

FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

ESTABILIZACIÓN DE SUELOS ARCILLOSOS APLICANDO CENIZA DE MADERA DE FONDO, PRODUCTO DE LADRILLERAS ARTESANALES EN EL DEPARTAMENTO DE AYACUCHO

PRESENTADA POR

LUX EVA MAMANI BARRIGA

ALEJANDRO JESÚS YATACO QUISPE

ASESOR

GARY DURAN RAMIREZ

TESIS

PARA OPTAR EL TÍTULO PROFESIONAL DE INGENIERO CIVIL

LIMA – PERÚ

2017

CC BY-NC

$Reconocimiento-No\ comercial$

Los autores permiten transformar (traducir, adaptar o compilar) a partir de esta obra con fines no comerciales, y aunque en las nuevas creaciones deban reconocerse la autoría y no puedan ser utilizadas de manera comercial, no tienen que estar bajo una licencia con los mismos términos.

http://creativecommons.org/licenses/by-nc/4.0/

ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

ESTABILIZACIÓN DE SUELOS ARCILLOSOS APLICANDO CENIZA DE MADERA DE FONDO, PRODUCTO DE LADRILLERAS ARTESANALES EN EL DEPARTAMENTO DE AYACUCHO

TESIS PARA OPTAR EL TÍTULO PROFESIONAL DE INGENIERO CIVIL

PRESENTADA POR

MAMANI BARRIGA, LUX EVA YATACO QUISPE, ALEJANDRO JESÚS

> LIMA – PERÚ 2017

Dedicatorias

Dedico la presente tesis a Dios, a mis padres: Elías y Nancy, por su esfuerzo y apoyo incondicional, para poder realizarme como persona.

A mis hermanos que en todo momento me ayudaron y estuvieron presentes es este camino para lograr el título profesional.

Lux Eva, Mamani Barriga

A mis padres por haberme forjado como la persona que soy en la actualidad; muchos de mis logros se los debo a ustedes entre los que incluye este.

A mis queridos abuelos Pablo y Justina porque ellos velan mi existencia y cuidan de mí.

Alejandro Jesús, Yataco Quispe

Agradecimiento

Expresamos nuestro agradecimiento al Mg. Ing. Gary Durán Ramírez, por ser nuestro guía para el desarrollo de la presente tesis, de la misma manera que a los ingenieros Alexis Samohod Romero y Juan Manuel Oblitas Santa María por ser partícipes.

A nuestra casa de estudio la Universidad de San Martín de Porres y a su plana docente.

ÍNDICE

RES	JMEN		xiii
ABS	TRACT		xiv
INTR	ODUCC	CIÓN	xv
1.	Formu	lación del Problema	xvi
	1.1.	Problema General	xvi
	1.2.	Problemas Específicos	xvi
2.	Objetiv	vos	xvi
	2.1.	Objetivo General	xvi
	2.2.	Objetivos Específicos	xvii
3.	Justific	cación e Importancia	xvii
4.	Alcand	ces y Limitaciones	xviii
5.	Viabili	dad del Estudio	xviii
CAPÍ	TULO I:	MARCO TEÓRICO	19
1.1	. Ante	cedentes	19
1.2	. Ante	cedentes de la investigación	20
1.3	B. Base	es teóricas	29
	1.3.1.	Suelos Arcillosos	29
	1.3.2.	Origen y proceso de Obtención de Ceniza de madera	35
	1.3.3.	Ceniza de Fondo	36
	1.3.4.	Estabilización de suelos Arcillosos	36
	1.3.5.	Contenido de Humedad	37
	1.3.6.	Análisis Granulométrico	37
	1.3.7.	Peso Específico	42
	1.3.8.	Límites de Atterberg	44

1.3.9. Clasificación del suelo mediante Sistema Unificado	os de
Clasificación de Suelos (SUCS)	45
1.3.10. Capacidad de Soporte de los Suelos	47
1.3.11. Compactación tipo Próctor	48
1.3.12. Consolidación Unidimensional	49
1.3.13. Corte Directo	50
1.4. Definiciones de términos básicos	51
1.5. Formulación de la Hipótesis	54
CAPÍTULO II: METODOLOGÍA	55
2.1. Tipo de investigación	55
2.2. Nivel de la investigación	55
2.3. Diseño de la investigación	55
2.4. Variables	56
2.5. Población y muestra	58
2.5.1. Población	58
2.5.2. Muestra	59
2.6. Técnicas de investigación	59
2.7. Instrumentos de recolección de datos	60
2.8. Técnicas e instrumentos de recolección de datos	61
2.9. Procesamiento y análisis estadístico de los datos	61
2.10. Cronograma de actividades	62
CAPÍTULO III: PRUEBAS Y RESULTADOS	64
3.1. Contrastación de la hipótesis	64
3.2. Caso de Investigación	64

3.3. Ensayos de Características Físicas	65		
3.3.1. Análisis Granulométrico por tamizado ASTM D422	65		
3.3.2. Análisis Granulométrico por Sedimentación ASTMD422	65		
3.3.3. Límites de consistencia ASTM D4318	66		
3.3.4. Clasificación de suelos mediante el SUCS	69		
3.3.5. Gravedad Específica de Sólidos NTP-339-131	70		
3.4. Ensayos de Características Mecánicas	71		
3.4.1 Ensayo de Próctor Modificado NTP 339.141	71		
3.4.2 Ensayo de Consolidación Unidimensional NTP-339.154	74		
3.4.3 Ensayo de Corte Directo ASTM D3080	80		
CAPÍTULO IV: DISCUSIÓN Y APLICACIONES	84		
CONCLUSIONES	85		
RECOMENDACIONES	86		
FUENTES DE INFORMACIÓN			
ANEXOS	89		

Lista de tablas

Tabla 1.1 Resultados de Ensayos de Compactación de Materiales Con sue	elo
y Ceniza Volante	21
Tabla 1.2 Resultados de Ensayos de Compactación de Materiales de es	ste
Estudio entre suelo y Ceniza Volante	21
Tabla 1.3 Las propiedades de los hormigones frescos y endurecidos	26
Tabla 1.4 Propiedades de las muestras de biomasas de madera	28
Tabla 1.5 Potencias de Producción de Ceniza	28
Tabla 1.6 Rango normal de composición química para las cenizas producid	las
apartir de diferentes tipos de carbón	29
Tabla 1.7 Índice de Plasticidad de la Arcilla Norma ASTM D4318-84	30
Tabla 1.8 Clasificación de Suelos según Tamaño de Partículas Norma AST	ГΜ
D422	30
Tabla 1.9 Empresas de ladrilleras artesanales	35
Tabla 1.10 Materiales utilizados	36
Tabla 1.11 Tamices	38
Tabla 1.12 Valores de la Profundidad efectiva basados en hidrómetro y cilino	dro
de sedimentación de dimensiones especificadas	39
Tabla 1.13 Valores de la Profundidad efectiva basados en hidrómetro y cilino	dro
de sedimentación de dimensiones especificadas	40
Tabla 1.14 Valores de ct para la corrección por temperatura de las lecturas o	de
hidrómetro	41
Tabla 1.15 Valores de k para el cálculo del diámetro de partículas en el anális	sis
hidrométrico	41
Tabla 1.16 Valores del coeficiente de correción para distintos pes	os
específicos de las partículas del suelo	42
Tabla 1.17 Densidad del agua y Coeficiente de Temperatura (k) para vari	as
temperaturas	44
Tabla 1.18 Clasificación de suelos	47
Tabla 1.19 Cuadro de resumen	49
Tabla 2.1 Identificación del objeto de estudio y las variables	56
Tabla 2.2 Operacionalización de variables	57
Tabla 2.3 Proporción de Mezcla y Simbología referente a cada Material	61

Tabla 2.4 Cronograma de actividades	63
Tabla 3.1 Proporción de mezcla de arcilla - ceniza de fondo para el ensa	ayo
de límite de Consistencia ASTM D4318	67
Tabla 3.2 Clasificación de suelos y Mezclas	70
Tabla 3.3 Proporción de mezcla de arcilla – ceniza de fondo para el ensa	ayo
de Gravedad específica NTP 339-131	70
Tabla 3.4 Resultados de Gravedad Especifica Corregidos por temperatura	71
Tabla 3.5 Proporción de mezcla de arcilla – ceniza de fondo para el ensa	ayo
de Proctor Modificado NTP 339-141	72
Tabla 3.6 Resultados del ensayo de Proctor Modificado NTP 339.141	74
Tabla 3.7 Índice de vacíos 100%S	76
Tabla 3.8 Índice de vacíos por combinación 80%S 20%CF	77
Tabla 3.9 Índice de vacíos por combinación 70%S 30%CF	77
Tabla 3.10 Coeficiente de Compresión y Recompresión 100%S	79
Tabla 3.11 Coeficiente de Compresión y Recompresión 80%S - 20%CF	79
Tabla 3.12 Coeficiente de Compresión y Recompresión 70%S - 30%CF	79
Tabla 3.13 Datos utilizados para el ensayo de Corte Directo ASTM D3080	81

