Tabla 5. Cronograma de actividades Elaborado por: los autores

CAPÍTULO IV

PRUEBAS Y RESULTADOS

4.1 Caso de investigación

4.1.1 Ubicación del terreno de estudio

El terreno de estudio es la zona de Pachacútec perteneciente al distrito emergente de Ventanilla, esta ubicado al noreste de Lima metropolitana a 39 km de distancia.

La carretera tiene una extensión superficial de 4.5 km que recorre distintas cuadras y niveles del distrito de Ventanilla, provincia y departamento del Callao

Figura 3. Ubicación de la carretera Fuente: Google Earth, 2018

4.1.2 Ubicación geográfica

Las modificaciones de nivel estan desde los 180 msnm. hasta los 280 msnm en la geografía de toda el área del estudio y geográficamente se localiza en los 11º 52` 15" de latitud y 77º 07` 27" de longitud.

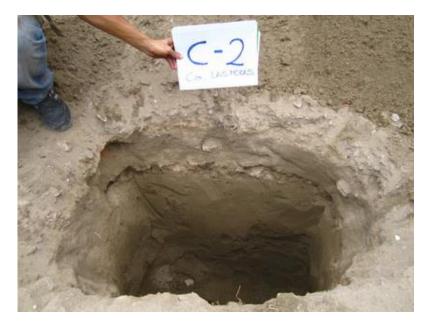
Norte	Distrito de Santa Rosa
Sur	Cerros del distrito de puente piedra
Este	Distrito de Puente Piedra
Oeste	Océano Pacífico.

Tabla 6. Orientación y linderos Elaborado por: los autores

4.2 Resultado del estudio mecánica de suelos


Con el objetivo de determinar la clase de suelo existen en el terreno de estudio se realizaron 6 excavaciones de pozos exploratorios o calicatas a una profundidad de 1.50 con el objetivo de saber las propiedades físicas y mecánicas del suelo de la Av. 200.

Luego de obtener las muestras en las excavaciones, las que fueron identificadas y descritas mendiante etiquetado, con las ubicaciones, número de muestras y profundidad, dichas muestras se llevaron al laboratorio de TECNOVIAS Y SERVICIOS GENERALES S.R.L para su análisis.


Las calicatas efectuadas tienen la siguiente ubicación:

CALICATA	UBICACIÓN
C-1	AV. 200 – CALLE 13
C-2	AV. 200 PARALELA AV. ARQUITECTOS
C-3	AV. 200 PROLONGACIÓN – CALLE 45
C-4	AV. 200 – CALLE TOPÓGRAFOS
C-5	AV. 200 – CALLE INGENIEROS
C-6	AV. 200 – PROLONGACIÓN

Tabla 7. Ubicación de las calicatas Elaborado por: los autores

Figura 4. Calicata N°1 Elaborado por: los autores

Figura 5. Calicata N°2 Elaborado por: los autores

Figura 6. Calicata N°3 Elaborado por: los autores

Figura 7. Calicata N°4 Elaborado por: los autores

Figura 8. Calicata N°5 Elaborado por: los autores

Figura 9. Calicata N°6 Elaborado por: los autores

a) Ensayo de laboratorio

Para efectuar la caracterización de los materiales obtenidos en las calicatas se efectuaron los ensayos ASTM que se indican a continuación:

a.1) Ensayos Estándar

- (ASTM D-422) Análisis granulométrico por tamiz.
- (ASTM D-4318) Límite Plástico y (ASTM D-4318) Límite Líquido.
- Clasificación SUCS y AASHTO

a.2) Ensayos especiales

- (ASTM D-1557) prueba del Proctor Modificado
- (ASTM D-1883) C.B.R.

Cliente:	FREDDY SHAON L	IN DIESTRA DE LA	CRUZ		Cert	ificado Nª:	2018175430001	
Proyecto:		A MALLA DE ACERO DEL PAVIMENTO FI LLAO			Expediente Nª: 0591B-2018			
Atencion:	FREDDY SHAON L	IN DIESTRA DE LA	CRUZ	Fech	na de Muestreo:	10 de noviembre 2	018	
Procedencia:	AV. 200 VENTANILI	LA	Fect	na de Ensayo:	10 de noviembre 2	018		
Ubic. De Vluestreo:	CALICATA 1 - Prof.	1.5 m			Clas	e de Material:	PROPIO	
Tamiz	Abertura (mm)	Pesox Retenido (gr)	% Parcial Retenido	% Acumulado Retenido	% Acumulado que pasa	Especificaciones	Descripcion o	de la Muestra
4"	100.000							
3"	75.000						Peso Inicial	625.8
2 1/2"	62.500							
2"	50.800							
1 1/2"	37.500						Limite Liquido	N.P.
1"	25.000							
3/4"	19.000						Limite Plastico	N.P.
1/2"	12.500							
3/8"	9.500						Indice Plasticidad	N.P.
1/4"	6.250							
Nª4	4.750						Clas. SUCS	S.P.
Nª8	2.360	7.						
Nª10	2.000				100.0		Clas. AASHTO	A-3 (0)
Nª16	1.100	2.5	0.4	0.4	99.6			
Nª20	0.850	3.1	0.5	0.9	99.1			
Nª30	0.600	23.2	3.7	4.6	95.4		Cont. Humedad	6.16
Nª40	0.425	80.1	12.8	17.4	82.6		% de Ag	regados
Nª50	0.300	80.7	12.9	30.3	69.7			
Nª60	0.250	143.3	22.9	53.2	46.8		% Grava	0.0
Nª80	0.200	170.2	27.2	80.4	19.6			
Nª100	0.150	67.6	10.8	91.2	8.8		% Arena	97.1
N ^a 200	0.075	36.9	5.9	97.1	2.9			
<na200< td=""><td></td><td>18.2</td><td>2.9</td><td>100.0</td><td></td><td></td><td>% Fina</td><td>2.9</td></na200<>		18.2	2.9	100.0			% Fina	2.9
100		200	02 04 0	16	8 9 7 8 9 4 8 9 4	1/4"	2 - 2	t to 10
90		1 1						90
80								80
70								70
70 60 50 40 30 20								60
50								50
40								40
30								30
10			p					20 10
0								
	BERTURA MALLA (mm)	0.074	0,297	0,840	2,380 2,380 3,360 4,760	6,350 9,525	19.05 25,40 38,10 50,800	76,20

Tabla 8. Análisis granulométrico C-1 Elaborado por: los autores

Cliente:	FREDDY SHAON LIN DIESTRA		Certificado Nª	8	2018175430002				
Proyecto:	INFLUENCIA DE LA MALLA DE DEL PAVIMENTO FLEXIBLE EN		CION	Expediente N	a.	0591B-2018			
Atencion:	FREDDY SHAON LIN DIESTRA	DE LA CRUZ		Fecha de Mu	estreo:	10 de noviembre 2018			
Procedencia:	AV. 200 VENTANILLA						Fecha de Ens	ayo:	10 de noviembre 2018
Ubic. De Muestreo:	CALICATA 1 - Prof. 1.5 m						Clase de Mate	erial:	PROPIO
			LIMI	TE LIQUIDO					
Prueba Nª		1			2		3		4
Recipiente Nª							\		
Nº de golpes					$\overline{}$				
Recipiente + Suel	lo Humedo			10 PRE	FNTA	*			
Recipiente + Suel	A 10 10 10 10 10 10 10 10 10 10 10 10 10			PRE	- C				
Peso del Agua (g	r)		1	10,					
Peso de Recipien	nte	1	\						
Peso de Suelo Se	2 42 46					10			
% de Humedad									
			LIMIT	E PLASTICO)				1
Prueba Nª		1			2		3		4
Recipiente Na							<u> </u>		
Nº de golpes									
Recipiente + Suel	lo Humedo			NO PR	711	A			
Recipiente + Suel	lo Seco			OR	ESEN				
Peso del Agua (g			$\overline{}$	104	/				
Peso de Recipien									
Peso de Suelo Se	eco (gr)								
% de Humedad									
			HUMED	AD NATUR	AL.				·
Recipiente Na		1			2		3		4
Recipiente + Suel	lo Humedo	625.8	30						
Recipiente + Suel	() () () () () () () () () ()	589.	5						
Peso del Agua (g		36.3	0						
Peso de Recipien		0.0							
Peso de Suelo Se		589.5	50						
% de Humedad		6.16	5			$\neg \uparrow$			
		DIA	GRAMA DE	FLUIDEZ			N. 91		LIMITE LIQUIDO
									N.P.
						-		-	N.P.
-						-		+	INDICE DE PLASTICIO
								-	N.P.
10		25	Nª de g					100	HUMEDAD NATURA 6.16

Tabla 9. Límites de consistencia C-1 Elaborado por: los autores

CLIENTE	FREDDY SHAON LIN DIESTRA DE LA CRUZ
PROYECTO	INFLUENCIA DE LA MALLA DE ACERO PARA REDUCIR EL COSTO EN LA REHABILITACION DEL PAVIMENTO FLEXIBLE EN LA AV. 200. VENTANILLA - CALLAO
UBICACION	AAHH PACHACUTEC AV. 200 VENTANILLA

METODO DE EXCAVACION	MANUAL			TEC. RESPONSABLE	TEC. G. Zambrano
UBICACION	AV. 200 - VENTANILLA			ING. RESPONSABLE	Carlos A. Ortiz Ramirez
PROGRESIVA		LADO	-	CERTIFICADO Nº	2018175430021
CALICATA	C-01	PROF. (m)	1.50	НОЈА	01-01 M.V.
N.F. (m)	-	OPERARO	TEC. I	FECHA DE EXCAVACION	10 de noviembre del 2018

Prof. (m)	Muestra	Descripcion	sucs	PERFIL
1.50	M-01	Presenta una arena mal gradada, compacidad media, baja humedad, color beige claro.	SP	

Tabla 10. Registro de perfil de suelos C-1 Elaborado por: los autores

2241 W		ANALISIS (GRANULOMETRIC	DE LOS SUELOS	POR TAMIZADO	ASTM D 422		
Cliente:	FREDDY SHAON L				Cert	tificado Nª:	2018175430003	
Proyecto:	INFLUENCIA DE LA REHABILITACION I VENTANILLA - CAL	DEL PAVIMENTO F			Expediente Nª: 0591B-2018			
Atencion:	FREDDY SHAON L	IN DIESTRA DE LA	Fec	ha de Muestreo:	10 de noviembre 2	018		
Procedencia: AV. 200 VENTANILLA						ha de Ensayo:	10 de noviembre 2	018
Ubic. De Muestreo:	CALICATA 2 - Prof.					se de Material:	PROPIO	
Tamiz	Abertura (mm)	Pesox Retenido (gr)	% Parcial Retenido	% Acumulado Retenido	% Acumulado que pasa	Especificaciones	Descripcion	de la Muestra
4"	100.000				2000 To 1000			
3"	75.000						Peso Inicial	709.2
2 1/2"	62.500							
2"	50.800							
1 1/2"	37.500						Limite Liquido	N.P.
1"	25.000							
3/4"	19.000						Limite Plastico	N.P.
1/2"	12.500							65
3/8"	9.500						Indice Plasticidad	N.P.
1/4"	6.250							
Nª4	4.750						Clas. SUCS	S.P.
Na8	2.360							(c
Nª10	2.000				100.0		Clas. AASHTO	A-3 (0)
Nº16	1.100	4.3	0.6	0.6	99.4			
Nª20	0.850	3.5	0.5	1.1	98.9			
Nº30	0.600	39.7	5.6	6.7	93.3		Cont. Humedad	2.9
Nº40	0.425	48.9	6.9	13.6	86.4		% de Ag	regados
Nº50	0.300	112.8	15.9	29.5	70.5			
Nª60	0.250	151.1	21.3	50.8	49.2		% Grava	0.0
Nº80	0.200	199.3	28.1	78.9	21.1			
Nº100	0.150	85.8	12.1	91.0	9.0		% Arena	96.8
Nº200	0.075	41.1	5.8	96.8	3.2			_
<na200< td=""><td></td><td>22.7</td><td>3.2</td><td>100.0</td><td></td><td></td><td>% Fina</td><td>3.2</td></na200<>		22.7	3.2	100.0			% Fina	3.2
00		1 1 7	5 6 6	3 9	\$ T T T	14. 8/8 I	4 - 57 - 2	1
90								9
80								8
70								7
60								6
50			1					5
30								4
20								3
60 50 40 30 20								2
0								م الملم
	ERTURA MALLA (mm)	0.074	0,297	0,840	2,380	6,350 9,525	19.05 25,40 38.10 50,80	76,20
Observaciones		0 00	0 0	0 -	ии ю, 4.	9 6 7	- 0 8 0	0 K

Tabla 11. Análisis granulométrico C-2 Elaborado por: los autores

Cliente:	FREDDY SHAON LIN DIESTRA	DE LA CRUZ		Certificado Nª:	2018175430004
Proyecto:	INFLUENCIA DE LA MALLA DE DEL PAVIMENTO FLEXIBLE EN			Expediente Na:	0591B-2018
Atencion:	FREDDY SHAON LIN DIESTRA	DE LA CRUZ	Fecha de Muestreo:	10 de noviembre 2018	
Procedencia:	AV. 200 VENTANILLA			Fecha de Ensayo:	10 de noviembre 2018
Ubic. De Muestreo:	CALICATA 2 - Prof. 1.5 m			Clase de Material:	PROPIO
		LI	MITE LIQUIDO		
Prueba Nª		1	2	3	4
Recipiente Nª					
№ de golpes			1		
Recipiente + Suel	lo Humedo		NO PRESENTA		
Recipiente + Suel			OPRESE		
Peso del Agua (g	r)		NO.		
Peso de Recipien	180				
Peso de Suelo Se	7 - 45 - 65				
% de Humedad	13-7			1	
		LIN	MITE PLASTICO	1	1
Prueba Nª		1	2	3	4
Recipiente Nº				h	
Nº de golpes					
Recipiente + Suel	lo Humedo		NOPRESENTA		
Recipiente + Suel			OESENI	1	
Peso del Agua (g			NOPRE	1	
Peso de Recipien			•	1	
Peso de Suelo Se	3 AM 666				
% de Humedad	(91)			1	
70 de Franceada		HUM	EDAD NATURAL		
Recipiente Nª		1	2	3	4
Recipiente + Suel	In Humedo	709.20			1
Recipiente + Suel		689.50		1	
Peso del Agua (g		19.70		1	
Peso de Recipien	eto.	0.0	1		
Peso de Suelo Se		689.50		1	
% de Humedad	13'/	2.86		1	
		DIAGRAMA	DE FLUIDEZ	1	LIMITE LIQUIDO
					N.P.
					LIMITE PLASTICO
					N.P. INDICE DE PLASTICID.
					N.P.
		25			HUMEDAD NATURA
10		Nª d	e golpes	100	2.86

Tabla 12. Límites de consistencia C-2 Elaborado por: los autores

CLIENTE	FREDDY SHAON LIN DIESTRA DE LA CRUZ
PROYECTO	INFLUENCIA DE LA MALLA DE ACERO PARA REDUCIR EL COSTO EN LA REHABILITACION DEL PAVIMENTO FLEXIBLE EN LA AV. 200. VENTANILLA - CALLAO
UBICACION	AAHH PACHACUTEC AV. 200 VENTANILLA

METODO DE EXCAVACION	MANUAL			TEC. RESPONSABLE	TEC. G. Zambrano
UBICACION	AV. 200 - VENTANILLA			ING. RESPONSABLE	Carlos A. Ortiz Ramirez
PROGRESIVA	(2)	- LADO -		CERTIFICADO Nª	2018175430022
CALICATA	C-02	PROF. (m)	1.50	ALOH	01-01 M.V.
N.F. (m)	3=9	OPERARC	TEC.	FECHA DE EXCAVACION	10 de noviembre del 2018

Prof. (m)	Muestra	Descripcion	sucs	PERFIL
1.50	M-01	Presenta una arena mal gradada, compacidad media, baja humedad, color beige claro.	SP	

Tabla 13. Registro del perfil de suelos C-2 Elaborado por: los autores

Cliente: Proyecto: Atencion:	INFLUENCIA DE LA	A MALLA DE ACER	A CRUZ		Certifica	ado Na:	2018175430005	
•	REHABILITACION		FREDDY SHAON LIN DIESTRA DE LA CRUZ INFLUENCIA DE LA MALLA DE ACERO PARA REDUCIR EL COSTO EN LA					
Atencion:			RO PARA REDUCIR LEXIBLE EN LA AV		Expediente №:		0591B-2018	
	FREDDY SHAON	LIN DIESTRA DE LA	CRUZ		Fecha o	de Muestreo:	10 de noviembre	2018
Procedencia:	AV. 200 VENTAN	IILLA			Fecha o	de Ensayo:	10 de noviembre	2018
Ubic. De Muestreo:	CALICATA 3 - Pro	of. 1.5 m			Clase d	e Material:	PROPIO	
Tamiz	Abertura (mm)	Pesox Retenido (gr)	% Parcial Retenido	% Acumulado Retenido	% Acumulado que pasa	Especificaciones	Descripcion d	e la Muestra
4"	100.000							
3"	75.000						Peso Inicial	670.5
2 1/2"	62.500							
2"	50.800							
1 1/2"	37.500						Limite Liquido	N.P.
1"	25.000							
3/4"	19.000						Limite Plastico	N.P.
1/2"	12.500							
3/8"	9.500						Indice Plasticidad	N.P.
1/4"	6.250							
Nº4	4.750						Clas. SUCS	S.P.
Nº8	2.360							
Na10	2.000				100.0		Clas. AASHTO	A-3 (0)
Nº16	1.100	1.3	0.2	0.2	99.8			
N ^a 20	0.850	2.7	0.4	0.6	99.4			
Nº30	0.600	14.8	2.2	2.8	97.2		Cont. Humedad	3.9
Nº40	0.425	95.2	14.2	17.0	83.0		% de Ag	regados
Na50	0.300	53.0	7.9	24.9	75.1			
Na60	0.250	207.2	30.9	55.8	44.2		% Grava	0.0
Nº80	0.200	177.0	26.4	82.2	17.8			
Nº100	0.150	65.0	9.7	91.9	8.1		% Arena	97.5
Nº200	0.075	37.5	5.6	97.5	2.5			
<na200< td=""><td></td><td>16.8</td><td>2.5</td><td>100.0</td><td></td><td></td><td>% Fina</td><td>2.5</td></na200<>		16.8	2.5	100.0			% Fina	2.5
		00 08	2 40	16	0 ° 8 ° 6	/4"	/4" 1" 2"	3,1%
100		¥		11	Z Z Z	Ĭ Î		100
								90 80
80								1 20 3
£ 60								70 GG 26 GO 27 GG
50 50								50 5
¥ 40 ===			1					40 \$
30								40 F
ž 30 🔚								30 }
			9					
10								10
0 AB	ERTURA MALLA (mn	0,074	0,297	0,840	2,380 2,380 3,360 4,760	6,350	19,05 0 25,400 38,10 0	76,20

Tabla 14. Análisis granulométrico C-3 Elaborado por: los autores

Cliente:	FREDDY SHAON LIN DIESTRA	DE LA CRUZ		Certificado Nª:	2018175430006
Proyecto:	INFLUENCIA DE LA MALLA DE DEL PAVIMENTO FLEXIBLE EN		COSTO EN LA REHABILITACION CALLAO	Expediente Na:	0591B-2018
Atencion:	FREDDY SHAON LIN DIESTRA	DE LA CRUZ		Fecha de Muestreo:	10 de noviembre 2018
Procedencia:	AV. 200 VENTANILLA			Fecha de Ensayo:	10 de noviembre 2018
Ubic. De Muestreo:	CALICATA 3 - Prof. 1.5 m			Clase de Material:	PROPIO
			LIMITE LIQUIDO		
Prueba Nª		1	2	3	4
Recipiente Nª					
Nº de golpes					
Recipiente + Sue	lo Humedo		NO PRESENTA		
Recipiente + Sue		-	PRESE		
Peso del Agua (g			MO,		
Peso de Recipier					
Peso de Suelo Se					
% de Humedad	1907	1			
			LIMITE PLASTICO		
Prueba Nª		1	2	3	4
Recipiente Nº				h	
Nº de golpes					
Recipiente + Sue	lo Humedo		NO PRESENTA		
Recipiente + Sue			RESERVI	1	
Peso del Agua (g	80		NOVI		6
Peso de Recipier	389				
Peso de Suelo Se	8200 2006-002900				
% de Humedad	30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				
		H	JMEDAD NATURAL		
Recipiente Na		1	2	3	4
Recipiente + Sue	lo Humedo	670.5			
Recipiente + Sue		645.6			
Peso del Agua (g		24.9			
Peso de Recipier	***	0.0			
Peso de Suelo Se	94415745	645.6			
% de Humedad		3.9	1		
		DIAGRAM	A DE FLUIDEZ	•	LIMITE LIQUIDO
					N.P.
					LIMITE PLASTICO
					N.P. INDICE DE PLASTICID
					N.P.
10		25		100	HUMEDAD NATURA
10		N	de golpes!	100	3.9

Tabla 15. Límites de consistencia C-3 Elaborado por: los autores

CLIENTE	FREDDY SHAON LIN DIESTRA DE LA CRUZ
PROYECTO	INFLUENCIA DE LA MALLA DE ACERO PARA REDUCIR EL COSTO EN LA REHABILITACION DEL PAVIMENTO FLEXIBLE EN LA AV. 200. VENTANILLA - CALLAO
UBICACION	AAHH PACHACUTEC AV. 200 VENTANILLA

METODO DE EXCAVACION	MANUAL			TEC. RESPONSABLE	TEC. G. Zambrano
UBICACION	AV. 200 - VENTANILLA			ING. RESPONSABLE	Carlos A. Ortiz Ramirez
PROGRESIVA	- LADO -		(e)	CERTIFICADO Nª	2018175430023
CALICATA	C-03	C-03 PROF. (m) 1.50		HOJA	01-01 M.V.
N.F. (m)	1152	OPERARO	TEC. I	FECHA DE EXCAVACION	10 de noviembre del 2018

Prof. (m)	Muestra	Descripcion	SUCS	PERFIL
1.50	MI-01	Presenta una arena mal gradada, compacidad media, baja humedad, color beige claro.	SP	

Tabla 16. Registro de perfil de suelos C-3 Elaborado por: los autores

		ANALISIS	GRANULOMETRIC	DE LOS SUELOS	POR TAMIZADO	ASTM D 422		
Cliente:	FREDDY SHAON I	LIN DIESTRA DE LA	A CRUZ		Cert	ificado Nª:	2018175430007	
Proyecto:		DEL PAVIMENTO F	O PARA REDUCIR I LEXIBLE EN LA AV		Ехр	ediente Nª:	0591B-2018	
Atencion:	FREDDY SHAON L	IN DIESTRA DE LA	CRUZ	Fed	na de Muestreo:	10 de noviembre 2	018	
Procedencia:	AV. 200 VENTANIL	LA			Fed	na de Ensayo:	10 de noviembre 2	018
Ubic. De Muestreo:	CALICATA 4 - Prof.	. 1.5 m			Clas	e de Material:	PROPIO	
Tamiz	Abertura (mm)	Pesox Retenido (gr)	% Parcial Retenido	% Acumulado Retenido	% Acumulado que pasa	Especificaciones	Descripcion	de la Muestra
4"	100.000							
3"	75.000						Peso Inicial	730.8
2 1/2"	62.500							
2"	50.800							
1 1/2"	37.500						Limite Liquido	N.P.
1"	25.000							
3/4"	19.000						Limite Plastico	N.P.
1/2"	12.500							
3/8"	9.500		(Indice Plasticidad	N.P.
1/4"	6.250							
Nª4	4.750						Clas. SUCS	S.P.
Nª8	2.360							
Nª10	2.000				100.0		Clas. AASHTO	A-3 (0)
Nª16	1.100	5.1	0.7	0.7	99.3			
Nª20	0.850	5.1	0.7	1.4	98.6			
Nª30	0.600	51.2	7.0	8.4	91.6		Cont. Humedad	2.1
N ⁸ 40	0.425	55.5	7.6	16.0	84.0		% de Aç	gregados
Nº50	0.300	125.7	17.2	33.2	66.8			2
Nª60	0.250	120.6	16.5	49.7	50.3	1	% Grava	0.0
Nº80	0.200	215.6	29.5	79.2	20.8			
Nº100	0.150	82.6	11.3	90.5	9.5		% Arena	97.4
Na200	0.075	50.4	6.9	97.4	2.6		AND VILVE TOUR	Assertion .
<na200< td=""><td></td><td>19.0</td><td>2.6</td><td>100.0</td><td></td><td></td><td>% Fina</td><td>2.6</td></na200<>		19.0	2.6	100.0			% Fina	2.6
100	'	500	9 9	30	0 8 9 4	3/8"	2,1	U 6 100
90		1 1			* 1			90
80								80
70								70
			Ä					60
50			4					50
40								40
30								30
50 40 30 20								20
10		\rightarrow						10
0	Dispulse to the Alpha Later Con.	450	28 82	8 4 8	8 8 9 9	9,525	60 4 6 8	0
ABER	RTURA MALLA (mm)	0,074	0,297	0.590	2,380 2,380 3,360 4,760	6,350 9,525 12,70	19,05 25,40 38,10 50,80	63,50

Tabla 17. Análisis granulométrico C-4 Elaborado por: los autores

Cliente:	FREDDY SHAON LIN DIESTRA	DE LA CRUZ		Certificado Nª:	2018175430008
Proyecto:	INFLUENCIA DE LA MALLA DE DEL PAVIMENTO FLEXIBLE EN			Expediente Na:	0591B-2018
Atencion:	FREDDY SHAON LIN DIESTRA	DE LA CRUZ		Fecha de Muestreo:	10 de noviembre 2018
Procedencia:	AV. 200 VENTANILLA			Fecha de Ensayo:	10 de noviembre 2018
Ubic. De Muestreo:	CALICATA 4 - Prof. 1.5 m			Clase de Material:	PROPIO
		LI	MITE LIQUIDO	_	
Prueba Nª		1	2	3	4
Recipiente Nª					
Nº de golpes		(A)	1		
Recipiente + Sue	lo Humedo		NO PRESENTA	1	
Recipiente + Sue		1	PRESE		
Peso del Agua (g			NO.		
Peso de Recipien	130				
Peso de Suelo Se	7 25 86				
% de Humedad	(31)				
		LIN	MITE PLASTICO	1	
Prueba Nª		1	2	3	4
Recipiente Nª				h	
№ de golpes		3 -			
Recipiente + Sue	lo Humedo		NO PRESENTA		
Recipiente + Sue			PESENI	1	
Peso del Agua (g			NOPRE		
Peso de Recipien					
Peso de Suelo Se	3. AM 86		1		
% de Humedad	(9.7)				
70 de Francead		HUM	EDAD NATURAL		
Recipiente Nª		1	2	3	4
Recipiente + Sue	lo Humedo	730.8	1000		
Recipiente + Sue	\$ 103	715.9			
Peso del Agua (g		14.9			
Peso de Recipien	SAO	0.0			
Peso de Suelo Se		715.9			
% de Humedad	13'/	2.1			
		DIAGRAMA	DE FLUIDEZ	1	LIMITE LIQUIDO
					N.P.
					LIMITE PLASTICO
					N.P. INDICE DE PLASTICID
					N.P.
10		25		100	HUMEDAD NATURA
10		Nª d	e golpes	100	2.1