Lista de figuras

Figura 1.1 Resistencia a la compresión no confinada	19
Figura 1.2 Ensayo triaxial no drenado CU	20
Figura 1.3 Curvas de compactación de suelo, ceniza volante y mezclas	21
Figura 1.4 Curvas de CBR de la mezcla vs. Contenido de Ceniza Volante.	22
Figura 1.5 Resultados de la prueba triaxial de carga repetida en mezclas	de
ceniza y suelo	23
Figura 1.6 Resultados de la prueba triaxial de carga repetida en mezclas	de
ceniza y suelo	23
Figura 1.7 Resultados de la prueba triaxial de carga repetida en mezclas	de
ceniza y suelo	24
Figura 1.8 Resultados de la prueba triaxial de carga repetida en mezclas	de
ceniza y suelo	24
Figura 1.9 Resultados de la prueba triaxial de carga repetida en mezclas	de
ceniza y suelo	25
Figura 1.10 Resultados de la prueba triaxial de carga repetida en mezclas	de
ceniza y suelo	25
Figura 1.11 Valores de resistencia a la compresión de especímenes	de
hormigón de 28 y 56 días	26
Figura 1.12 Valores del módulo de elasticidad de especímenes de hormig	yón
de 28 y 56 días	27
Figura 1.13 Estructuras atómicas básicas de los minerales de arcilla	31
Figura 1.14 Láminas formadas por estructuras atómicas básicas	32
Figura 1.15 Estructuras de laminas	33
Figura 1.16 Estructuras laminares	33
Figura 1.17 Proceso de producción	36
Figura 1.18 Grava mal graduada	38
Figura 1.19 Aparato manual para Límite Líquido (Cuchara Casagrande)	45
Figura 1.20 Límite de atterberg (Carta de Plasticidad)	46
Figura 1.21 Molde cilíndrico de 6,0 pulg	49
Figura 1.22 Ejemplo de Gráfico de Coeficiente de Consolidación	50
Figura 1.23 Dispositivo para el ensavo de corte directo	51

Figura 2.1 Vista del Lugar de Obtención de Arcilla en km 17 de la carretera
Huamanga-Pacaicasa en el Departamentode Ayacucho 58
Figura 2.2 Vista del lugar de obtención de ceniza de fondo en el Departamento
de Ayacucho 58
Figura 2.3. Secuencia del desarrollo de actividades 59
Figura 3.1 Análisis granulométrico por fracción fina para las combinaciones
80%S 20%CF, 70%S 30%CF comparado con el suelo y la ceniza de fonde
65
Figura 3.2 Análisis granulométrico por fracción fina del suelo arcilloso y ceniza
de fondo 66
Figura 3.3. Ensayo de Límite Líquido con la cuchara de Casagrande 6
Figura 3.4 Preparación de muestra para el ensayo de Limite Plástico 68
Figura 3.5 Variación de índice de plasticidad entre arcilla – ceniza de fondo
68
Figura 3.6 Variación de Límite de consistencia entre arcilla – ceniza de fondo
69
Figura 3.7 Compactación del suelo mediante el martillo manual para el ensayo
de Proctor Modificado NTP 339.141 73
Figura 3.8 Compactación mediante 5 capas de suelo para el ensayo de
Proctor Modificado NTP 339.141
Figura 3.9 Variación de curvas de compactación con respecto a la
combinaciones de arcilla – ceniza de fondo 74
Figura 3.10 Armado del Molde para consolidación 75
Figura 3.11 Toma de lectura de deformación 70
Figura 3.12 Resultados del esfuerzo de preconsolidación = 118.58 kpa 78
Figura 3.13 Resultados del esfuerzo de preconsolidación = 127.643 kpa 78
Figura 3.14 Resultados del esfuerzo de preconsolidación = 222.3 kpa 79
Figura 3.15 Curado de muestras a 7 y 14 días entre arcilla – ceniza de fondo
para el ensayo de Corte Directo 80
Figura 3.16 Toma de lectura del desplazamiento horizontal para el ensayo de
Corte Directo 8
Figura 3.17 Resultados del esfuerzo a corte para las diversas combinaciones
curado a 7 días

Figura (3.18 Re	esultados del	esfue	rzo a cor	te pa	ra las dive	ersas c	ombi	naciones,
curado	a 14 dí	as							82
Figura	3.19	Resultados	del	ángulo	de	fricción	para	las	diversas
combin	acione	s, curado a 7	y 14 (días					83
Figura	3.20 F	Resultados de	la d	cohesión	para	las dive	rsas c	ombi	naciones,
curado	a 7 y 1	4 días							83

Lista de anexos

ANEXO N°1: MATRIZ DE CONSISTENCIA	90
ANEXO N°2: TABLAS	92
ANEXO N°3: ENSAYOS FÍSICOS	101
ANEXO N°4: ENSAYOS MECÁNICOS	112
ANEXO N°5: PANEL FOTOGRÁFICO	180

RESUMEN

La ceniza de madera de fondo es un residuo proveniente de la combustión de eucalipto utilizado por ladrilleras artesanales en el proceso de fabricación de ladrillos. Este residuo no es desechado adecuadamente, según criterios medioambientales, terminando como material de desmonte o formando parte de los residuos sólidos domésticos almacenados en rellenos sanitarios. Durante su transporte se genera contaminación del aire impactando en la salud de las personas.

En diversos países en el mundo, existen usos aplicativos para la ceniza proveniente de diferentes industrias. Esta investigación tiene como objetivo determinar la incidencia de la ceniza de madera de fondo en la estabilización de suelos arcillosos.

Para lograr este objetivo, se llevó a cabo un programa de pruebas de laboratorio para evaluar las propiedades físicas y mecánicas de un suelo arcilloso estabilizado con ceniza de madera de fondo. La ceniza de madera de fondo de ladrilleras artesanales y los suelos arcillosos utilizados en esta investigación, son muestras que se obtuvieron del Distrito de Pacaicasa, Provincia y Departamento de Ayacucho

Los resultados de los ensayos realizados mostraron que existe un mejor comportamiento mecánico en la mezcla arcilla – ceniza, a comparación del suelo arcilloso puro. Para este fin, se examinaron factores como, tiempo de curado, tiempo de compactación, contenido de agua y otros factores que influyen en las propiedades de la mezcla final.

PALABRAS CLAVES: Ceniza de madera de Fondo, suelos arcillosos, ladrilleras artesanales, estabilización.

ABSTRACT

Background wood ash is a residue from the combustion of eucalyptus used by

traditional brickmakers in the brick making process. This waste is not disposed

of properly, according to environmental criteria, the ash ends as waste material

or forms part of the domestic solid waste stored in landfills. During its transport,

air pollution is generated, impacting the health of people.

In various countries of the world, there are practical uses for ash made from

different industries. The objective of this research is to determine the incidence

of wood ash in the stabilization of clay soils.

To achieve this goal, a laboratory test program was carried out to evaluate the

physical and mechanical properties of a clayey soil stabilized with wood ash.

The wood ash from traditional brick kilns and clayey soils used in this research

are samples obtained from the District of Pacaicasa, Department of Ayacucho.

The results of the tests carried out showed that there is a better mechanical

behavior in the clay - ash mixture in comparison to the pure clay soil. For this

purpose, factors such as curing time, compaction time, water content and

others that influence the properties of the final mixture were examined.

Keywords: Wood ash, clay soils, traditional brick kilns, stabilization.

xiv

INTRODUCCIÓN

Según Soriano, C. (2012), se sabe que en el Perú existen aproximadamente 2000 hornos de ladrilleras artesanales. La ceniza de madera de fondo es un subproducto del proceso de combustión. Ésta se divide en dos tipos de material: cenizas volantes (más finas, que predominan en el aire) y ceniza de fondo (más pesado y grueso que las cenizas volantes).

A nivel del Perú, suman aproximadamente 53,500 toneladas al año de ceniza de fondo. Hasta la actualidad, este material se considera un desperdicio, pero los estudios encontrados para las cenizas volantes provenientes de centrales eléctricas muestran que debido a sus propiedades cementosas es muy útil. A medida que se realizaron estudios adicionales, desarrollaron usos más avanzados para la ceniza volante.

El objetivo de esta investigación es determinar el potencial de la utilización de ceniza de madera de fondo en el mejoramiento de las propiedades mecánicas de un suelo arcilloso. La realidad de la ceniza de madera de fondo en Pacaicasa no tiene un uso beneficioso todavía, siendo eliminada como desmonte. Esto proporciona una oportunidad para su uso en la construcción y la oportunidad de reducir el costo de disposición.

Para lograr este objetivo, se obtuvieron muestras de suelo arcilloso y ceniza de madera de fondo de las ladrilleras artesanales, de Pacaicasa, donde se sometieron a un programa de pruebas de laboratorio. El programa de pruebas se compuso de ensayos para determinar el análisis de tamaño de partícula, límites de consistencia, gravedad específica, características de compactación. Para evaluar el efecto de la ceniza de madera de fondo sobre la mejora de las propiedades del suelo arcilloso, se crearon diferentes mezclas de ceniza y suelo arcilloso donde se sometieron a las mismas pruebas de laboratorio.

1. Formulación del Problema

1.1. Problema General

¿En qué medida incide la ceniza de madera de fondo, producto de ladrilleras artesanales, en la estabilización del suelo arcilloso, en el Departamento de Ayacucho?

1.2. Problemas Específicos

- ¿En qué medida incide la ceniza de madera de fondo, producto de ladrilleras artesanales, en el índice de plasticidad del suelo arcilloso, en el Departamento de Ayacucho?
- ¿En qué medida incide la ceniza de madera de fondo, producto de ladrilleras artesanales, en la humedad óptima del suelo arcilloso, en el Departamento de Ayacucho?
- ¿En qué medida incide la ceniza de madera de fondo, producto de ladrilleras artesanales, en la deformación y esfuerzo del suelo arcilloso, en el Departamento de Ayacucho?
- ¿En qué medida incide la ceniza de madera de fondo, producto de ladrilleras artesanales, en los parámetros de resistencia del suelo arcilloso, en el Departamento de Ayacucho?