Tabla 18. Límites de consistencia C-4 Elaborado por: los autores

CLIENTE	FREDDY SHAON LIN DIESTRA DE LA CRUZ
PROYECTO	INFLUENCIA DE LA MALLA DE ACERO PARA REDUCIR EL COSTO EN LA REHABILITACION DEL PAVIMENTO FLEXIBLE EN LA AV. 200. VENTANILLA - CALLAO
UBICACION	AAHH PACHACUTEC AV. 200 VENTANILLA

METODO DE EXCAVACION		MANUAL		TEC. RESPONSABLE	TEC. G. Zambrano
UBICACION	AV. 200 - VENTANILLA			ING. RESPONSABLE	Carlos A. Ortiz Ramirez
PROGRESIVA	- LADO -		151	CERTIFICADO Nª	2018175430024
CALICATA	C-04	PROF. (m)	1.50	HOJA	01-01 M.V.
N.F. (m)	020	OPERARO	TEC.	FECHA DE EXCAVACION	10 de noviembre del 2018

Prof. (m)	Muestra	Descripcion	SUCS	PERFIL
1.50	M-01	Presenta una arena mal gradada, compacidad media, baja humedad, color beige claro.	SP	

Tabla 19. Registro de perfil de suelos C-4 Elaborado por: los autores

Maria St		ANALISIS	GRANULUMETRIC	O DE LOS SUELOS	FOR TAMIZADO	ASIM D 4ZZ		
Cliente:	FREDDY SHAON I				Cert	ificado Nª:	2018175430009	
Proyecto:		DEL PAVIMENTO F	O PARA REDUCIR ELEXIBLE EN LA AV		Ехр	ediente Nª:	0591B-2018	
Atencion:	FREDDY SHAON L	.IN DIESTRA DE LA	CRUZ		Fed	na de Muestreo:	10 de noviembre 2	018
Procedencia:	AV. 200 VENTANIL	LA			Fed	na de Ensayo:	10 de noviembre 2	018
Ubic. De Muestreo:	CALICATA 5 - Prof.	1.5 m				se de Material:	PROPIO	
Tamiz	Abertura (mm)	Pesox Retenido (gr)	% Parcial Retenido	% Acumulado Retenido	% Acumulado que pasa	Especificaciones	Descripcion	de la Muestra
4"	100.000							
3"	75.000						Peso Inicial	709.9
2 1/2"	62.500							P
2"	50.800							
1 1/2"	37.500						Limite Liquido	N.P.
1"	25.000							
3/4"	19.000						Limite Plastico	N.P.
1/2"	12.500							
3/8"	9.500						Indice Plasticidad	N.P.
1/4"	6.250							
Nª4	4.750						Clas. SUCS	S.P.
Na8	2.360							
Nª10	2.000				100.0		Clas. AASHTO	A-3 (0)
Nº16	1.100	2.8	0.4	0.4	99.6			
Nª20	0.850	4.3	0.6	1.0	99.0			
Nª30	0.600	44.0	6.2	7.2	92.8		Cont. Humedad	2.7
Nº40	0.425	51.8	7.3	14.5	85.5		% de Ag	regados
Nª50	0.300	91.6	12.9	27.4	72.6			
Nª60	0.250	189.6	26.7	54.1	45.9		% Grava	0.0
Nº80	0.200	194.5	27.4	81.5	18.5			
Nº100	0.150	61.8	8.7	90.2	9.8		% Arena	97.6
Nº200	0.075	52.5	7.4	97.6	2.4			
<na200< td=""><td></td><td>17.0</td><td>2.4</td><td>100.0</td><td></td><td></td><td>% Fina</td><td>2.4</td></na200<>		17.0	2.4	100.0			% Fina	2.4
00		200	05 04	20 20	0 8 8 4	3/8"	1/2"	1 3 1
90		Ť						9
80								8
70								7
60								6
50								50
40								41
30								31
60 50 40 30 20			<i>b</i>					2
(9)/(1
0	TUDA 1141 : 1 /	0.074	0.297	0.590	2.380	6,350	19,05	76.20
ABER Observaciones	TURA MALLA (mm)	0 00	0 0	0 0 +	4 in in 4	9 . 6.	16 22 38 38 50	78

Tabla 20. Análisis granulométrico C-5 Elaborado por: los autores

	FREDDY SHAON LIN DIESTRA	DE LA CRUZ		Certificado Nº:	2018175430010
Proyecto:	INFLUENCIA DE LA MALLA DE DEL PAVIMENTO FLEXIBLE EN		OSTO EN LA REHABILITACION ALLAO	Expediente Na:	0591B-2018
Atencion:	FREDDY SHAON LIN DIESTRA	DE LA CRUZ		Fecha de Muestreo:	10 de noviembre 2018
Procedencia:	AV. 200 VENTANILLA			Fecha de Ensayo:	10 de noviembre 2018
Ubic. De Muestreo:	CALICATA 5 - Prof. 1.5 m			Clase de Material:	PROPIO
		Li	MITE LIQUIDO		
Prueba Nª		1	2	3	4
Recipiente Nª					
№ de golpes			1		
Recipiente + Suel	lo Humedo		CENTA		
Recipiente + Suel	lo Seco		OPRES		
Peso del Agua (g	2000 (NO PRESENTA		
Peso de Recipien	ite				
Peso de Suelo Se	AND				
% de Humedad	000 00 10 0				
		LII	MITE PLASTICO	1	
Prueba Nª		1	2	3	4
Recipiente Nª				h	
Nº de golpes					
Recipiente + Suel	lo Humedo		NO PRESENTA		
Recipiente + Suel	lo Seco		RESERVI	1	
Peso del Agua (g	27		NOVI		
Peso de Recipien					
Peso de Suelo Se					
% de Humedad	SN(0) 2 (6)				
		HUN	IEDAD NATURAL		
Recipiente Nº		1	2	3	4
Recipiente + Suel	lo Humedo	709.9			
Recipiente + Suel		691.1			
Peso del Agua (g		18.8			
Peso de Recipien	***	0.0			
Peso de Suelo Se	1 28 22	691.1			
% de Humedad		2.7			
		DIAGRAMA	DE FLUIDEZ		LIMITE LIQUIDO
					N.P.
					LIMITE PLASTICO
-					N.P. INDICE DE PLASTICIE
					N.P.
10		25	e golpes	100	HUMEDAD NATURA

Tabla 21. Límites de consistencia C-5 Elaborado por: los autores

CLIENTE	FREDDY SHAON LIN DIESTRA DE LA CRUZ
PROYECTO	INFLUENCIA DE LA MALLA DE ACERO PARA REDUCIR EL COSTO EN LA REHABILITACION DEL PAVIMENTO FLEXIBLE EN LA AV. 200. VENTANILLA - CALLAO
UBICACION	AAHH PACHACUTEC AV. 200 VENTANILLA

METODO DE EXCAVACION		MANUAL	į	TEC. RESPONSABLE	TEC. G. Zambrano
UBICACION	AV.	200 - V ENT /	ANILLA	ING. RESPONSABLE	Carlos A. Ortiz Ramirez
PROGRESIVA	101	LADO	1.51	CERTIFICADO Nª	2018175430025
CALICATA	C-05	PROF. (m)	1.50	HOJA	01-01 M.V.
N.F. (m)	2:	OPERAR	TEC. I	FECHA DE EXCAVACION	10 de noviembre del 2018

Prof. (m)	Muestra	Descripcion	SUCS	PERFIL
1.50	M-01	Presenta una arena mal gradada, compacidad media, baja humedad, color beige claro.	SP	

Tabla 22. Registro de perfil de suelos C-5 Elaborado por: los autores

4" 100.000 Retenido que pasa 3" 75.000 Peso Inicial 2 1/2" 62.500 Limite Capable 2" 50.800 Limite Liquido 1" 25.000 Limite Plastico 3/4" 19.000 Limite Plastico 1/2" 12.500 Indice Plasticidad 3/8" 9.500 Indice Plasticidad 1/4" 6.250 Indice Plasticidad NP4 4.750 100.0 Clas. SUCS NP8 2.360 1.1 0.2 0.2 99.8 NP10 2.000 0.5 0.1 0.3 99.7 Clas. AASHTO NP16 1.100 1.6 0.3 0.5 99.5 Ont. Humedad NP20 0.850 0.6 0.1 0.6 99.4 Ont. Humedad	
Proyecto: REHABILITACION DEL PAVIMENTO FLEXIBLE EN LA AV. 200. Expediente №: 0531B-2018	2018
Procedencia: AV 200 VENTANILLA	2018
Calicate Calicate	80 C 20 C C C C C C C C C C C C C C C C C
Tamiz	ı de la Muestra
Tamiz Abertura (mm) Retenido (gr) Parcial Retenido Acumulado Retenido Especificaciones Descripcior 4" 100.000 Peso Inicial Peso Inicial Peso Inicial 2 1/2" 62.500 Image: Control of the parcial (parcial parcial	ı de la Muestra
4" 100,000 Peso Inicial 3" 75,000 Peso Inicial 2 1/2" 62,500 Image: Control of the period of	
2 1/2" 62.500 Limite Liquido 2" 50.800 Limite Liquido 1" 25.000 Limite Plastico 3/4" 19.000 Limite Plastico 1/2" 12.500 Indice Plasticidad 3/8" 9.500 Indice Plasticidad 1/4" 6.250 Clas. SUCS N*8 2.360 1.1 0.2 0.2 99.8 N*10 2.000 0.5 0.1 0.3 99.7 Clas. AASHTO N*16 1.100 1.6 0.3 0.5 99.5 1.1 98.9 Cont. Humedad N*20 0.850 0.6 0.1 0.6 99.4 1.1 98.9 Cont. Humedad N*40 0.425 63.2 9.9 11.0 89.0 % de A N*50 0.300 76.4 12.0 23.1 77.0 % Grava	
2" 50.800 Limite Liquido 1 1/2" 37.500 Limite Liquido 1" 25.000 Limite Plastico 1/2" 12.500 Indice Plasticidad 1/4" 6.250 N*4 4.750 Indice Plasticidad 1/4" 6.250 N*8 2.360 1.1 0.2 0.2 99.8 N*10 2.000 0.5 0.1 0.3 99.7 Clas. AASHTO N*16 1.100 1.6 0.3 0.5 99.5 N*20 0.850 0.6 0.1 0.6 99.4 N*30 0.600 2.9 0.5 1.1 98.9 Cont. Humedad N*40 0.425 63.2 9.9 11.0 89.0 % de A N*50 0.300 76.4 12.0 23.1 77.0 N*60 0.250 90.5 14.2 37.3 62.7 % Grava	635.2
1 1/2" 37.500 Limite Liquido 1" 25.000 Limite Plastico 3/4" 19.000 Limite Plastico 1/2" 12.500 Indice Plasticidad 3/8" 9.500 Indice Plasticidad 1/4" 6.250 Clas. SUCS N®8 2.360 1.1 0.2 0.2 99.8 N№10 2.000 0.5 0.1 0.3 99.7 Clas. AASHTO N№16 1.100 1.6 0.3 0.5 99.5 N№20 0.850 0.6 0.1 0.6 99.4 N№30 0.600 2.9 0.5 1.1 98.9 Cont. Humedad N№40 0.425 63.2 9.9 11.0 89.0 % de A N№50 0.300 76.4 12.0 23.1 77.0 % Grava	
1" 25.000 Limite Plastico 3/4" 19.000 Indice Plasticidad 1/2" 12.500 Indice Plasticidad 3/8" 9.500 Indice Plasticidad 1/4" 6.250 Clas. SUCS Nº4 4.750 100.0 Clas. SUCS Nº8 2.360 1.1 0.2 0.2 99.8 Nº10 2.000 0.5 0.1 0.3 99.7 Clas. AASHTO Nº16 1.100 1.6 0.3 0.5 99.5 0.5 0.1 0.6 99.4 0.6 0.1 0.6 99.4 0.6 0.1 0.6 99.4 0.6 0.1 0.6 99.4 0.6 0.1 0.6 99.4 0.6 0.1 0.6 99.4 0.6 0.1 0.6 99.4 0.6 0.1 0.6 99.4 0.6 0.1 0.6 99.4 0.6 0.1 0.6 99.4 0.6 0.1 0.6 0.1 0.6 0.1 0.6 0.1 0.6 0.1 0.6 0.1 0.6 0.2	
3/4" 19.000 Limite Plastico 1/2" 12.500 Indice Plasticidad 3/8" 9.500 Indice Plasticidad 1/4" 6.250 Clas. SUCS Nº4 4.750 100.0 Clas. SUCS Nº8 2.360 1.1 0.2 0.2 99.8 Nº10 2.000 0.5 0.1 0.3 99.7 Clas. AASHTO Nº16 1.100 1.6 0.3 0.5 99.5 Clas. AASHTO Nº20 0.850 0.6 0.1 0.6 99.4 Cont. Humedad Nº40 0.425 63.2 9.9 11.0 89.0 % de A Nº50 0.300 76.4 12.0 23.1 77.0 % Grava	N.P.
1/2" 12.500 Indice Plasticidad 3/8" 9.500 Indice Plasticidad 1/4" 6.250 Indice Plasticidad Nº4 4.750 100.0 Clas. SUCS Nº8 2.360 1.1 0.2 0.2 99.8 Nº10 2.000 0.5 0.1 0.3 99.7 Clas. AASHTO Nº16 1.100 1.6 0.3 0.5 99.5 1.1 Nº20 0.850 0.6 0.1 0.6 99.4 1.1 98.9 Cont. Humedad Nº40 0.425 63.2 9.9 11.0 89.0 % de A Nº50 0.300 76.4 12.0 23.1 77.0 % Grava	
3/8" 9,500 Indice Plasticidad 1/4" 6,250 100,0 Clas. SUCS Nº4 4,750 100,0 Clas. SUCS Nº8 2,360 1,1 0,2 0,2 99,8 Nº10 2,000 0,5 0,1 0,3 99,7 Clas. AASHTO Nº16 1,100 1,6 0,3 0,5 99,5 99,5 Nº20 0,850 0,6 0,1 0,6 99,4 99,4 N№30 0,600 2,9 0,5 1,1 98,9 Cont. Humedad N№40 0,425 63,2 9,9 11,0 89,0 % de A N№50 0,300 76,4 12,0 23,1 77,0 77,0 N№60 0,250 90,5 14,2 37,3 62,7 % Grava	N.P.
1/4" 6.250 100.0 Clas. SUCS N*4 4.750 100.0 Clas. SUCS N*8 2.360 1.1 0.2 0.2 99.8 N*10 2.000 0.5 0.1 0.3 99.7 Clas. AASHTO N*16 1.100 1.6 0.3 0.5 99.5 N*20 0.850 0.6 0.1 0.6 99.4 N*30 0.600 2.9 0.5 1.1 98.9 Cont. Humedad N*40 0.425 63.2 9.9 11.0 89.0 % de A N*50 0.300 76.4 12.0 23.1 77.0 N*60 0.250 90.5 14.2 37.3 62.7 % Grava	
Nº4 4.750 100.0 Clas. SUCS Nº8 2.360 1.1 0.2 0.2 99.8 Nº10 2.000 0.5 0.1 0.3 99.7 Clas. AASHTO Nº16 1.100 1.6 0.3 0.5 99.5 Nº20 0.850 0.6 0.1 0.6 99.4 Nº30 0.600 2.9 0.5 1.1 98.9 Cont. Humedad Nº40 0.425 63.2 9.9 11.0 89.0 % de A Nº50 0.300 76.4 12.0 23.1 77.0 Nº60 0.250 90.5 14.2 37.3 62.7 % Grava	N.P.
N°8 2.360 1.1 0.2 0.2 99.8 N°10 2.000 0.5 0.1 0.3 99.7 Clas. AASHTO N°16 1.100 1.6 0.3 0.5 99.5 N°20 0.850 0.6 0.1 0.6 99.4 N°30 0.600 2.9 0.5 1.1 98.9 Cont. Humedad N°40 0.425 63.2 9.9 11.0 89.0 % de A N°50 0.300 76.4 12.0 23.1 77.0 N°60 0.250 90.5 14.2 37.3 62.7 % Grava	33
N⁴10 2.000 0.5 0.1 0.3 99.7 Clas. AASHTO N⁴16 1.100 1.6 0.3 0.5 99.5 N⁴20 0.850 0.6 0.1 0.6 99.4 N⁴30 0.600 2.9 0.5 1.1 98.9 Cont. Humedad N⁴40 0.425 63.2 9.9 11.0 89.0 % de A N⁴50 0.300 76.4 12.0 23.1 77.0 77.0 N⁴60 0.250 90.5 14.2 37.3 62.7 % Grava	S.P.
Nº16 1.100 1.6 0.3 0.5 99.5 Nº20 0.850 0.6 0.1 0.6 99.4 Nº30 0.600 2.9 0.5 1.1 98.9 Cont. Humedad Nº40 0.425 63.2 9.9 11.0 89.0 % de A Nº50 0.300 76.4 12.0 23.1 77.0 Nº60 0.250 90.5 14.2 37.3 62.7 % Grava	
№20 0.850 0.6 0.1 0.6 99.4 №30 0.600 2.9 0.5 1.1 98.9 Cont. Humedad №40 0.425 63.2 9.9 11.0 89.0 % de A №50 0.300 76.4 12.0 23.1 77.0 77.0 №60 0.250 90.5 14.2 37.3 62.7 % Grava	A-3 (0)
N⁴30 0.600 2.9 0.5 1.1 98.9 Cont. Humedad N⁴40 0.425 63.2 9.9 11.0 89.0 % de A N⁴50 0.300 76.4 12.0 23.1 77.0 77.0 N⁴60 0.250 90.5 14.2 37.3 62.7 % Grava	
№40 0.425 63.2 9.9 11.0 89.0 % de A №50 0.300 76.4 12.0 23.1 77.0 №60 0.250 90.5 14.2 37.3 62.7 % Grava	
Nº50 0.300 76.4 12.0 23.1 77.0 Nº60 0.250 90.5 14.2 37.3 62.7 % Grava	1.6
Nº60 0.250 90.5 14.2 37.3 62.7 % Grava	Agregados
98-94/C (1992-)	
Nº80 0.200 256.5 40.4 77.7 22.3	0.0
	3,000
№100 0.150 36.5 5.7 83.4 16.6 % Arena	97.3
Na200 0.075 88.4 13.9 97.4 2.7	
<n®200 %="" 100.0="" 17.0="" 2.7="" fina<="" td=""><td>2.7</td></n®200>	2.7
100	N & N
90	90
80	80
70	70
£70	1000
	50
	50
	40
	60 50 40 30 20
\$ 60 \$ 60 \$ 60 \$ 60 \$ 60 \$ 60 \$ 60 \$ 60	20
ABERTURA MALLA (mm) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	63.50
100 N N N N N N N N N N N N N N N N N N	0 0 5
Observaciones:	

Tabla 23. Análisis granulométrico C-6 Elaborado por: los autores

Cliente:	FREDDY SHAON LIN DIESTRA	DE LA CRUZ		Certificado Nª:	2018175430012
Proyecto:	INFLUENCIA DE LA MALLA DE DEL PAVIMENTO FLEXIBLE EN		COSTO EN LA REHABILITACION CALLAO	Expediente Na:	0591B-2018
Atencion:	FREDDY SHAON LIN DIESTRA	DE LA CRUZ		Fecha de Muestreo:	10 de noviembre 2018
Procedencia:	AV. 200 VENTANILLA			Fecha de Ensayo:	10 de noviembre 2018
Ubic. De Muestreo:	CALICATA 6 - Prof. 1.5 m			Clase de Material:	PROPIO
		ı	IMITE LIQUIDO		
Prueba Nª		1	2	3	4
Recipiente Nª					
№ de golpes			1		
Recipiente + Suel	lo Humedo		NO PRESENTA		
Recipiente + Suel			PRESE		
Peso del Agua (g			NO		
Peso de Recipien	601				
Peso de Suelo Se					
% de Humedad	13-7				
		U	MITE PLASTICO	1	NA.
Prueba Nª		1	2	3	4
Recipiente Nº				h	
№ de golpes					
Recipiente + Suel	lo Humedo		NO PRESENTA		
Recipiente + Suel	(10)	8 0	PESEN	1	
Peso del Agua (g			NOPRE		
Peso de Recipien	601				
Peso de Suelo Se					
% de Humedad	(91)				
70 de Humedad		L	MEDAD NATURAL	-	\
Recipiente Nº		1 1	WEDAD NATORAL 2	3	4
Recipiente + Suel	lo Humedo	635.2	-	1	<u> </u>
Recipiente + Suel		625.0			+
Peso del Agua (g	VALUE VALUE	10.2			+
Peso de Recipien	50	0.0			
Peso de Suelo Se		625.0			
% de Humedad	200 (At)	1.6			
		V8847	A DE FLUIDEZ		LIMITE LIQUIDO
		2.7101011417	1 1		N.P.
					LIMITE PLASTICO
					N.P.
					INDICE DE PLASTICIO
		25			HUMEDAD NATURA
10		25 Nª (de golpes	100	1.6

Tabla 24. Límites de consistencia C-6 Elaborado por: los autores

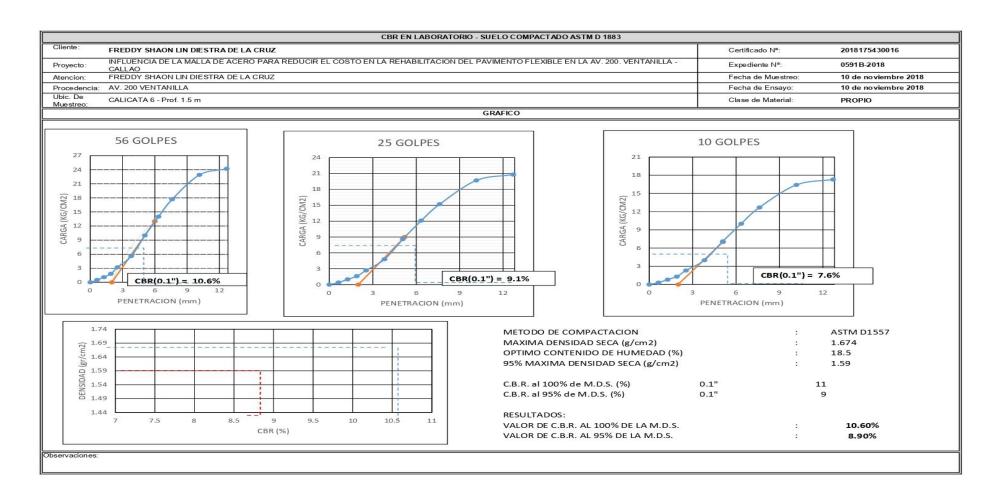
CLIENTE	FREDDY SHAON LIN DIESTRA DE LA CRUZ
PROYECTO	INFLUENCIA DE LA MALLA DE ACERO PARA REDUCIR EL COSTO EN LA REHABILITACION DEL PAVIMENTO FLEXIBLE EN LA AV. 200. VENTANILLA - CALLAO
UBICACION	AAHH PACHACUTEC AV. 200 VENTANILLA

METODO DE EXCAVACION		MANUAL		TEC. RESPONSABLE	TEC. G. Zambrano
UBICACION	AV.	200 - VENT	ANILLA	ING. RESPONSABLE	Carlos A. Ortiz Ramirez
PROGRESIVA	夏	LADO	.E.	CERTIFICADO Nª	2018 175430026
CALICATA	C-06	PROF. (m)	1.50	HOJA	01-01 M.V.
N.F. (m)	101	OPERAR	TEC.	FECHA DE EXCAVACION	10 de noviembre del 2018

Prof. (m)	Muestra	Descripcion	SUCS	PERFIL
1.50	MI-01	Presenta una arena mal gradada, compacidad media, baja humedad, color beige claro.	SP	

Tabla 25. Registro de perfil de suelos C-6 Elaborado por: los autores

bic. De CALICATA 6. Prof. 1.5 m
cocedencia: AV. 200 VENTANILLA Fecha de Ensayo: 10 de noviembre 20 juestreo: Calace de Material: PROPIO CONTENIDO DE SALES SOLUBLES TOTALES 0.747
bic. De Luestreo: CALICATA 6 - Prof. 1.5 m Clase de Material: PROPIO CONTENIDO DE SALES SOLUBLES TOTALES 0.747
CONTENIDO DE SALES SOLUBLES TOTALES 0.747
NUMERO DE BEAKER 16.00
NUMERO DE BEAKER 16.00
RELACION DE MEZCLA SUELO - AGUA DESTILADA 1 : 3
PESO DEL BEAKER+RESIDUOS DE SALES (g) 113.25
PESO DEL BEAKER (g) 100.4199
PESO DE RESIDUOS DE SALES (g) 0.2491
VOLUMEN DE SOLUCION TOMADA 100
CONTENIDO DE SALES SOLUBLES TOTALES (ppm) 7473
CONTENIDO DE SALES SOLUBLES TOTALES (%) 0.747


Tabla 26. Contenido de sales solubles C-6 Elaborado por: los autores

ente:	FREDDY SHAON LIN DIESTI	RA DE LA CRUZ	Certificado Na:	2018175430014		
oyecto:		DE ACERO PARA REDUCIR EL COS EN LA AV. 200. VENTANILLA - CAL	Expediente Na:	0591B-2018		
encion:	FREDDY SHAON LIN DIESTR	RA DE LA CRUZ	Fecha de Muestreo:	10 de noviembre 2018		
ocedencia:	AV. 200 VENTANILLA		Fecha de Ensayo:	10 de noviembre 2018		
oic. De uestreo:	CALICATA 6 - Prof. 1.5 m		Clase de Material:	PROPIO		
		COMPAC	TACION	The state of the s		
RUEBA Nª		1	2	3	4	
DE CAPAS		5	5	5	5	
DE GOLPES POR CA	PA	56	56	56	56	
SO DEL MOLDE + SU	ELO COMPACTADO (gr)	9908	10122	10256	10220	
SO DEL MOLDE (gr)		6035	6035	6035	6035	
SO DEL SUELO COM	PACTADO (gr)	3873	4087	4221	4185	
LUMEN DEL MOLDE (N 888	2123	2123	2123	2123	
NSIDAD HUMEDA (gr/	V (2)	1.824	1.925	1.988	1.971	
		CONTENIDO D	E HUMEDAD		_	
RA Nª		1	2	3	4	
RA+SUELO HUMEDO	(gr)	623.5	511.4	569.4	667.2	
RA + SUELO SECO (g		543.1	438.2	479.3	553.2	
SO DE AGUA (gr)		80.4	73.2	90.1	114	
SO DE TARA (gr)		0	0	0	0	
SO DE SUELO SECO	(gr)	543.1	438.2	479.3	553.2	
ONTENIDO DE HUMED		14.8	16.7	18.8	20.6	
ENSIDAD SECA (gr/cm3		1.589	1.650	1.674	1.634	
1.680 1.670 1.660 1.650 1.650 1.630 1.630 1.620 1.620 1.610		CURVA DENSIDAD S	ECA vs HUMEDA			
1.590	/			MDS - 1.674 - OCH - 18.5 -		
1.580	14.0 15.0	16.0 17.0 HUM	18.0 19 EDAD (%)	9.0 20.0	21.0 22.0	