2. Objetivos

2.1. Objetivo General

Determinar la incidencia de la ceniza de madera de fondo, producto de ladrilleras artesanales, en la estabilización del suelo arcilloso, en el Departamento de Ayacucho.

2.2. Objetivos Específicos

- Realizar el ensayo Límites de Atteberg para determinar el índice de plasticidad del suelo arcilloso estabilizado con ceniza de madera de fondo, producto de ladrilleras artesanales en el Departamento de Ayacucho.
- Realizar el ensayo de Proctor Modificado para determinar la humedad óptima de un suelo arcilloso estabilizado con ceniza de madera de fondo, producto de ladrilleras artesanales en el Departamento de Ayacucho.
- Evaluar la consolidación unidimensional para determinar la deformación y el esfuerzo del suelo arcilloso estabilizado con ceniza de madera de fondo, producto de ladrilleras artesanales en el Departamento de Ayacucho.
- Realizar la prueba de corte directo para determinar los parámetros de resistencia del suelo arcilloso estabilizado con ceniza de madera de fondo, producto de ladrilleras artesanales en el Departamento de Ayacucho.

3. Justificación e Importancia

La presente investigación busca brindar una alternativa de solución con respecto a la mejora de las propiedades físicas y mecánicas de los suelos arcillosos.

Dicha alternativa corresponde al empleo de materiales como la ceniza de madera de fondo proveniente de ladrilleras artesanales, ya que actualmente en nuestro país no se le está dando un uso adecuado respecto a la aplicación de innovación de estabilizadores de suelos.

Por ello la investigación se basa en la implementación de estos residuos como estabilizadores de suelos arcillosos, dando así un importante aporte técnico a la ingeniería como a los aspectos económico y ambiental.

4. Alcances y Limitaciones

La investigación se orienta a evaluar la implementación de residuos Ceniza de madera de Fondo como material estabilizador de suelos arcillosos, y la influencia que genera la ceniza de la quema de madera Eucalipto con carbón para la producción de ladrillos artesanales en el Departamento de Ayacucho, con la finalidad de generar una mejora en las propiedades físicas y mecánicas de los suelos arcilloso.

5. Viabilidad del Estudio

- Viabilidad técnica: Se tuvo acceso a información técnica y acceso al Laboratorio de Materiales y Mecánica de Suelos de la Universidad San Martín de Porres, para poder realizar los ensayos requeridos; los desarrollos de las tablas de ensayos se realizaron utilizando el programa Microsoft Excel.
- Viabilidad económica: La investigación fue realizada con el financiamiento de los autores y familiares para viajar y realizar tres visitas al Departamento de Ayacucho, a fin de extraer las muestras que se sometieron al estudio experimental de la presente tesis. Nuestra casa de estudios (USMP FIA) apoyó con el libre acceso al Laboratorio de Materiales y Mecánica de Suelos de la Universidad.

CAPÍTULO I: MARCO TEÓRICO

1.1. Antecedentes

Los suelos arcillosos, por naturaleza portan una baja capacidad de soporte debido a su mala calidad lo cual hace que no cumplan con los requerimientos necesarios para la elaboración de los diversos proyectos de obras civiles, generando así un costo elevado con respecto a los diversos tratamientos que se le aplican para poder estabilizarlos.

Por ello, así como los tratamientos con cal o cemento, el tratamiento con cenizas de madera, provenientes de ladrilleras artesanales vendría a ser una alternativa de solución con respecto a este tipo de problemas.

Durán, G. (2016) Hizo un estudio experimental, utilizando ceniza de madera, para el mejoramiento del suelo arcilloso, realizando ensayos de resistencia: compresión simple y triaxial Cu, con la mezcla de suelo arcilloso y ceniza de madera (horno de ladrillos artesanales), logrando identificar el mejoramiento en las propiedades mecánicas del suelo arcilloso, como se muestra en las figuras 1.1 y 1. 2.

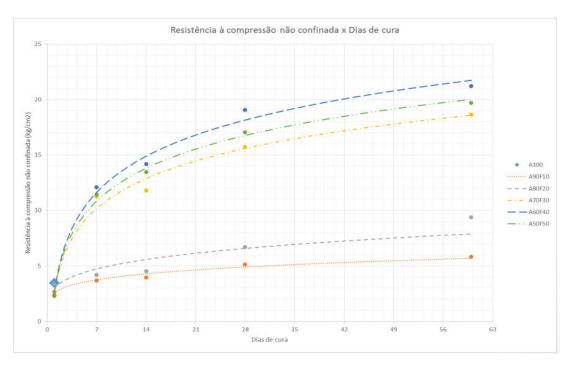


Figura 1.1 Resistencia a la compresión no confinada

Fuente: Durán, G. (2016)

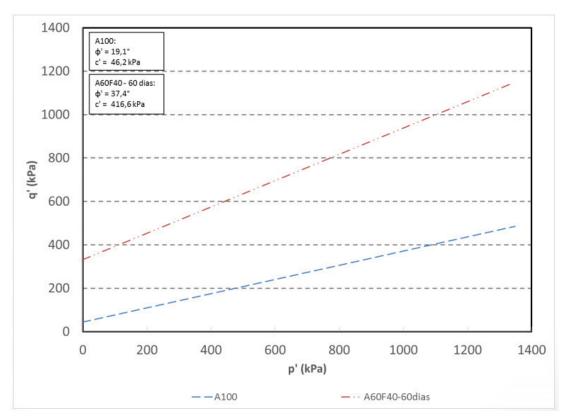
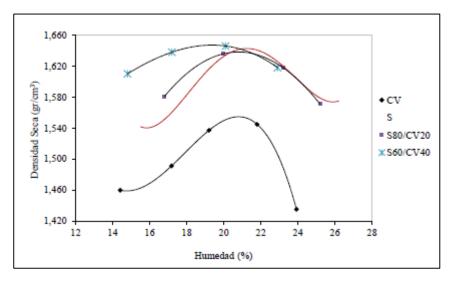


Figura 1.2 Ensayo triaxial no drenado CU Fuente: Durán, G. (2016)

1.2. Antecedentes de la investigación


Pérez. R. (2012), en su tesis establece una idea de lo rentable que puede ser utilizar la ceniza volante como estabilizador de suelos arcillosos en obras viales. Para hacer válido el estudio, se requirió definir una serie de ensayos que dependieron principalmente de una variación dada de cada material. En la tabla 1.1 y en la figura 1.3 se presentan los resultados del ensayo Proctor modificado donde se aprecia que la máxima densidad seca disminuye con la adición de la ceniza volante, en la tabla 1.2 y figura 1.4 se observa que el valor de CBR se incrementa notablemente desde 7.7% correspondiente a un suelo arcilloso hasta un valor de CBR de 23.5% para una combinación de material arcilloso en un 60% y ceniza volante en un 40%.

Se puede concluir que la arcilla en combinación con la ceniza volante da buenos resultados mejorando la resistencia del suelo arcilloso.

Tabla 1.1 Resultados de Ensayos de Compactación de Materiales Con suelo y Ceniza Volante

	Próctor Modificado				
Material/Mezcla	Óptimo contenido de Humedad % (OCH)	Máxima Densidao Seca g/cm3(MDS)			
S	21.5	1.646			
S80/CV20	21.0	1.639			
S60/CV40	19.3	1.648			
CV	20.9	1.555			

Fuente: Pérez, R. (2012)

Figura 1.3 Curvas de compactación de suelo, ceniza volante y mezclas **Fuente:** Pérez, R. (2012)

Tabla 1.2 Resultados de Ensayos de Compactación de Materiales de este Estudio entre Suelo Arcilloso y Ceniza Volante

Material/Mezcla	Símbolo	CBR al 100% de la MDS (%)		
Suelo	S	7.7		
Mezcla N°1	S80/CV20	16.9		
Mezcla N°2	S60/CV40	23.5		

Fuente: Pérez, R. (2012)

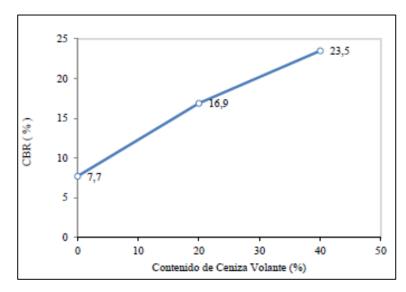


Figura 1.4 Curvas de CBR de la mezcla vs. Contenido de Ceniza Volante Fuente: Pérez, R. (2012)

Coenen, A., Titi, H. & Elias, M. (2014). Hizo un estudio para evaluar las características de la ceniza de fondo seleccionada de combustión de carbón, para la posible utilización en construcción de pavimentos. Realizó ensayos de laboratorio para evaluar las propiedades físicas, las características de compactación y el módulo elástico de la ceniza de fondo, los suelos de subrasante y las mezclas de ceniza y suelo. En la figura 1.5, 1.6, 1.7, 1.8, 1.9 y 1.10 el ensayo triaxial muestra que los valores de módulo elástico de la ceniza varían según sus propiedades físicas y el peso unitario de la ceniza de fondo.

Para cuatro muestras de ceniza de fondo (PPPP, PIPP 1-6, PIPP 7-9 y VAPP), los valores del módulo elástico fueron bajos en comparación con los suelos de subrasante, mientras que para un tipo el módulo elástico fue mayor que el de la subrasante suelo. Por lo tanto, mezclando la ceniza de fondo con el suelo de la subrasante mostró aumento de los valores de módulo elástico de la mezcla para la muestra de ceniza de fondo OCPP.