Tabla 27. Compactación de suelos C-6 Elaborado por: los autores

				CBR E	N LABORAT	ORIO -	- SUELO COM	PACTADO ASTI	M D 1883					
Cliente:	FREDDY SHAO	SHAON LIN DIESTRA DE LA CRUZ								Certificado Nª:		2018175430015		
Proyecto:	INFLUENCIA DE VENTANILLA - (E LA MALLA DE ACERO PARA REDUCIR EL COSTO EN LA REHABILITACIÓN DEL PAVIMENTO FLEXIBLE EN LA AV. 200. CALLAO								Expediente Na:		0591B-2018		
Atencion:	FREDDY SHAO	SHAON LIN DIESTRA DE LA CRUZ								Fecha de Muestreo:		10 de noviembre 2018		
Procedencia:	AV. 200 VENTA	V. 200 VENTANILIA									Fecha de Ensayo:		10 de noviembre 2018	
Ubic. De		100 G G G G											ppopio	
Muestreo:	CALICATA 6 - P	rot. 1.5 m									(Clase de Material:	PROPIO	
				10		C	OMPACTACIO		_		1			
IOLDE Nº		1							2			3	000	
APAS Nº				5		+	5				5			
GOLPES POR CAPA N°			56		4	25			10					
CONDICION DE LA MUESTR	A	0.000000	TURADO	SATURADO			NO SATURADO SATURADO		0000000	NO:	SATURADO	02503500	RADO	
PESO DE MOLDE + SUELO HUMEDO (g)		-249	11788		4	11305 11342			10872		10902			
PESO DE MOLDE (g)	5		422	7422			7150			7150		7077	7077	
PESO DEL SUELO HUMEDO (g)		330	4366			4155		4192		3795		3825		
OLUMEN DEL MOLDE (cm	3)	1.50	183	2183			2188		2186		2140		2140	
DENSIDAD HUMEDA (g/cm3)	1.	984	2	.000	4	1.3	901	1.	918		1.773	1.7	787
ARA (N°)														
PESO SUELO HUMEDO + TARA (g) 619.3			693.5		4	722.6 781.5			651.5		709.7			
FESO 30ELO 3EOO + IARA (g)		22.6	573.6			609.8 622.1			549.8		577.5			
PESO DE TARA (g)		5.1	34.2			36 33.1		7. To 1	32.8		34.5			
PESO DE AGUA (g)		6.7	119.9		1	112.8			139.4		101.7		132.2	
PESO DE SUELO SECO (g)		100	B7.5	539.4		_	573.8		589		517		543	
CONTENIDO DE HUMEDAD (%)		.84%	22.23%			19.			19.67%		24.35%			
DENSIDAD SECA (g/cm3)		1.	655	1	.636			588	1:	551		1.482	1.4	437
						_	EXPANSIVO							
FECHA	но	HORA TIEMP		D HORAS LECTURA DEL		DEL	EXPA mm	NSION %	LECTURA DEL DIAL	EXPA mm	NSION %	LECTURA DEL DIAL	EXPAI mm	NSION 9
11/11/2018	10:00	- I		0										
12/11/2018		a.m.	1	24				- 13 K NO. 15 1	N_					
13/11/2018	500.450			18			MO	5 00	DAM)	211/1/	0			
14/11/2018	100000	10:00 a.m.		72		-	100	15//\1		20.07				
15/11/2018		a.m.		98										
	10.00	r w.111.			1	P	PENETRACION							
	CARGA	MOLDE Nº 4 MOLDE Nº 2								MOLDE N° 3				
PENETRACION	ESTANDAR			CORRECCION			CARGA		CORRECCION		CARGA		CORRECCION	
Milimetros	KG/CM2	DIAL	kg/cm2	kg/cm2	%	\top	DIAL	kg/cm2	kg/cm2	%	DIAL	kg/cm2	kg/cm2	,
0.000		0	0.0	V-1/200043	10		0	0	Lateraphical Programme		0	0	sance Mark	
0.635		10	0.5			- 3	8	0.4			7	0.3		
1.270		40	1.1			1	20	1			17	0.8		
1.905		23	1.8			\top	33	1.6			27	1.3		
2.540	70.5	65	3.2	7.5	10.6		56	2.7	6.4	9.1	46	2.3	5.3	7.
3.810		115	5.6			1	99	4.8			82	4		
5.080	105.7	206	10.0				177	8.6			147	7.1		
6.350		289	14.0			\top	249	12.1			208	10		
7.620		365	17.7				314	15.2			261	12.7		
10.160		472	22.9				408	19.7			337	16.4		
	_	498	24.2		1	-	428	20.8			355	17.3		

Tabla 28. CBR en laboratorio C-6 Elaborado por: los autores

Tabla 29. CBR en laboratorio C-6 Elaborado por: los autores

b) Ensayo de gabinete

Despues de realizar y obtener información durante las actividades de campo y pruebas de laboratorio, para clasificar los suelos se uso el sistema AASHTO y SUCS y se obtuvo el correspondiente perfil estratigráfico. Así mismo, se calcularon y graficaron los resultados de las pruebas de Proctor y CBR efectuados.

CALICATA N°	C-1	C-2	C-3	C-4	C-5	C-6
Ret. N° 4	0	0	0	0	0	0
Pasa N° 200	2.9	3.2	2.5	2.6	2.4	2.7
Humedad	4.5	2.9	3.9	2.1	2.7	1.8
L. L.	N.	N.	N.	N.	N.	N.
I.P.	N.	N.	N.	N.	N.	N.
SALES	-	1.615	-	-	-	-
MDS	-	-	-	-	-	1.674
ОСН	-	-	-	-	-	18.3
% CBR al 100%	-	-	-	-	-	10.6
% CBR al 95%	-	-	-	-	-	8.9
SUCS	SP	SP	SP	SP	SP	SP

Tabla 30. Resultados de las calicatas Elaborado por: los autores

4.3 Resultado del análisis de tráfico

Al hacer el análisis de campo (conteo diario de tráfico) que se realizó en la Av. 200 por el transcurso de una semana, la cual se inició el día 04/10/2018 al 10/10/2018.

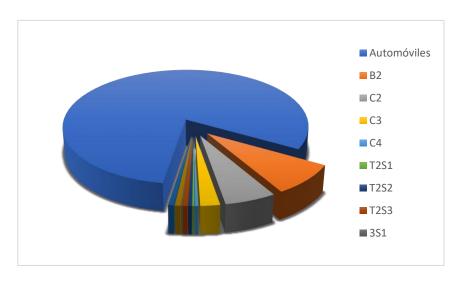
4.3.1 Índice medio diario semanal

El conteo de tráfico semanal, es la acumulación de datos del conteo diario de vehículos que pasan por la Av. 200.

Dia	Fecha	Número de vehículos
Jueves	04/10/2018	635
Viernes	05/10/2018	535
Sábado	06/10/2018	913
Domingo	07/10/2018	903
Lunes	08/10/2018	633
Martes	09/10/2018	534
Miércoles	10/10/2018	633
TC	TAL	4786
Prome	dio Total	684

Tabla 31. Índice medio diario semanal Elaborado por: los autores

4.3.2 Índice medio diario anual (IMDa)


Se obtiene a partir del IMDs la cual requiere de un factor de corrección (Fe).

IMDa=Fe%*IMDs+IMDs

Fórmula 4. Índice diario anual Fuente: Manual de Carreteras, Suelos, Geología, Geotecnia y Pavimentos del MTC, 2013

Configuración vehicular	Número de vehículos
Automóviles	624
B2	64
C2	45
C3	17
C4	3
T2S1	2
T2S2	3
T2S3	4
3S1	1
3S2	5
3S3	5
Total	773

Tabla 32. Índice medio diario anual Elaborado por: los autores

Figura 10. Grafica del índice medio diario anual Elaborado por: los autores

Del siguiente gráfico se puede sacar la siguiente conclusión, que los vehículos que tienen la mayor transitabilidad son los automóviles, seguido por los de tipo B2 y los de tipo C2, los restantes no son números significativos.

4.3.3 Cálculo de índice de crecimiento y proyección

El índice de crecimiento se calculó utilizando la siguiente fórmula de progresión geométrica.

$Tn=To(1+r)^{n-1}$

Fórmula 5. Calculo del índice de crecimiento y proyección Fuente: Manual de Carreteras, Suelos, Geología, Geotecnia y Pavimentos del MTC, 2013

Tasa anual de crecimiento del tránsito varían entre 2% y 6% = r

Número de años del periodo de diseño = n

Tránsito actual (año base o) en veh/día = To

Tránsito proyectado al año "n" en veh/día = Tn

Primero se obtuvo el índice de crecimiento del estudio técnico y la construcción, la cual está estimada en 3 años, obteniendo un resultado de:

Clasificación vehicular	Número de vehículos
Autos	675
B2	69
C2	48
C3	19
C4	3
T2S1	2
T2S2	3
T2S3	5
3S1	1
3S2	5
3S3	6
Total	836

Tabla 33. Calculo de tránsito futuro Elaborado por: los autores

Con estos resultados obtenidos se procede a calcular el ESAL.

4.3.4 Factor de carga equivalente

Se obtienen según los parámetros que se indican en el Manual de Carreteras Suelos, Geología, Geotecnia y Pavimentos.

Tipo de Eje	Eje Equivalente	
	(EE _{8.2 tn})	
Eje Simple de ruedas simples (EE _{S1})	EE _{S1} = [P/6.6] ^{4.0}	
Eje Simple de ruedas dobles (EEs2)	EEs2 = [P / 8.2] ^{4.0}	
Eje Tandem (1 eje ruedas dobles + 1 eje rueda simple) (EE _{TA1})	EE _{TA1} = [P / 14.8] ^{4.0}	
Eje Tandem (2 ejes de ruedas dobles) (EE _{TA2})	EE _{TA2} = [P / 15.1] ^{4.0}	
Ejes Tridem (2 ejes ruedas dobles + 1 eje rueda simple) (EE _{TR1})	EE _{TR1} = [P / 20.7] ^{3.9}	
Ejes Tridem (3 ejes de ruedas dobles) (EETR2)	EETR2 = [P/21.8] ^{3.9}	
P = peso real por eje en toneladas		

Tabla 34. Relación de cargas por eje para determinar ejes equivalentes (EE) para afirmados, pavimentos flexibles y semirrígidos
Fuente: Manual de Carreteras, Suelos, Geología, Geotecnia y Pavimentos del MTC, 2013

Configuración		Carga de		
Configuración vehicular	IMDA 2020	vehículos	(EE. 8.2 Tn)	F.IMDa
Veriiculai		eje		
Automóviles		1	0.000527017	0.36
Automoviics	675	1	0.000527017	0.36
B2		7	1.265366749	87.31
	69	10	2.211793566	152.61
C2		7	1.265366749	60.74
0 2	48	10	2.211793566	106.17
C3		7	1.265366749	24.04
	19	16	1.260585019	23.95
C4		7	1.265366749	3.80
.	3	21	1.057720453	3.17
		7	1.265366749	2.53
T2S1		10	2.211793566	4.42
	2	10	2.211793566	4.42
		7	1.265366749	3.80
T2S2		10	2.211793566	6.64
	3	16	1.260585019	3.78
		7	1.265366749	6.33
T2S3		10	2.211793566	11.06
	5	23	1.232418575	6.16
		7	1.265366749	1.27
3S1		16	1.260585019	1.26
	1	10	2.211793566	2.21
		7	1.265366749	6.33
3 S 2		16	1.260585019	6.30
	5	16	1.260585019	6.30
		7	1.265366749	7.59
3S3		16	1.260585019	7.56
	6	23	1.232418575	7.39
			F.IMDa	557.86

Tabla 35. Resultados de los EE. Elaborado por: los autores

4.3.5 Factores de distribución y de carril:

Este factor sirve para precisar el tránsito del carril de diseño según los parámetros establecidos por el MTC.