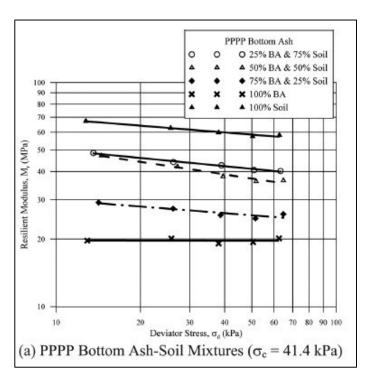


Figura 1.5 Resultados de la prueba triaxial de carga repetida en mezclas de ceniza y suelo Fuente: Coenen, A., Titi, H. & Elias, M. (2014)

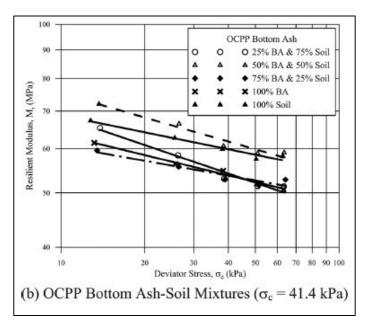


Figura 1.6 Resultados de la prueba triaxial de carga repetida en mezclas de ceniza y suelo Fuente: Coenen, A., Titi, H. & Elias, M. (2014)

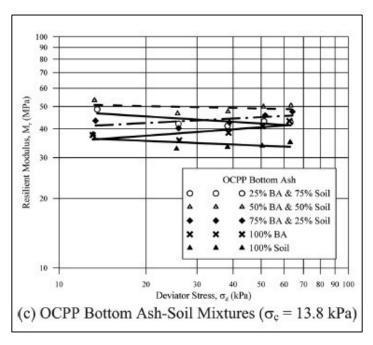


Figura 1.7 Resultados de la prueba triaxial de carga repetida en mezclas de ceniza y suelo Fuente: Coenen, A., Titi, H. & Elias, M. (2014)

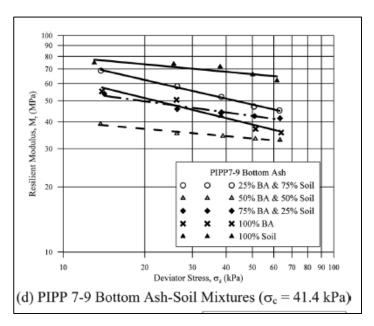


Figura 1.8 Resultados de la prueba triaxial de carga repetida en mezclas de ceniza y suelo Fuente: Coenen, A., Titi, H. & Elias, M. (2014)

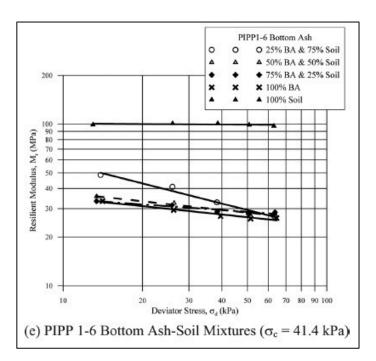
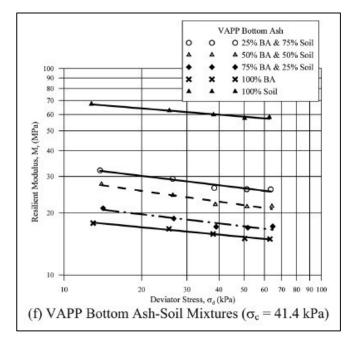



Figura 1.9 Resultados de la prueba triaxial de carga repetida en mezclas de ceniza y suelo Fuente: Coenen, A., Titi, H. & Elias, M. (2014)

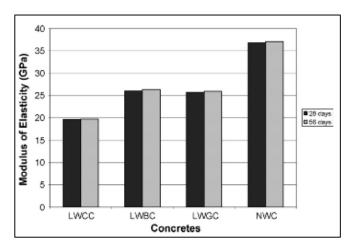
Figura 1.10. Resultados de la prueba triaxial de carga repetida en mezclas de ceniza y suelo

Fuente: Coenen, A., Titi, H. & Elias, M. (2014)

Niyazi, U. K. & Turan, O. (2010). Realizó una investigación analizando la influencia de diferentes agregados ligeros de cenizas volantes sobre el comportamiento de las mezclas de concreto, las características de

rendimiento de los hormigones livianos y el concreto de peso normal. Realizó diferentes ensayos de resistencia a la compresión, módulo de elasticidad y la resistencia a la tracción. Los valores de resistencia a la compresión y módulo de elasticidad de los concretos se muestran en la figura 1.11, 1.12 y la tabla 1.3 respectivamente. La resistencia a la compresión a los 28 días y la densidad del concreto seco de los hormigones livianos variaron de 42.3 a 55.8 MPa y de 1860 a 1943 kg / m3, respectivamente. Los concretos de agregado de peso ligero tenían una resistencia a la compresión y valores de elasticidad más bajos que el hormigón de peso normal debido a la mayor porosidad y menor resistencia de los agregados livianos utilizados. LWCC (hormigón agregado de ceniza volante ligado en frío liviano), por otro lado, tenía un menor módulo de elasticidad de compresión que LWBC (concreto ligero agregado de ceniza volante con bentonita liviana) y LWGC (concreto agregado de ceniza volante agregado en polvo de vidrio liviano), que tenían valores de resistencia y módulo comparables.

Tabla 1.3 Propiedades de los hormigones frescos y endurecidos.


Concretos	slump	fresh density kg/m3	Air content (%)	28-Day density kg/m3 (SSD)	28-Day density kg/m3 (OD)	56-Day density kg/m3	Calculated density kg/m3	Calculated equilibrium density kg/m3
LWCC	15	1991	3.9	2025	1860	1868	1826	1876
LWBC	15.5	1960	4.3	1979	1915	1922	1919	1969
LWGC	16.5	1975	4.1	1997	1943	1963	1924	1974
NWC	17	2381	3.8	2387	2316	2323	1327	2377

Fuente: Niyazi, U. K. & Turan, O. (2010)

70
60
50
40
40
10
0
LWCC LWBC LWGC NWC
Concretes

Figura 1.11. Valores de resistencia a la compresión de especímenes de hormigón de 28 y 56 días.

Fuente: Niyazi, U. K. & Turan, O. (2010)

Figura 1.12. Valores del módulo de elasticidad de especímenes de hormigón de 28 y 56 días.

Fuente: Niyazi, U. K. & Turan, O. (2010)

James, A., Thring, R., Helle, S. & Ghuman, H. (2012). Hizo un estudio de investigación, para el aprovechamiento de cenizas de fondo producto de la combustión de la biomasa. A medida que la demanda de producción de bioenergía aumenta, la combustión de biomasa aumenta y los volúmenes de ceniza también se incrementan. En la tabla 1.4 se puede observar las propiedades de muestras de la biomasa leñosa de cenizas. Debido a la variedad de fuentes de combustible de biomasa con diferentes propiedades de cenizas realizó la identificación de las características de las cenizas proponiendo tres principales categorías de utilización de cenizas derivadas de la biomasa:

(1) uso en agricultura; (2) uso como combustible y (3) uso en la construcción. En la tabla 1.5 se estima rangos potenciales de producción neta de cenizas basada en los líderes mundiales de la generación de residuos de madera. La investigación también indica que las cenizas de fondo tienen concentraciones significativamente más bajas de metales pesados que las cenizas volantes, como tal, una mezcla de cenizas volantes y cenizas de fondo pueden ser adecuadas para su aplicación como una enmienda del suelo.

Tabla 1.4 Propiedades de las muestras de biomasas de madera.

Análisis aproximado (wt %)	Cáscara de arroz	Pellet de cáscara de arroz	Polvo de alerce	Sauce	Miscanthus	Pino
Humedad	3.6	9.2	2.6	7.2	6.1	5.5
Materia volátil	60	65.1	76.7	78.1	67.9	81.2
ceniza	16.3	9.3	0.8	1	12.9	1.2
carbono fijo	20.1	16.4	19.9	13.7	13.1	12.1

Fuente: James, A., Thring, R., Helle, S. & Ghuman, H. (2012)

Tabla 1.5 Potencias de Producción de ceniza.

País	Ceniza de la combustión de residuos de madera 10 ⁵ (tons)	Ceniza de combustión de combustible de madera 10 ⁵ (tons)
China	1.2-2.4	9.5-19.1
Brasil	1.1-2.2	1.4-2.7
USA	1.04-2.1	0.99-2.0
Rusia	0.63-1.3	1.99-4.0
Francia	0.61-1.2	0.28-0.57

Fuente: James, A., Thring, R., Helle, S. & Ghuman, H. (2012)

Ahmaruzzaman, M. (2010). Realizó una investigación para utilización de las cenizas volantes, generadas durante la combustión del carbón, debido a los problemas ambientales presentados. Hizo estudios para ver la composición química de las cenizas como se puede observar en la tabla 1.6. En este trabajo, la utilización de cenizas volantes cumple un rol importante en la construcción como agregado ligero, sub-base de carretera, en la India la ceniza volante se utiliza para la producción de cemento, ladrillos, ya que la ceniza volante tiene un elevado costo de eliminación, llevando a buscar una aplicación a estos residuos alcanzando una solución económica viable a este problema.

Tabla 1.6 Rango normal de composición química para las cenizas producidas a partir de diferentes tipos de carbón.