Número de calzadas	Número de sentidos	Número de carriles por sentido	Factor Direccional (Fd)	Factor Carril (Fc)	Factor Ponderado Fd x Fc para carril de diseño
	1 sentido	1	1.00	1.00	1.00
1 calzada	1 sentido	2	1.00	0.80	0.80
	1 sentido	3	1.00	0.60	0.60
(para IMDa total de la calzada)	1 sentido	4	1.00	0.50	0.50
	2 sentidos	1	0.50	1.00	0.50
	2 sentidos	2	0.50	0.80	0.40
2 calzadas con	2 sentidos	1	0.50	1.00	0.50
separador central	2 sentidos	2	0.50	0.80	0.40
(para IMDa total de las dos calzadas)	2 sentidos	3	0.50	0.60	0.30
,	2 sentidos	4	0.50	0.50	0.25

Tabla 36. Factor de distribución direccional y de carril Fuente: Manual de Carreteras, Suelos, Geología, Geotecnia y Pavimentos del MTC, 2013

EEdia-carril = IMDpi*Fd*Fc*Fvpi*Fpi

Fórmula 6. Determinar EE
Fuente: Manual de Carreteras, Suelos, Geología, Geotecnia y Pavimentos del MTC,
2013

ESAL=(EF.IMDA)*365*FD*DL*(
$$\frac{(1+r)^n}{r} - 1$$
)

Fórmula 7. Determinar la Esal Fuente: Manual de Carreteras, Suelos, Geología, Geotecnia y Pavimentos del MTC, 2013

Fc: Factor carril

Fd: Factor direccional

n: número de años del periodo de diseño

r: tasa anual de crecimiento de tránsito

ESAL= (557.86) *365*0.5*1*(
$$\frac{(1+4\%)^{20}}{4\%}$$
 - 1)

ESAL=EE=W18=5475116.602

4.4 AASHTO 93 para el Diseño de pavimento flexible

Categorías de Subrasante	CBR
So: Subrasante Inadecuada	CBR < 3%
S1: Subrasante Pobre	De CBR > 3% A CBR <6%
S2: Subrasante Regular	De CBR >6% A CBR <10%
S3: Subrasante Buena	De CBR >10% A CBR <20%
S4: Subrasante Muy Buena	De CBR >20% A CBR <30%
S5: Subrasante Extraordinaria	CBR >30%

Tabla 37. Categoría de subrasante

Fuente: Manual de Carreteras, Suelos, Geología, Geotecnia y Pavimentos del MTC,

a) W18=ESAL

ESAL=EE=W18=5475116.602

b) Módulo de resilencia

Mr(psi)=2555*CBR^{0.64}

Fórmula 8. Determinar Mr

Fuente: Manual de Carreteras, Suelos, Geología, Geotecnia y Pavimentos del MTC, 2013

Mr(psi)=2555x100 ^{0.64}	CBR recomendado es 100% para la base
Mr(psi)=48684.52	(Módulo de resilencia de la base)
Mr(psi)=2555x40 ^{0.64}	CBR recomendado es 40% para la base
Mr(psi)=27083.78	(Módulo de resilencia de la subbase)
Mr(psi)=2555x8.9 ^{0.64}	
Mr(psi)=10351.43	(Módulo de resilencia de la subrasante)

c) Confiabilidad (%R)

Al ser el número de eje equivalente (ESAL) de 5475116.602 se usa la tabla el cuadro N°12.6 del Manual de Carreteras Suelos, Geología, Geotecnia y Pavimentos, la cual esta se encuentra en el tipo de caminos **resto de caminos** y tráfico **Tp8**.

TIPO DE CAMINOS	TRAFICO	EJES EQUIVALENTES ACUMULADOS		NIVEL DE CONFIABILIDAD (R)
	T _{P0}	100,000	150,000	65%
Caminos de Bajo	T _{P1}	150,001	300,000	70%
Volumen de	T _{P2}	300,001	500,000	75%
Tránsito	T _{P3}	500,001	750,000	80%
	T _{P4}	750 001	1,000,000	80%
	T _{P5}	1,000,001	1,500,000	85%
	T _{P6}	1,500,001	3,000,000	85%
	TP7	3,000,001	5,000,000	85%
	T _{P5}	5,000,001	7,500,000	90%
I	T_{P9}	7,500,001	10'000,000	90%
Resto de Caminos	T _{P10}	10'000,001	12'500,000	90%
	T _{P11}	12'500,001	15'000,000	90%
[T _{P12}	15'000,001	20'000,000	95%
	T _{P13}	20'000,001	25'000,000	95%
	T _{P14}	25'000,001	30'000,000	95%
	T _{P15}	>30'0	00,000	95%

Tabla 38. Valores sugeridos de grado de confiabilidad (10 o 20 años)
Fuente: Manual de Carreteras, Suelos, Geología, Geotecnia y Pavimentos del MTC, 2013

d) Coeficiente estadístico de desviación estándar normal (Zr)

Al ser el tráfico tipo Tp8 se usa el cuadro N°12.8 del Manual de Carreteras Suelos, Geología, Geotecnia y Pavimentos, y se tiene que (Zr) es de -1.282.

TIPO DE CAMINOS	TRAFICO	EJES EQUIVALENT	TES ACUMULADOS	DESVIACIÓN ESTÁNDAR NORMAL (ZR)
	T _{P0}	100,001	150,000	-0.385
	T _{P1}	150,001	300,000	-0.524
Caminos de Bajo Volumen de Tránsito	T _{P2}	300,001	500,000	-0.674
	T _{P3}	500,001	750,000	-0.842
	T _{P4}	750 001	1,000,000	-0.842
	Трз	1,000,001	1,500,000	-1.036
	Трб	1,500,001	3,000,000	-1.036
	TP7	3,000,001	5,000,000	-1.036
	Трв	5,000,001	7,500,000	-1.282
	Трэ	7,500,001	10'000,000	-1.282
Resto de Caminos	T _{P10}	10'000,001	12'500,000	-1.282
	T _{P11}	12'500,001	15'000,000	-1.282
	T _{P12}	15'000,001	20'000,000	-1.645
	T _{P13}	20'000,001	25'000,000	-1.645
	T _{P14}	25'000,001	30'000,000	-1.645
	T _{P15}	>30'00	00,000	-1.645

Tabla 39. (Zr)
Fuente: Manual de Carreteras, Suelos, Geología, Geotecnia y Pavimentos del MTC, 2013

e) Desviación estándar combinada (So)

Recomienda una (So) de **0.45** según el Manual de Carreteras Suelos, Geología, Geotecnia y Pavimentos.

f) Índice de servicialidad presente (PSI)

f.1) Serviciabilidad inicial (Pi):

El **Pi** es de **4** por ser el tráfico de tipo Tp8 según el cuadro N°12.10 del Manual de Carreteras Suelos, Geología, Geotecnia y Pavimentos.

TIPO DE CAMINOS	TRAFICO	EJES EQUIVALENTES ACUMULADOS		INDICE DE SERVICIABILIDAD INICIAL (PI)
	T _{P1}	150,001	300,000	3.80
Caminos de Bajo	T _{P2}	300,001	500,000	3.80
Volumen de Tránsito	T _{P3}	500,001	750,000	3.80
	T _{P4}	750 001	1,000,000	3.80
	T _{P5}	1,000,001	1,500,000	4.00
	Трб	1,500,001	3,000,000	4.00
	TP7	3,000,001	5,000,000	4.00
Resto de Caminos	Трб	5,000,001	7,500,000	4.00
	T _{P9}	7,500,001	10'000,000	4.00
	T _{P10}	10'000,001	12'500,000	4.00
	T _{P11}	12'500,001	15'000,000	4.00
	T _{P12}	15'000,001	20'000,000	4.20
	T _{P13}	20'000,001	25'000,000	4.20
	T _{P14}	25'000,001	30'000,000	4.20
	T _{P15}	>30'0	000,000	4.20

Tabla 40. (Pi)
Fuente: Manual de Carreteras, Suelos, Geología, Geotecnia y Pavimentos del MTC, 2013

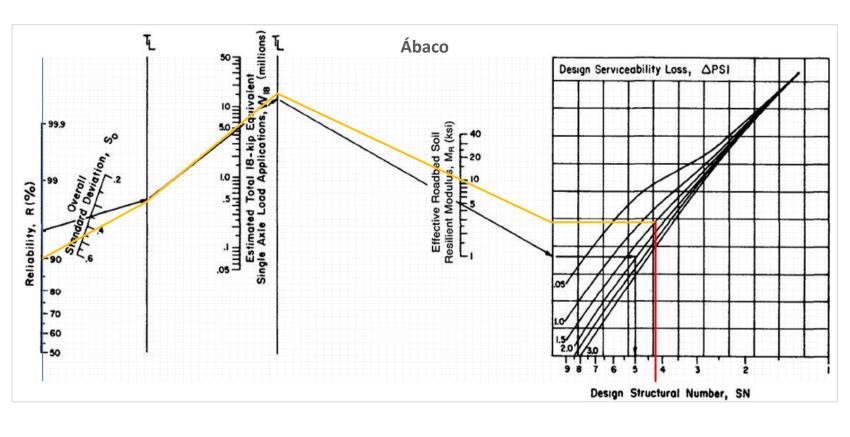
f.2) Serviciabilidad final o terminal (PT):

El **PT** es de **2.5** por ser el tráfico de tipo Tp8 según el cuadro N°12.11 del Manual de Carreteras Suelos, Geología, Geotecnia y Pavimentos

TIPO DE CAMINOS	TRAFICO	EJES EQUIVALEN	INDICE DE SERVICIABILIDAD FINAL (PT)	
	T _{P1}	150,001	300,000	2.00
Caminos de Bajo Volumen de	T_{P2}	300,001	500,000	2.00
Tránsito	T_{P3}	500,001	750,000	2.00
	T_{P4}	750 001	1,000,000	2.00
	T _{P5}	1,000,001	1,500,000	2.50
	T _{P6}	1,500,001	3,000,000	2.50
	TP7	3,000,001	5,000,000	2.50
	T _{P6}	5,000,001	7,500,000	2.50
	T _{P9}	7,500,001	10'000,000	2.50
Resto de Caminos	T _{P10}	10'000,001	12'500,000	2.50
	T _{P11}	12'500,001	15'000,000	2.50
	T _{P12}	15'000,001	20'000,000	3.00
	T _{P13}	20'000,001	25'000,000	3.00
	T _{P14}	25'000,001	30'000,000	3.00
	T _{P15}	>30'0	00,000	3.00

Tabla 41. (Pt)
Fuente: Manual de Carreteras, Suelos, Geología, Geotecnia y Pavimentos del MTC, 2013

f.3) Variación de serviciabilidad (ΔPSI)


El **ΔPSI** es de **1.5** por ser el tráfico de tipo Tp8 según el cuadro N°12.12 del Manual de Carreteras Suelos, Geología, Geotecnia y Pavimentos

TIPO DE CAMINOS	TRAFICO	EJES EQUIVALEN	DIFERENCIAL DE SERVICIABILIDAD (\Delta PSI)	
	T _{P1}	150,001	300,000	1.80
Caminos de Bajo Volumen de	T _{P2}	300,001	500,000	1.80
Tránsito	Трз	500,001	750,000	1.80
	T _{P4}	750 001	1,000,000	1.80
	T _{P5}	1,000,001	1,500,000	1.50
	T _{P6}	1,500,001	3,000,000	1.50
	TP7	3,000,001	5,000,000	1.50
	Трв	5,000,001	7,500,000	1.50
	Трэ	7,500,001	10'000,000	1.50
Resto de Caminos	T _{P10}	10'000,001	12'500,000	1.50
	T _{P11}	12'500,001	15'000,000	1.50
	T _{P12}	15'000,001	20'000,000	1.20
	T _{P13}	20'000,001	25'000,000	1.20
	T _{P14}	25'000,001	30'000,000	1.20
	T _{P15}	>30'0	00,000	1.20

Tabla 41. (ΔPSI)
Fuente: Manual de Carreteras, Suelos, Geología, Geotecnia y Pavimentos del MTC, 2013

f.4) Número estructural requerido (SNR)

Se halló el número estructural requerido por el ábaco de AASHTO siendo el resultado de 4.24.

SNR 4.17

Figura 11. Ábaco para determinar el número estructural requerido Fuente: Manual de Carreteras, Suelos, Geología, Geotecnia y Pavimentos del MTC, 2013

4.4.1 Diseño de capas del pavimento flexible

Por el Manual de Carreteras, Suelos,

Geología, Geotecnia y Pavimentos.

ESAL=EE=W18=5475116.602

ESAL	Concreto asfáltico	Base granular
> 50,000	1.0 (o tratamiento superficial	4
50,001 – 150,000	2.0	4
150,001 - 500,000	2.5	4
500 001 - 2'000 000	3.0	6
2'000,001 – 7'000,000	3.5	6
> 7'000,000	4.0	6

Tabla 42. Espesores mínimos recomendados

Fuente: Manual de Carreteras, Suelos, Geología, Geotecnia y Pavimentos del MTC, 2013

a) Espesor de capas

De la tabla mencionada obtenemos estos valores:

D1=3.5 pulg. Grosor de la carpeta asfáltica

D2=6.0 pulg. Grosor de la base granular

b) Drenaje

De la tabla 12.14 del manual del Manual de Carreteras, Suelos, Geología, Geotecnia y Pavimentos.

Calidad de drenaje	Retiro de agua dentro de:
Excelente	2 horas
Bueno	1 día
Regular	1 semana
Pobre	1 mes
Muy pobre	el agua no drena

Tabla 43. Condiciones de drenaje

Fuente: Manual de Carreteras, Suelos, Geología, Geotecnia y Pavimentos del MTC, 2013

	% de tiempo en que la estructura del pavimento es expuesta a niveles de humedad próximos a la saturación					
Calidad de drenaje	Menos que 1%	1-5%	5-25%	Mayor que 25%		
Excelente	1.40-1.35	1.35-1.30	1.30-1.20	1.20		
Bueno	1.35-1.25	1.25-1.15	1.15-1.00	1.00		
Regular	1.25-1.15	1.15-1.05	1.00-0.80	0.80		
Pobre	1.15-1.05	1.05-0.80	0.80-0.60	0.60		
Muy pobre	1.05-0.95	0.95-0.75	0.75-0.40	0.40		

Tabla 44. Coeficientes de drenaje recomendados, (mi)
Fuente: Manual de Carreteras, Suelos, Geología, Geotecnia y Pavimentos del MTC, 2013

m2=1.0	Drenaje de base granular (5-25%)
m3=1.0	Drenaje de Subbase granular (5-25%)

c) Coeficiente estructural de la capa para concreto asfáltico superficial (a1)

Del cuadro 12.13 del Manual de Carretera de Suelos, Geología, Geotecnia y Pavimento.

a1= 0.170=0.4318" Recomendado para todo tipo de tráfico

COMPONENTE DEL PAVIMENTO	COEFICIENTE	VALOR COEFICIENTE ESTRUCTURAL a _i (cm)	Observación
CAPA SUPERFICIAL			
Carpeta Asfáltica en Caliente, módulo 2,965 MPa (430,000 PSI) a 20 oC (68 oF)	a ₁	0.170 / cm	Capa Superficial recomendada para todos los tipos de Tráfico
Carpeta Asfáltica en Frío, mezcla asfáltica con emulsión.	a ₁	0.125 / cm	Capa Superficial recomendada para Tráfico ≤ 1'000,000 EE
Micropavimento 25mm	a ₁	0.130 / cm	Capa Superficial recomendada para Tráfico ≤ 1'000,000 EE
Tratamiento Superficial Bicapa.	a ₁	0.250 (*)	Capa Superficial recomendada para Tráfico ≤ 500,000EE. No Aplica en tramos con pendiente mayor a 8%; y, en vias con curvas pronunciadas, curvas de volteo, curvas y contracurvas, y en tramos que obliguen al frenado de vehículos
Lechada asfáltica (slurry seal) de 12mm.	a 1	0.150 (*)	Capa Superficial recomendada para Tráfico ≤ 500,000EE No Aplica en tramos con pendiente mayor a 8% y en tramos que obliguen al frenado de vehículos
(*) Valor Global (no se considera el espesor)			
Base			
Base Granular CBR 80%, compactada al 100% de la MDS	a ₂	0.052 / cm	Capa de Base recomendada para Tráfico ≤ 5'000,000 EE
Base Granular CBR 100%, compactada al 100% de la MDS	a ₂	0.054 / cm	Capa de Base recomendada para Tráfico > 5'000,000 EE
Base Granular Tratada con Asfalto (Estabilidad Marshall = 1500 lb)	a _{2a}	0.115 / cm	Capa de Base recomendada para todos los tipos de Tráfico
Base Granular Tratada con Cemento (resistencia a la compresión 7 días = 35 kg/cm²)	a _{2b}	0.070 cm	Capa de Base recomendada para todos los tipos de Tráfico
Base Granular Tratada con Cal (resistencia a la compresión 7 días = 12 kg/cm²)	a 2c	0.080 cm	Capa de Base recomendada para todos los tipos de Tráfico
SUBBASE			
Sub Base Granular CBR 40%, compactada al 100% de la MDS	as	0.047 / cm	Capa de Sub Base recomendada para Tráfico ≤ 15'000,000 EE
Sub Base Granular CBR 60%, compactada al 100% de la MDS	a ₃	0.050 / cm	Capa de Sub Base recomendada para Tráfico > 15'000,000 EE

Tabla 45. (a1)
Fuente: Manual de Carreteras, Suelos, Geología, Geotecnia y Pavimentos del MTC, 2013

d) Coeficiente estructural de la capa base granular (a2)

Del cuadro 12.13 del Manual de Carretera de Suelos, Geología, Geotecnia y Pavimento.

a2=0.054=0.1372" NEE=5475116.60

COMPONENTE DEL PAVIMENTO	COEFICIENTE	VALOR COEFICIENTE ESTRUCTURAL a _i (cm)	Observación
CAPA SUPERFICIAL			
Carpeta Asfáltica en Caliente, módulo 2,965 MPa (430,000 PSI) a 20 oC (68 oF)	a ₁	0.170 / cm	Capa Superficial recomendada para todos los tipos de Tráfico
Carpeta Asfáltica en Frío, mezcla asfáltica con emulsión.	a ₁	0.125 / cm	Capa Superficial recomendada para Tráfico ≤ 1'000,000 EE
Micropavimento 25mm	a ₁	0.130 / cm	Capa Superficial recomendada para Tráfico ≤ 1'000,000 EE
Tratamiento Superficial Bicapa.	a ₁	0.250 (*)	Capa Superficial recomendada para Tráfico ≤ 500,00EE. No Aplica en tramos con pendiente mayor a 8%; y, en vías con curvas pronunciadas, curvas de volteo, curvas y contracurvas, y en tramos que obliguen al frenado de vehículos
Lechada asfáltica (slurry seal) de 12mm.	a ₁	0.150 (*)	Capa Superficial recomendada para Tráfico ≤ 500,000EE No Aplica en tramos con pendiente mayor a 8% y en tramos que obliguen al frenado de vehículos
(*) Valor Global (no se considera el espesor)			
BASE			
Base Granular CBR 80%, compactada al 100% de la MDS	a ₂	0.052 / cm	Capa de Base recomendada para Tráfico ≤ 5'000,000 EE
Base Granular CBR 100%, compactada al 100% de la MDS	a ₂	0.054 / cm	Capa de Base recomendada para Tráfico > 5'000,000 EE
Base Granular Tratada con Asfalto (Estabilidad Marshall = 1500 lb)	a _{2a}	0.115 / cm	Capa de Base recomendada para todos los tipos de Tráfico
Base Granular Tratada con Cemento (resistencia a la compresión 7 días = 35 kg/cm²)	a _{2b}	0.070 cm	Capa de Base recomendada para todos los tipos de Tráfico
Base Granular Tratada con Cal (resistencia a la compresión 7 días = 12 kg/cm²)	a _{2c}	0.080 cm	Capa de Base recomendada para todos los tipos de Tráfico
SUBBASE			
Sub Base Granular CBR 40%, compactada al 100% de la MDS	as	0.047 / cm	Capa de Sub Base recomendada para Tráfico ≤ 15'000,000 EE
Sub Base Granular CBR 60%, compactada al 100% de la MDS	a ₃	0.050 / cm	Capa de Sub Base recomendada para Tráfico > 15'000,000 EE

Tabla 46. (a2)

Fuente: Manual de Carreteras, Suelos, Geología, Geotecnia y Pavimentos del MTC, 2013

e) Coeficiente estructural de la capa sub base granular (a3)

Del cuadro 12.13 del Manual de Carretera de Suelos, Geología, Geotecnia y Pavimento.

a3=0.047=0.1194" NEE=54755116.60

COMPONENTE DEL PAVIMENTO	COEFICIENTE	VALOR COEFICIENTE ESTRUCTURAL a _i (cm)	OBSERVACIÓN
CAPA SUPERFICIAL			
Carpeta Asfáltica en Caliente, módulo 2,965 MPa (430,000 PSI) a 20 oC (68 oF)	a ₁	0.170 / cm	Capa Superficial recomendada para todos los tipos de Tráfico
Carpeta Asfáltica en Frío, mezcla asfáltica con emulsión.	a ₁	0.125 / cm	Capa Superficial recomendada para Tráfico ≤ 1'000,000 EE
Micropavimento 25mm	a ₁	0.130 / cm	Capa Superficial recomendada para Tráfico ≤ 1'000,000 EE
Tratamiento Superficial Bicapa.	aı	0.250 (*)	Capa Superficial recomendada para Tráfico ≤ 500,000EE. No Aplica en tramos con pendiente mayor a 8%; y, en vias con curvas pronunciadas, curvas de volteo, curvas y contracurvas, y en tramos que obliguen al frenado de vehículos
Lechada asfáltica (slurry seal) de 12mm.	a ₁	0.150 (*)	Capa Superficial recomendada para Tráfico ≤ 500,000EE No Aplica en tramos con pendiente mayor a 8% y en tramos que obliguen al frenado de vehículos
(*) Valor Global (no se considera el espesor)			
Base			
Base Granular CBR 80%, compactada al 100% de la MDS	a ₂	0.052 / cm	Capa de Base recomendada para Tráfico ≤ 5'000,000 EE
Base Granular CBR 100%, compactada al 100% de la MDS	a ₂	0.054 / cm	Capa de Base recomendada para Tráfico > 5'000,000 EE
Base Granular Tratada con Asfalto (Estabilidad Marshall = 1500 lb)	a _{2a}	0.115 / cm	Capa de Base recomendada para todos los tipos de Tráfico
Base Granular Tratada con Cemento (resistencia a la compresión 7 días = 35 kg/cm²)	a _{2b}	0.070 cm	Capa de Base recomendada para todos los tipos de Tráfico
Base Granular Tratada con Cal (resistencia a la compresión 7 días = 12 kg/cm²)	a 2c	0.080 cm	Capa de Base recomendada para todos los tipos de Tráfico
SUBBASE			
Sub Base Granular CBR 40%, compactada al 100% de la MDS	as	0.047 / cm	Capa de Sub Base recomendada para Tráfico ≤ 15'000,000 EE
Sub Base Granular CBR 60%, compactada al 100% de la MDS	a ₃	0.050 / cm	Capa de Sub Base recomendada para Tráfico > 15'000,000 EE

Tabla 47. (a3)

Fuente: Manual de Carreteras, Suelos, Geología, Geotecnia y Pavimentos del MTC, 2013

f) Cálculo del espesor de la sub base granular

SN=a1D1+a2D2m2+a3D3m3

Fórmula 9. Número estructural requerido Fuente: Manual de Carreteras, Suelos, Geología, Geotecnia y Pavimentos del MTC, 2013

Resolviendo la ecuación con los datos obtenidos se obtiene el grosor de la subbase granular que es 15.37 pulg, se redondea a 16 pulg.

4.4.2 Diseño de capas del pavimento flexible con refuerzo con acero de malla

a) Cálculo de la estructura sustituyendo la base granular

Al desarrollar la ecuación con los datos obtenidos, se hallará el D3', el cual es 22.27pulg. que es igual a 56.57cm.

SN=a1*D1+a3D3'*m3

Fórmula 10. Número estructural sustituyente a la base granular

Fuente: Manual de Diseño Prodac, 2018

b) Cálculo del nuevo espesor de la capa subbase con refuerzo

Para poder usar la tabla proporcionada por Prodac se halló el CBR, luego de realizar los cálculos del estudio de suelos da como resultado 8.9%, usando este dato en la tabla se obtuvo el LCR, que seria 1.32.

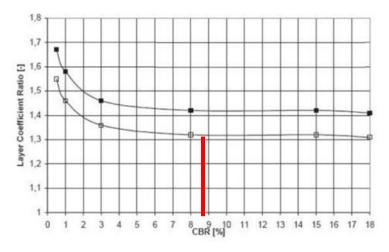


Figura 12. Determinar LCR Fuente: Manual de Diseño Prodac, 2018

SNr = SN

SNr = 4.17

Con la siguiente fórmula, se calculó el actual grosor de la base granular incluido el refuerzo.

$$D3r = \frac{SNr - a1D1}{a3 * LCR * m3}$$

Fórmula 11. Cálculo del actual grosor de la base granular Fuente: Manual de Diseño Prodac, 2018

D3r=16.87pulg= 42.85cm

c) Cálculo del aporte estructural de la capa reforzada

SNgr=a3*D3r*m3

Fórmula 12. Cálculo de aporte estructural de la capa reforzada Fuente: Manual de Diseño Prodac, 2018

Desarrollando la ecuación con los datos hallados se obtiene un resultado de 2.01.

d) Cálculo de nuevos espesores de base y subbase granular

SNgr=a2*D2r*m2+a3*D3r*m3

Fórmula 13. Cálculo de nuevo grosor de la base granular y sub base granular Fuente: Manual de Diseño Prodac, 2018

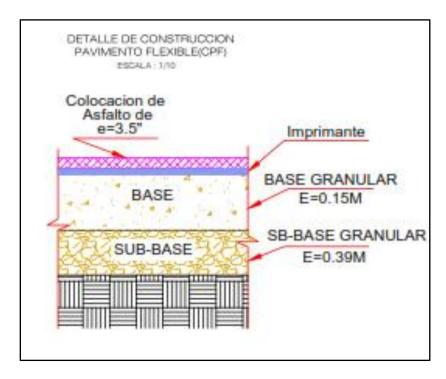
Al tener dos incógnitas, la recomendación D2r y D3r AASHTO recomienda que el espesor de la base tiene que ser mayor o igual a 6 pulg.

$$D2r = 6pulg = 15cm$$
.

Al hallar el D2r ya se pudo determinar el D3r, esta se aplicó en la siguiente fórmula, obteniendo un resultado de 9.94 pulgadas esta es igual a 25.25cm.

e) Verificación del aporte estructural con los nuevos espesores de material granular e inclusión de la malla de acero

SN=a2*D2r*m2+a3*D3r*m3


Para verificar si es viable, se compara el primer SNgr con los datos de los nuevos espesores.

Es viable porque el resultado de ambas ecuaciones es 2.01.

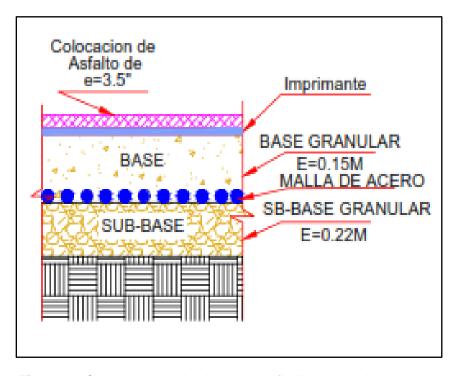

	•	Capa granular con malla de acero
Base	15.24 cm	15.24 cm
Subbase	39.03 cm	22.25 cm
Espesor total	54.27 cm	37.49 cm

Tabla 48. Variación de espesores Elaborado por: los autores

Adaptando la malla de acero hay una reducción de espesor en la capa granular de 16.78 cm.