Componentes (wt %)	Bituminoso	Sub- bituminoso	Lignito
SiO_2	20-60	40-60	15-45
$Al_2 O_3$	5-35	20-30	10-25
$Fe_2 O_3$	10-40	4-10	4-15
CaO	1-12	5-30	15-40
MgO	0-5	1-6	3-10
SO_2	0-4	0-2	0-10
$Na_2 O$	0-4	0-2	0-6
K ₂ O	0-3	0-4	0-4
LOI	0-15	0-3	0-5

Fuente: Ahmaruzzaman, M. (2010)

1.3. Bases teóricas

1.3.1. Suelos Arcillosos

Muchos de los suelos arcillosos se hallan en zonas de alta precipitación, presentando deficiencias en el drenaje, este suelo se caracteriza por su alto contenido de agua y su baja resistencia in situ.

Los suelos arcillosos cuando experimentan cambios de humedad tienden a presentar cambios de volumen.

La constitución del suelo arcilloso es por los siguientes minerales activos como la montmorillonita en grandes proporciones y en pocas proporciones o casi nulas la clorita y la vermiculita. Y los minerales que no se consideran activas son las caolinitas y las illitas, éstos sin embargo pueden contribuir a las propiedades expansivas de los suelos siempre y cuando se encuentren en cantidades apreciables. Existen propiedades físicas que influyen al cambio volumétrico y tienen incidencia tanto en sitio como en el laboratorio.

Las dimensiones de sus partículas de acuerdo a la norma: Asociación Americana de Ensayos de Materiales (ASTM D422), se lo puede observar en la Tabla 1.8. Su índice de plasticidad para característica de un suelo arcilloso se observa en la tabla 1.7.

Su peso específico varía entre los límites de 2,60 a 2,75 gramos por centímetro cúbico. Mientras más denso es el suelo es más sólido, por lo tanto, presenta alta resistencia a la erosión.

Su porosidad y humedad tienden a modificarse al incremento de la saturación, un suelo arcilloso puede pasar del estado sólido al líquido, debido al incremento de agua en su interior y provoca una disminución bruscamente de las fuerzas de cohesión apareciendo una fluidez de sus partículas. Los suelos arcillosos tienen una cohesión alta que va desde 0,25 kilogramos sobre centímetro cuadrado a 1,5 kilogramos sobre centímetro cuadrado, en ocasiones pasan el rango mencionado.

Tabla 1.7 Índice de Plasticidad de la Arcilla Norma ASTM D4318 - 84

ÍNDICE DE PLASTICIDAD	CARACTERÍSTICA
IP>20	Suelos muy arcillosos
20>IP>10	Suelos arcillosos
10>IP>4	Suelos poco arcillosos
IP=0	Suelos exentos de arcilla

Fuente: Ministerio de Transportes y Comunicaciones (2016). Manual de Ensayo de Materiales

Tabla 1.8 Clasificación de Suelos según Tamaño de Partículas Norma ASTM D422

TIPO DE MATERIAL	TAMAÑO DE PARTÍCULAS
Grava	75 mm - 2 mm
Arena	Arena gruesa: 2 mm - 0.2 mm
	Arena fina: 0.2 mm - 0.05 mm
Limo	0.05 mm - 0.005 mm
Arcilla	Menor a 0.005 mm

Fuente: Ministerio de Transportes y Comunicaciones (2016). Manual de Ensayo de Materiales

1.3.1.1. Estructura de las Arcillas

Whitlow, R. (1994), los minerales arcillosos son formados principalmente por la meteorización química de las rocas, es decir que estos minerales son producto de la alteración de minerales preexistentes en la roca. Estos minerales son tan diminutos que sólo pueden ser vistos utilizando un microscopio electrónico.

Los principales elementos químicos constituyentes de estos minerales son átomos de: silicio, aluminio, hierro, magnesio, hidrógeno y oxígeno. Estos

elementos atómicos se combinan formando estructuras atómicas básicas, que combinándose entre sí forman láminas, la que al agruparse forman estructuras laminares que finalmente al unirse por medio de un enlace forman un mineral de arcilla.

La Figura 1.13 muestra las dos unidades estructurales básicas de los minerales de arcilla, que son: la unidad tetraédrica constituida por un ión de silicio rodeado por cuatro átomos de oxígeno (Figura 1.13.a) y la unidad octaédrica formada por un ion central de aluminio o magnesio rodeado por seis iones de oxidrilo (Figura 1.13.b). En ambos casos el metal con valencia positiva está situado en el interior, mientras que los iones no metálicos con valencia negativa forman el exterior.

Las estructuras laminares mostradas en la Figura 1.13. se forman cuando varias unidades atómicas básicas se enlazan covalentemente mediante los iones de oxígeno u oxidrilo. Entre las estructuras laminares se tiene la lámina tetraédrica y octaédrica.

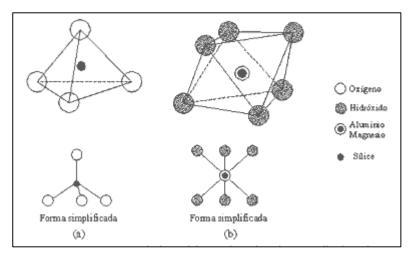
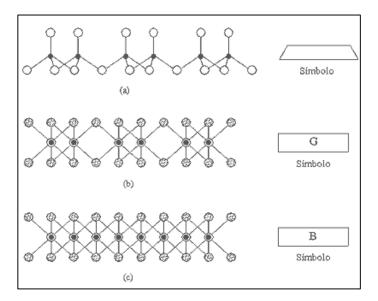



Figura 1.13. Estructuras atómicas básicas de los minerales de arcilla.

(a) Unidad tetraédrica. (b) Unidad octaédrica.

Fuente: Whitlow, R. (1994)

Figura 1.14. Láminas formadas por estructuras atómicas básicas. (a) Lámina de sílice. (b) Lámina de gibsita. (c) Lámina de brucita. **Fuente:** Whitlow, R. (1994)

En la Figura 1.14a se muestra una lámina tetraédrica llamada sílice, que está formada por tetraedros enlazados que comparten dos átomos de oxígeno, la forma simbólica de representar esta lámina es por medio de un trapecio. La Figura 1.14b muestra una lámina octaédrica formada por octaedros de aluminio enlazados que forman una estructura dioctaédrica llamada alumina o gibsita, simbólicamente está representada por un rectángulo con letra G. La lámina de la Figura 1.14c, corresponde a una lámina formada por octaedros de magnesio que forman una estructura trioctaédrica llamada brucita, simbólicamente está representada por un rectángulo con letra B.

La separación entre los iones externos de las láminas de tetraédricas y octaédricas es suficiente para que ambas láminas puedan unirse por medio de iones oxígeno u oxidrilo mutuamente; esto hace posible la formación de estructuras laminares de dos o de tres láminas. En la Figura 1.15 se muestra estas estructuras.

En la estructura de dos láminas mostrada en la Figura 1.15a, las láminas tetraédricas y octaédricas están alternadas, mientras que la de tres láminas mostrada en la Figura 1.15b consiste de una lámina octaédrica emparedada entre dos láminas tetraédricas, estas dos formas de estructuras laminares son generales para formar las distintas variedades de minerales de arcilla.

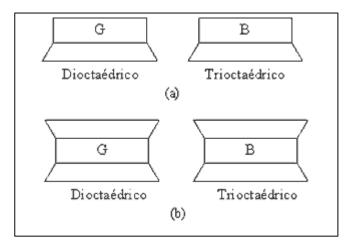


Figura 1.15. Estructuras de láminas.

(a) Estructura de dos láminas. (b) Estructura de tres láminas.

Fuente: Whitlow, R. (1994)

La variedad de los minerales de arcilla, depende de la distribución de apilación de estas estructuras laminares, así como del tipo que proveen el enlace de las mismas. La figura 1.16 muestra los minerales de arcilla más comunes.

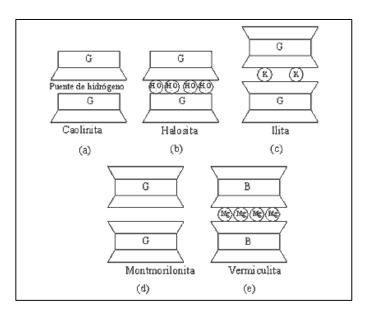


Figura 1.16. Estructuras laminares.

(a) Caolinita. (b) Halosita. (c) Ilita. (d) Montmorilonita. (e) Vermiculita.

Fuente: Whitlow, R. (1994)

La abundante variedad de minerales de arcilla, está bastante relacionada a la estructura de los minerales que se muestran en la Figura 1.16, por lo que se pueden identificar a cuatro grupos de minerales arcillosos que son:

Grupo de la caolinita. - La caolinita (Al4Si4O10(OH)8) es el principal constituyente del caolín y las arcillas para porcelana. Las caolinitas son producto de la meteorización del feldespato ortoclasa proveniente del granito y comúnmente se encuentran en suelos compuestos de sedimento. La caolinita se presenta en hojuelas hexagonales de tamaño pequeño, su estructura consiste en una distribución de dos láminas de sílice y gibsita fuertemente enlazadas (Figura 1.16a). Algunos minerales de arcilla que pertenecen a este grupo son: la dickita que tiene la misma composición de la caolinita, pero con un orden diferente en sus láminas y la halosita que generalmente aparece en algunos suelos tropicales, cuyas láminas en forma tubular están enlazadas por moléculas de agua (Figura 1.16b).

Grupo de la ilita. - La ilita es el resultado de la meteorización de las micas, es similar en muchos aspectos a la mica blanca, pero tiene menos potasio y más agua en su composición. Se presenta en forma de hojuelas y su estructura consiste en arreglos de tres láminas de gibsita con los iones de K proporcionando el enlace entre láminas adyacentes de sílice como muestra la Figura 1.16c. Debido a que el enlace es más débil que el de la caolinita sus partículas son más pequeñas y delgadas.

Grupo de la montmorilonita. - La montmorilonita es el constituyente principal de la bentonita y otras variedades similares de arcilla. Las montmorilonitas suelen ser el resultado de la meteorización del feldespato plaglioclasa en los depósitos de ceniza volcánica. Su estructura fundamental consiste de distribuciones de tres láminas, cuya lámina octaédrica intermedia es casi siempre gibsita o en otro caso brucita. Diversos enlaces metálicos además del potasio (K) forman enlaces débiles entre las láminas como muestra la Figura 1.16d. Una característica particular de los minerales del grupo de la montmorilonita es su considerable aumento de volumen al absorber partículas de agua.

Grupo de la vermiculita. - Este grupo contiene productos de la meteorización de la biotita y la clorita. La estructura de la vermiculita es similar a la montmorilonita, excepto que los cationes que proporcionan los enlaces entre

láminas son predominantemente Mg, acompañados por algunas moléculas de agua como muestra la Figura 1.16e.

1.3.2. Origen y proceso de Obtención de Ceniza de madera

Swisscontact (2012). En el Perú existen aproximadamente 2000 hornos para la fabricación de ladrillos artesanales. Los cuales generan 53,500 toneladas/año de ceniza de fondo.

Según Soriano, C. (2012). La región de Ayacucho cuenta aproximadamente con 170 empresas de ladrilleras artesanales, su mayor concentración se encuentra en el Distrito de Pacaicasa, como se muestra en la tabla 1.9, con 80 hornos generando aproximadamente 2,120 toneladas de ceniza de fondo. El nivel de Producción mensual de ladrillos se estima en 5,440 millares, como promedio de 1 horno por empresa productora, es decir 170 hornos.

Los combustibles usados para la cocción de 25 millares de ladrillos son: La Leña y el carbón de piedra, constituyéndose la Leña en el 60% y el carbón 40%, como se muestra en la tabla 1.10.

La ceniza de fondo es un subproducto de la combustión del eucalipto y el carbón, para la elaboración de ladrillos artesanales, el cual presenta una línea de producción como se muestra en la figura 1.17.

La ceniza de fondo se obtiene después de 2 días de enfriamiento de los hornos, el acopio de ceniza se realiza e n forma manual a través de una pala, que permite remover la ceniza, amontonándola para meterla en sacos, suele estar subutilizada y termina en acopios de rellenos sanitarios, causando contaminación durante su proceso de traslado.

Tabla 1.9 Empresas de ladrilleras artesanales

Provincia	Zonas	Empresas
	La Compañía	60
Huamanga	Pacaicasa	80
	Paraíso	30
Total		170

Fuente: Soriano, C. (2012).

Tabla 1.10. Materiales utilizados

MATERIALES	TOTAL (Kg)	SE UTILIZA (Kg)	%
MADERA (EUCALIPTO)	4000	2400	60
CARBÓN	3000	1500	40

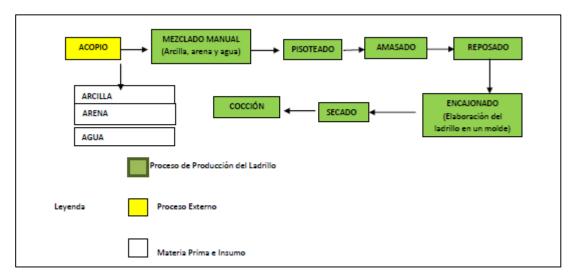


Figura 1.17. Proceso de producción.

Fuente: Soriano, C. (2012).

1.3.3. Ceniza de Fondo

La ceniza de fondo comprende la fracción gruesa de ceniza producida en la cama inferior y el cámara de combustión primaria. A menudo, se mezcla con impurezas minerales contenidas en el combustible, como barros.

Residuo transportado por los ases de combustión en un horno. El material cae al fondo del horno y se separa mecánicamente. La ceniza de fondo constituye la mayor parte (60%) del total de las cenizas producidas por la combustión de madera y carbón.

1.3.4. Estabilización de suelos Arcillosos

Rico, A. y Del Castillo, H. (1978), la estabilización de un suelo es un proceso que tiene como objetivo mejorar sus propiedades como su resistencia a la deformación, disminuir su sensibilidad al agua, controlar la erosión y los cambios de volumen.

La estabilización de suelos arcillosos consiste en modificar algunas de sus características indeseables para el propósito de uso que queremos darle a dicho suelo.

Las principales características indeseables de una arcilla plástica serán: Un índice plástico demasiado alto que significa un alto valor de expansión (o bien su opuesta contracción), así como una capacidad para soportar carga estructural que será demasiado baja.

El suelo arcilloso tiene la capacidad de modificar su volumen cuando absorbe o deja de absorber agua produciendo hinchazones sobre el asentamiento de la obre que deriva en ciertas rajaduras que muchas veces pueden visualizarse desde la fachada con grietas horizontales.

1.3.5. Contenido de Humedad

Morales, D. (2015), el contenido de humedad es la relación entre el peso del agua que está en el interior de la muestra en estado natural y el peso de la misma muestra luego de haberla secado en un horno a temperatura entre los 105 y 110 grados centígrados.

El comportamiento y la resistencia de los suelos dependen de la cantidad de agua que posean en el interior ya que esta propiedad influye directamente al cambio de volumen y a la estabilidad mecánica, el contenido de humedad se lo representa en porcentaje que va de 0% cuando el suelo está seco a un valor máximo aproximadamente al 100%.

1.3.6. Análisis Granulométrico

Según Pontificia Universidad Católica del Perú (2012), el análisis granulométrico de un suelo consiste en separar y clasificar por tamaños los granos que lo componen. Este ensayo nos permite formar una idea aproximada de algunas de las propiedades de los suelos, fundamentalmente de los gruesos.

a. Análisis Granulométrico por Tamizado

Según Pontificia Universidad Católica del Perú (2012), el análisis granulométrico por tamizado se concreta a segregar el suelo mediante una

serie de mallas que definen el tamaño de la partícula, como se muestra en la tabla 1.11.

La información que se obtiene del análisis granulométrico se presenta en forma de curva semilogarítmica en la que el "porcentaje que pasa" representa las ordenadas y las mallas son las abscisas. Alternativamente puede presentarse el "porcentaje retenido". En la figura 1.18. Se puede apreciar una posible forma de Curva Granulométrica, que va a depender de la distribución de las partículas en el suelo.

Tabla 1.11. Tamices.

TAMICES	ABERTURA (mm)
3″	75,000
1 1/2"	38,100
3/4″	19,000
3/8″	9,500
Nº 4	4,760
Nº 8	2,360
Nº 16	1,100
N° 30	0,590
Nº 50	0,297
N° 100	0,149
N° 200	0,075

Fuente: Ministerio de Transportes y Comunicaciones (2016). Manual de Ensayo de Materiales

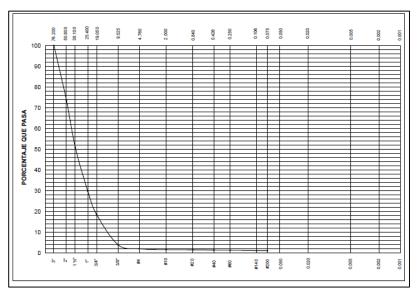


Figura 1.18. Grava mal graduada

Fuente: Pontificia Universidad Católica del Perú (2012). Guía de Laboratorio de Mecánica de Suelos

b. Análisis Granulométrico por Sedimentación

Pontificia Universidad Católica del Perú (2012), el análisis granulométrico por sedimentación resulta útil en suelos que tienen una gran proporción de partículas menores que la malla #200 (0.075 mm) y mayores que 0.001 mm y si bien no permite sacar conclusiones en cuanto a sus propiedades mecánicas nos puede servir para estimar el potencial de expansión (mediante el cálculo de la actividad de las arcillas) y su susceptibilidad al congelamiento.

Según el Ministerio de Transportes y Comunicaciones (2016), con respecto a los procedimientos del ensayo de Sedimentación es necesario la utilización de las siguientes tablas 1.12, 1.13, 1.14, 1.15 y 1.16, las cuales servirán para realizar las respectivas correcciones con respecto al ensayo.

Tabla 1.12. Valores de la Profundidad efectiva basados en hidrómetro y cilindro de sedimentación de dimensiones especificadas.

Н	idrómetro 151	Н	Hidrómetro 152 H		
Lectura del	Profundidad	Lectura del	Profundidad	Lectura del	Profundidad
hidrómetro	efectiva L	hidrómetro	efectiva L	hidrómetro	efectiva L
* R' + Cm	(Cm)	* R' + Cm	(cm)	* R' + Cm	(cm)
1,000	16,3	0	16,3	-	-
1,001	16,0	1	16,1	31	11,2
1,002	15,8	2	16,0	32	11,1
1,003	15,5	3	15,8	33	10,9
1,004	15,2	4	15,6	34	10,7
1,005	15,0	5	15,5	35	10,6
1,006	14,7	6	15,3	36	10,4
1,007	14,4	7	15,2	37	10,2
1,008	14,2	8	15,0	38	10,1
1,009	13,9	9	14,8	39	9,9
1,010	13,7	10	14,7	40	9,7
1,011	13,4	11	14,5	41	9,6
1,012	13,1	12	14,3	42	9,4
1,013	12,9	13	14,2	43	9,2
1,014	12,6	14	14,0	44	9,1

Fuente: Ministerio de Transportes y Comunicaciones (2016). Manual de Ensayo de Materiales

Tabla 1.13. Valores de la Profundidad efectiva basados en hidrómetro y cilindro de sedimentación de dimensiones especificadas.