Figura 13. Corte transversal del pavimento flexible tradicional Elaborado por: los autores

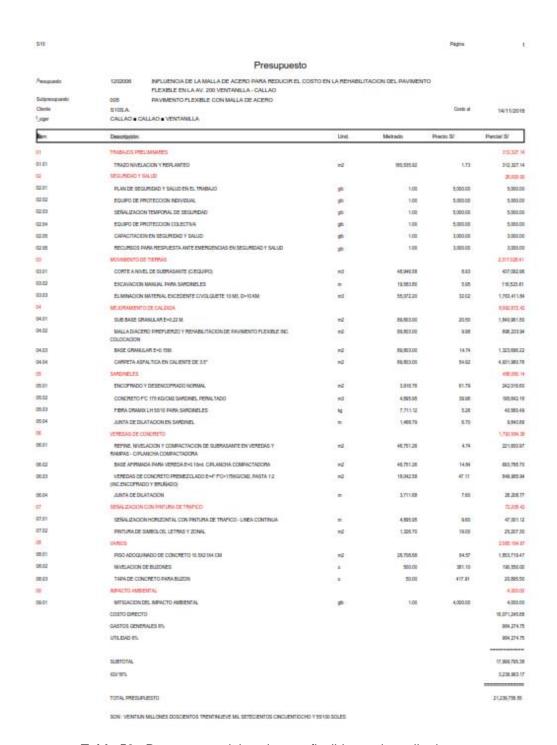


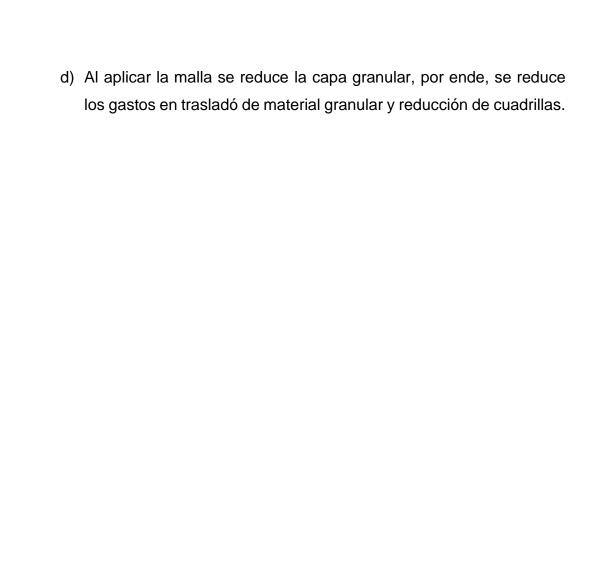
Figura 14. Corte transversal del pavimento flexible con malla de acera Elaborado por: los autores

4.5 Análisis económico

Presupuesto SE ACERIO PARA REDUCIR EL COS ENTANELIA - CALLAO AS EN SEGURDAD Y SALID	Und. Und.	Metado Metado 100,535,62 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	To Costo of Precise S/ 1.73 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00	342,327.54 25,000.00 5,000.00 5,000.00 5,000.00 3,000.00
ENTANELLA - CALLACI NS EN SEGURDAD Y SALID	Und.	Metado 100,535.62 1.00 1.00 1.00 1.00 1.00 75,000.60	Costs of Precis S/ 1.73 1,000.00 1,000.00 1,000.00 1,000.00 3,000.00 3,000.00	Parchal Si 3/2,327 5 3/2,227 5 28,000 5 5,000,0 5,000,0 5,000,0 5,000,0 3,000,0 3,000,0
AS EN SEGUNDAD Y SALLD	**	100,535.62 1.00 1.00 1.00 1.00 1.00 1.00	Precis S/ 1.73 1,000.00 1,000.00 1,000.00 1,000.00 3,000.00	Parchal Si 3/2,327.1 3/2,227.5 28,000.0 5,000.0 5,000.0 5,000.0 5,000.0 3,000.0
	**	100,535.62 1.00 1.00 1.00 1.00 1.00 1.00	Precis S/ 1.73 1,000.00 1,000.00 1,000.00 1,000.00 3,000.00	Parchal SV 3/2,327, 5 3/2,327, 9 28,000, 3 5,000,00 5,000,00 5,000,00 3,000,00 3,000,00
	**	100,535.62 1.00 1.00 1.00 1.00 1.00 1.00	Precis S/ 1.73 1,000.00 1,000.00 1,000.00 1,000.00 3,000.00	Parchal SV 312,327, M 312,327, M 28,000, M 5,000,00 1,000,00 1,000,00 1,000,00 1,000,00 3,000,00
	**	100,535.62 1.00 1.00 1.00 1.00 1.00 1.00	1,000,00 1,000,00 1,000,00 1,000,00 1,000,00	3/2.327 9 3/2.227 9 3.000 3 5.000.00 5.000.00 5.000.00 3.000.00
	* * * *	1.00 1.00 1.00 1.00 1.00 1.00	1,000,00 1,000,00 1,000,00 1,000,00 1,000,00 3,000,00	310, 327 M 310, 327 M 31,000 M 5,000 M 5,000 M 5,000 M 5,000 M 5,000 M
	* * * *	1.00 1.00 1.00 1.00 1.00 1.00	1,000,00 1,000,00 1,000,00 1,000,00 1,000,00 3,000,00	5,000.00 5,000.00 5,000.00 5,000.00 5,000.00
	**	1.00 1.00 1.00 1.00 1.00	3,000,00 3,000,00 3,000,00 3,000,00	5,000.00 5,000.00 5,000.00 5,000.00 3,000.00
	**	1.00 1.00 1.00 1.00 1.00	3,000,00 3,000,00 3,000,00 3,000,00	5,000.00 5,000.00 5,000.00 5,000.00 3,000.00
	**	1.00 1.00 1.00 1.00	3,000,00 3,000,00 3,000,00 3,000,00	\$,000.00 \$,000.00 \$,000.00 3,000.00
	**	1.00 1.00 1.00 78,000.60	1,000.00 1,000.00 3,000.00 3,000.00	5,000,00 5,000,00 3,000,00 3,000,00
	p. p. 10	1.00 1.00 1.00 78,000.60	5,000.00 3,000.00 3,000.00	5,000.00 3,000.00 3,000.00
	p 10 1	78,080.60	3,000.00	3,000.00
	p 10 1	78,080.60	3,000.00	3,000.00
	***	78,090,60		
: 10 MO, D-10 KM			8.93	
: 15 MD, D=10 KM			10-000	897,250,54
10M3, D=10 KM		18.203.00	4.00	
11380,0-10408		200 600 60	5.95	116,523.61
		110,860.71	32.02	1,543,451,98
	175.45			3,141,347.37
	+0	89,863.00	32.13	2,885,370,36
	80	66,863.00	14.74	1.333,696,22
	=2	89,863.00	54.92	4,001,080.71
				485.000.74
	=2	3,915.76	61.79	342,016.60
0	40	4,895.95	39.96	195,642.16
	Ag	7,713.12	526	45,560,46
	-	1,465.79	6.70	1,040.08
				1,785,504.08
ASANTE EN VEREDAS Y	m2	46.751.26	434	221,600.07
CHA COMPACTADOMA	+0	46,751.26	14.84	893,765.71
HTMISICAE, PASTA 1.2	+0	18,042.58	47.11	849,365,94
		3.711.68	7.60	26,308.77
				72 208 40
APICO - LINEA CONTINUA	*	4,895,95	9.60	47,001.12
	+0	1,326.70	19.00	25,207.30
				2,080,104,67
	62	25,708.68	84.57	1.853.719.47
		500.00	381.10	190,550,00
	*	50.00	417.81	20,695.50
				4,800.00
	*	1.00	4,000.00	4,000,00
				18,259,715.88
				1,095,583.13
				1,098,583.10
				20,430,865.12
				3,591,156,32
				24,132,044.44
		MPICO-LINEA CONTRUIA == == == == == == == == == == == == ==	##CO-LINEACONTINUA ## 4,591,58 ##2 1,306,19 ##2 28,788,66 ## 500,00 ## 500,00	### 4,585,65 9,60 mg 1,305,79 19,00 mg 2,305,79 19,00 mg 2,305,70 19,00 mg 2,305,70

Tabla 49. Prepuesto del pavimento flexible sin malla de acero Elaborado por: los autores

Tabla 50. Presupuesto del pavimento flexible con la malla de acero Elaborado por: los autores


De las tablas 49 y 50 se puede observar que hay una diferencia de presupuesto de 11.99% siendo el más económico el pavimento flexible con malla de acero.

CAPÍTULO V

DISCUSIÓN

Las cuatro discusiones siguientes versan sobre el análisis del estudio de suelo, estudio de tráfico, diseño de pavimento flexible reforzado y constituyen el aporte más importante de esta investigación.

- a) Del análisis de suelos dio como resultado que tipo de suelo predomina en la zona, según SUCS es arena mal gradada, eso quiere decir que las partículas son aproximadamente del mismo tamaño, también se obtuvo las densidades húmedas y secas.
 - Los resultados del CBR se obtuvieron por el ensayo de penetración dinámica de cono, la cual arroja un resultado de 8.9%, por ende, la resistencia del suelo es buena.
- b) Del estudio de tráfico se obtuvo el IMDa, resultando 558 veh/día, siendo esta una carretera de segunda categoría, puesto que si este valor cambia el diseño del pavimento flexible variaría dando otros resultados.
- c) En cuanto al diseño del pavimento, el CBR es regular puesto que si este fuese menor, se tendría que mejorar la subrasante del proyecto.

CONCLUSIONES

Las cuatro conclusiones siguientes versan sobre el análisis del estudio de suelo, estudio de tráfico, diseño de pavimento flexible reforzado y constituyen el aporte más importante de esta investigación.

- La malla de acero sí influye en la rehabilitación del pavimento flexible, puesto que el presupuesto del pavimento flexible tradicional dio un resultado de 24,239,044.44 soles, mientras que el presupuesto usando la malla de acero dio un resultado de 21,239,758.55 soles; por ende, se reduce el presupuesto en 11.99%.
- 2. El análisis de mecánica de suelos sí influye en la rehabilitación del pavimento flexible, puesto que ayudó a resolver que tipo de suelo, características y la resistencia del suelo.
- 3. El estudio de tráfico sí influye en la rehabilitación del pavimento flexible, puesto que determina el clases de vehículos que pasaron por el área y con qué regularidad pasan por la Av. 200. Al tener estos resultados, se obtuvo el número de eje equivalente.
- Con la malla de acero se logró reducir el espesor de la subbase en
 42.99 % para la rehabilitación del pavimento flexible.

RECOMENDACIONES

Luego de examinar a fondo las conclusiones a las que se llegó en la presente investigación, se dan las siguientes cinco recomendaciones.

- Tener en cuenta que la base granular del pavimento flexible con la malla de acero solo se puede reducir en 6pulg o 15cm, según recomendación AASHTO.
- Utilizar un mayor número de calicatas para tener información precisa de los clases de suelos que conforman el área de estudio.
- Monitorear constantemente la zona con respecto al tráfico y el peso máximo concedido por eje, para así conservar la vida útil calculada del pavimento.
- Aplicar la malla de acero en el pavimento flexible, esto resultará beneficioso puesto que se reducen los costos con respecto al pavimento flexible convencional.
- 5. Continuar la investigación realizando ensayos de laboratorio para poder obtener parámetros comparativos.

FUENTES DE INFORMACIÓN

Bibliografia

- Tapia, M. A. (2011). *Pavimentos*. Ciudad de Mexico, Mexico: Universidad Nacional Autonoma de México.
- Gavilanes Dávila, N. (2012), Diseño de la estructura del pavimento con reforzamiento de geosinteticos aplicado a un tramo de la carretera Zumbahua La Maná Ecuador (tesis de pregrado). Universidad Pontifica Católica de Quito. Quito, Ecuador
- Yarango Serrano, E. (2014), Restauración de las vías de acceso de la Asociación Minera Cerro Verde (SMCV), que se ubica la kilómetros de la región de Uchimayo en Arequipa. 0+ 000 al km 1 + 900 km. Utilice el sistema bitufor para reducir el reflejo de las grietas y prolongar la vida útil de la carretera (tesis de pregrado). Universidad Ricardo Palma, Lima, Perú.
- Humpiri, K. (2015), Análisis superficial de pavimentos flexibles para el mantenimiento de vías en la región de Puno. (Tesis de Maestría).
 Universidad Andina Néstor Cáceres Velásquez, Juliaca, Perú.
- Ministerio de Trasportes y Comunicaciones (2013), Manual de Carreteras Suelos, Geología, Geotecnia y Pavimentos.
- Rengifo Arakaki, k. (2014), Diseño de los pavimentos de la nueva carretera panamericana norte en el tramo de Huacho a Pativilca (km 188 a 189) (tesis de pregrado). Universidad Pontifica católica del Perú. Lima, Perú.

- Vergara, A. (2014), Evaluación del estado funcional y estructural del pavimento flexible mediante la metodología PCI tramo Quichuay Ingenio del km 0+000 al km 1+000 2014 (tesis de pregrado). Universidad de San Martín de Porres. Lima, Perú.
- Ministerio de Transportes y Comunicaciones (2013). Manual de Ensayos de Laboratorio. Lima, Perú: El Ministerio.
- Ministerio de Transportes y Comunicaciones (2013). Manual de Carreteras: Especificaciones Técnicas Generales para Construcción. Lima, Perú: El Ministerio.

Online

Prodac. (2018, 02 de febrero). Soluciones confiables para el control de la erosión. *Prodac*. Recuperado de https://prodac.bekaert.com/

ÍNDICE DE ANEXOS

Página

- 1. Matriz de consistencia
- 2. Plano de ubicación
- 3. Plano de calicatas
- 4. Estudio de suelos
- 5. Perfil de suelos
- 6. Granulometría
- 7. Ensayo de CBR
- 8. Plano de arquitectura
- 9. Plano de detalles
- 10. Plano de progresivas