Н	idrómetro 151	Н	Hidrómetro 152 H			
Lectura del	Profundidad	Lectura del	Profundidad	Lectura del	Profundidad	
hidrómetro	efectiva L	hidrómetro	efectiva L	hidrómetro	efectiva L	
* R' + Cm	(Cm)	* R' + Cm	(cm)	* R' + Cm	(cm)	
1,015	12,3	15	13,8	45	8,9	
1,016	12,1	16	13,7	46	8,8	
1,017	11,8	17	13,5	47	8,6	
1,018	11,5	18	13,3	48	8,4	
1,019	11,3	19	13,2	49	8,3	
1,020	11,0	20	13,0	50	8,1	
1,021	10,8	21	12,9	51	7,9	
1,022	10,5	22	12,7	52	7,8	
1,023	10,2	23	12,5	53	7,6	
1,024	10,0	24	12,4	54	7,4	
1,025	9,7	25	12,2	55	7,3	
1,026	9,4	26	12,0	56	7,1	
1,027	9,2	27	11,9	57	7	
1,028	8,9	28	11,7	58	6,8	
1,029	8,6	29	11,5	59	6,6	
1,030	8,4	30	11,4	60	6,5	
1	031	8,1		*Lectura del hidrómetro		
•			,, ±	corregida por I	Menisco	
1,032	7,8					
1,033	7,6					
1,034	7,3					
1,035	7,0					
1,036	6,8					
1,037	6,5					
1,038	6,2					

Tabla 1.14. Valores de ct. para la corrección por temperatura de las lecturas del hidrómetro.

	(it		
Temp. C	Hidrómetro	graduado en		
	Densidad (gr/cm³) x 10³	Concentración (gr/litro)*		
10	-1,3	-2,0		
11	-1,2	-1,9		
12	-1,1	-1,8		
13	-1,0	-1,6		
14	-0,9	-1,4		
15	-0,8	-1,2		
16	-0,6	-1,0		
17	-0,5	-0,8		
18	-0,3	-0,5		
19	-0,2	-0,3		
20	0,0	0,0		
21	0,2	0,3		
22	0,4	0,6		
23	0,6	0,9		
24	0,8	1,3		
25	1,0	1,7		
26	1,3	2,0		
27	1,5	2,4		
28	1,8	2,9		
29	2,0	3,3		
30	2,3	3,7		

Tabla 1.15. Valores de k para el cálculo del diámetro de partículas en el análisis hidrométrico.

Tem		Peso específico de las partículas del suelo								
оC	2,45	2,50	2,55	2,60	2,65	2,70	2,75	2,80	2,85	
10	0,01659	0,01631	0,01604	0,1583	0,1555	0,01532	0,01510	0,01488	0,01468	
11	0,01636	0,01608	0,01582	0,01557	0,01533	0,01511	0,01489	0,01468	0,01448	
12	0,01613	0,01586	0,01560	0,01535	0,01512	0,01490	0,01468	0,01448	0,01428	
13	0,01591	0,01565	0,01539	0,01515	0,01492	0,01470	0,01449	0,01428	0,01409	
14	0,01571	0,01544	0,01519	0,01495	0,01474	0,01451	0,01430	0,01410	0,01391	
15	0,01551	0,01525	0,01500	0,01476	0,01454	0,01432	0,01412	0,01392	0,01373	
16	0,01530	0,01505	0,01481	0,01457	0,01435	0,01414	0,01394	0,01374	0,01356	
17	0,01521	0,01486	0,01462	0,01439	0,01417	0,01396	0,01376	0,01356	0,01338	
18	0,01492	0,01467	0,01443	0,01421	0,01399	0,01378	0,01359	0,01339	0,01321	
19	0,01437	0,01449	0,01425	0,01403	0,01382	0,01361	0,01342	0,01323	0,01305	
20	0,01456	0,01431	0,01408	0,01386	0,01365	0,01344	0,01325	0,01307	0,01289	
21	0,01438	0,01414	0,01391	0,01369	0,01348	0,01328	0,01309	0,01291	0,01273	
22	0,01421	0,01397	0,01374	0,01353	0,01332	0,01312	0,01294	0,01276	0,01258	
23	0,01404	0,01381	0,01358	0,01337	0,01317	0,01297	0,01279	0,01261	0,01243	
24	0,01388	0,01365	0,01342	0,01321	0,01301	0,01282	0,01264	0,01246	0,01229	
25	0,01372	0,01349	0,01327	0,01306	0,01286	0,01267	0,01249	0,01232	0,01215	
26	0,01357	0,01334	0,01312	0,01291	0,01272	0,01253	0,01235	0,01219	0,01201	
27	0,01342	0,01319	0,01297	0,01277	0,01258	0,01239	0,01221	0,01204	0,01188	
28	0,01327	0,01304	0,01283	0,01264	0,01244	0,01225	0,01208	0,01191	0,01175	
29	0,01312	0,01290	0,01269	0,01249	0,01230	0,01212	0,01195	0,01178	0,01162	
30	0,01298	0,01276	0,01256	0,01236	0,01217	0,01199	0,01182	0,01165	0,01149	

Tabla 1.16. Valores de coeficientes de corrección para distintos pesos específicos de las partículas del suelo.

Peso	Coeficiente	Peso	Coeficiente	Peso	Coeficiente
Específico	"a"	Específico	"a"	Específico	"a"
2,45	1,05	2,60	1,01	2,75	0,98
2,50	1,03	2,65	1,00	2,80	0,97
2,55	1,02	2,70	0,99	2,85	0,96

Fuente: Ministerio de Transportes y Comunicaciones (2016). Manual de Ensayo de Materiales

1.3.7 Peso Específico

Según Pontificia Universidad Católica del Perú (2012), el peso específico de sólidos (γ s) se obtiene en la práctica como la relación entre el peso de sólidos (1) y el volumen de agua que desalojan a la temperatura ambiente. Al valor

obtenido se le realiza una corrección por temperatura, la cual se muestra en la tabla 1.17, que brinda el Ministerio de Transportes y Comunicaciones (2016). Las partículas gruesas contienen, generalmente, aire entrampado en poros impermeables, que sólo podrían eliminarse rompiendo las partículas en granos más finos. Por esto, el peso específico obtenido en esos casos es un peso específico de sólidos "aparente".

En Mecánica de Suelos, generalmente interesa el peso específico aparente de las partículas integrales y por lo tanto las partículas que se usen no deben ser molidas o rotas. El peso específico de un suelo se expresa en unidades de peso sobre volumen, usualmente se emplea el peso específico relativo de los sólidos de un suelo que se obtiene como la relación entre el peso específico de la materia que constituye las partículas del suelo y el peso específico del agua destilada a 4°c. (Gs).

Según el Ministerio de Transportes y Comunicaciones (2016), para la determinación de la gravedad específica (3) de los sólidos se puede realizar por dos métodos.

Método A: Este procedimiento se realiza para especímenes Húmedos, especialmente para suelos Orgánicos altamente plásticos, sólidos de granulometría fina.

Método B: Este procedimiento se realiza para especímenes secados al horno, aplicados a sólidos de granulometría fina.

Los resultados se obtendrán mediante las siguientes fórmulas:

Calcular el peso del espécimen seco:

Wsuelo seco = Wpicnómetro + suelo seco - Wpicnómetro.....(1)

Calcular el volumen del suelo seco:

Vsuelo seco = W picnómetro + suelo seco – Wpicnómetro......(2)

Calcular gravedad específica de los sólidos:

$$Gs = \alpha \frac{W \text{ suelo seco}}{V \text{ suelo seco}}....(3)$$

Tabla 1.17. Densidad del agua y Coeficiente de Temperatura (k) para varias temperaturas.

Tempera	Densi	Coeficien									
tura	dad	te									
(°C)	(g/mL	Tempera									
` ') ^B	tura (K)	,) ^B	tura (K)	,) ^B	tura (K)	ν -/) ^B	tura (K)
15,0	0,99910	1,00090	16,0	0,99895	1,00074	17,0	0,99878	1,00057	18,0	0,99860	1,00039
15,1	0,99909	1,00088	16,1	0,99893	1,00072	17,1	0,99876	1,00055	18,1	0,99858	1,00037
15,2	0,99907	1,00087	16,2	0,99891	1,00071	17,2	0,99874	1,00054	18,2	0,99856	1,00035
15,3	0,99906	1,00085	16,3	0,99890	1,00069	17,3	0,99872	1,00052	18,3	0,99854	1,00034
15,4	0,99904	1,00084	16,4	0,99888	1,00067	17,4	0,99871	1,00050	18,4	0,99852	1,00032
15,5	0,99902	1,00082	16,5	0,99886	1,00066	17,5	0,99869	1,00048	18,5	0,99850	1,00030
15,6	0,99901	1,00080	16,6	0,99885	1,00064	17,6	0,99867	1,00047	18,6	0,99848	1,00028
15,7	0,99899	1,00079	16,7	0,99883	1,00062	17,7	0,99865	1,00045	18,7	0,99847	1,00026
15,8	0,99898	1,00077	16,8	0,99881	1,00061	17,8	0,99863	1,00043	18,8	0,99845	1,00024
15,9	0,99896	1,00076	16,9	0,99879	1,00059	17,9	0,99862	1,00041	18,9	0,99843	1,00022
19,0	0,99841	1,00020	20,0	0,99821	1,00000	21,0	0,99799	0,99979	22,0	0,99777	0,99957
19,1	0,99839	1,00018	20,1	0,99819	0,99998	21,1	0,99797	0,99977	22,1	0,99775	0,99954
19,2	0,99837	1,00016	20,2	0,99816	0,99996	21,2	0,99795	0,99974	22,2	0,99773	0,99952
19,3	0,99835	1,00014	20,3	0,99814	0,99994	21,3	0,99793	0,99972	22,3	0,99770	0,99950
19,4	0,99833	1,00012	20,4	0,99812	0,99992	21,4	0,99791	0,99970	22,4	0,99768	0,99947
19,5	0,99831	1,00010	20,5	0,99810	0,99990	21,5	0,99789	0,99968	22,5	0,99766	0,99945
19,6	0,99829	1,00008	20,6	0,99808	0,99987	21,6	0,99786	0,99966	22,6	0,99764	0,99943
19,7	0,99827	1,00006	20,7	0,99806	0,99985	21,7	0,99784	0,99963	22,7	0,99761	0,99940
19,8	0,99825	1,00004	20,8	0,99804	0,99983	21,8	0,99782	0,99961	22,8	0,99759	0,99938
19,9	0,99823	1,00002	20,9	0,99802	0,99981	21,9	0,99780	0,99959	22,9	0,99756	0,99936
23,0	0,99754	0,99933	24,0	0,99730	0,99909	25,0	0,99705	0,99884	26,0	0,99679	0,99858
23,1	0,99752	0,99931	24,1	0,99727	0,99907	25,1	0,99702	0,99881	26,1	0,99676	0,99855
23,2	0,99749	0,99929	24,2	0,99725	0,99904	25,2	0,99700	0,99879	26,2	0,99673	0,99852
23,3	0,99747	0,99926	24,3	0,99723	0,99902	25,3	0,99697	0,99876	26,3	0,99671	0,99850
23,4	0,99745	0,99924	24,4	0,99720	0,99899	25,4	0,99694	0,99874	26,4	0,99668	0,99847
23,5	0,99742	0,99921	24,5	0,99717	0,99897	25,5	0,99692	0,99871	26,5	0,99665	0,99844
23,6	0,99740	0,99919	24,6	0,99715	0,99894	25,6	0,99689	0,99868	26,6	0,99663	0,99842
23,7	0,99737	0,99917	24,7	0,99712	0,99892	25,7	0,99687	0,99866	26,7	0,99660	0,99839
23,8	0,99735	0,99914	24,8	0,99710	0,99889	25,8	0,99684	0,99863	26,8	0,99657	0,99836
23,9	0,99732	0,99912	24,9	0,99707	0,99887	25,9	0,99681	0,99860	26,9	0,99654	0,99833
27,0	0,99652	0,99831	28,0	0,99624	0,99803	29,0	0,99595	0,99774	30,0	0,99565	0,99744

1.3.8 Límites de Atterberg a. Límite Líquido

Pontificia Universidad Católica del Perú (2012), el límite líquido se refiere al contenido de humedad que está representada en porcentaje, en el cual un suelo puede estar entre el estado líquido y plástico, se lo determina con un ensayo denominado Casagrande.

Como de muestra en la figura 1.19, este artefacto consiste en una copa de bronce y una base de hule duro, el límite líquido se define arbitrariamente por tal motivo es necesario que las dos mitades de una pasta de suelo de 10 mm de espesor fluya y se unan en una longitud de 12 mm. El ensayo consiste en que se debe dejar caer la copa sobre la base a una altura de 10mm, el número de golpes es de 25, como sugerencia se debe realizar al menos tres pruebas para el mismo suelo ya que es difícil satisfacer el cierre de 12 mm.

Figura 1.19 Aparato manual para Límite Líquido (Cuchara Casagrande)

Fuente: Ministerio de Transportes y Comunicaciones (2016).

b. Límite Plástico

Morales, D. (2015), el límite plástico se refiere al contenido de humedad que está representada en porcentaje del suelo seco, en el cual un suelo puede cambiar del estado plástico a un estado semisólido y de un estado semisólido a un estado sólido. Este límite se considera como el más bajo contenido de humedad.

El procedimiento consiste en enrollar elipsoidalmente una masa de suelos sobre una placa de vidrio, en un diámetro de 3,2 mm, luego el suelo se vuelve quebradizo por pérdida de humedad, se mide el contenido de humedad, si el suelo presenta una plasticidad bien definida se le agrega más agua la pasta de suelo restante en la cápsula y se realiza el ensayo de límite líquido.

Cuando el suelo presenta poca plasticidad, hay que realizar el ensayo del límite líquido y de inmediato con la pasta de suelo restante se realiza el ensayo de límite plástico, es recomendable hacer el procedimiento tres veces para obtener mejores resultados. Para hallar el límite plástico hallar un promedio de las humedades multiplicadas por 100 que muestra la ecuación (4).

$$Limite Plástico = \frac{Peso de suelo secado al horno}{Peso de agua} \times 100.$$
 (4)

1.3.9 Clasificación del suelo mediante Sistema Unificados de Clasificación de Suelos (SUCS)

En el SUCS el método para clasificar es muy sencillo. Se comienza a partir del Tamiz N°200, tamiz que los subdivide en dos grandes grupos: suelos gruesos y finos. Ver tabla 1.18.

Luego en cada grupo se sigue, en el caso de gruesos por el Tamiz N°4 y, en el de los finos, a partir del Límite Líquido. De esto sub – grupos, cada vez se

va eliminando los siguientes a partir de la Plasticidad y otras características físicas.

En los suelos finos, la carta de Plasticidad de A. Casagrande, juega un rol definitivo para el SUCS. Como se aprecia en la figura 1.20.

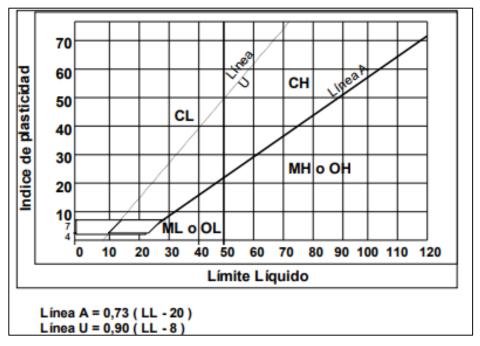


Figura 1.20 Límite de atterberg (Carta de Plasticidad)

Fuente: Conanma (2016). Geotecnia

Tabla 1.18. Clasificación de suelos.

	Divisio	nes principales	Símbolo del grupo	Nombre clásico		
	1				3	4
			2	Gravas limpias	GW	Gravas bien graduadas, mezclas de grava y arena, poco ó ningún fino.
		GRAVAS Más de la mitad de los gruesos es >		(poco ó ningún fino)	GP	Gravas pobremente graduadas,mezclas de grava y arena, poco ó ningún fino.
Suelos de grano grueso		5mm	Para clasificaci	Gravas con finos (apre-	GM	Gravas limosas, mezclas de grava, arena y limo.
Más de la mitad del			ón visual el tamiz	ciable canti- dad)	GC	Gravas arcillosas, mezclas de grava, arena y arcilla.
material es mayor que el t.			nº4 equivale	Arenas li mpias	SW	Arenas bien graduadas, arenas con grava, poco ó ningún fino.
nº200	El tamaño del	ARENAS Más de la mitad de los	a 5 mm	(poco ó ningún fino)	SP	Arenas pobremente graduadas, arenas con grava, poco ó ningún fino.
	aproximadament e la menor partícula visible a simple vista	mm		Arenas con finos (apre-	SM	Arenas limosas, mezclas de arena y limo.
				ciable canti- dad)	SC	Arenas arcillosas, mezcla de arena y arcilla.
		Limos y arcillas. Límite líquido me- nor que 50			ML	Limos inorgánicos de baja compresibilidad.
los de grano fino Más de la					CL	Arcillas inorgánicas de baja a media compresibilidad arcillas con gravas, arcillas arenosas, arcillas limosas
mitad del material es					OL	Limos orgánicos y arcillas limosas orgánicas de baja compresibilidad
menor que el t. nº200					МН	Limos inorgánicos de alta compresibilidad
		Limos y arcillas. Límite líquido ma- yor que 50			СН	Arcillas inorgánicas de alta compresibilidad
					ОН	Arcillas y limos orgánicos de media a alta compresibilidad.
	Suelos altamente orgánicos				Pt	Turba y otros suelos altamente orgánicos

Fuente: Conanma (2016). Geotecnia

1.3.10 Capacidad de Soporte de los Suelos

La capacidad de soporte se refiere a la resistencia que presenta a las deformaciones bajo la aplicación de cargas de tráfico. Presentan factores que interviene en la capacidad de soporte de los suelos como la resistencia al esfuerzo cortante, éste depende de la densidad alcanzada y su humedad, los suelos saturados poseen baja capacidad de soporte en comparación a suelos no saturados, debido a la relación que a mayor humedad menor capacidad de soporte del suelo.

Para poder conocer la capacidad de soporte se necesita realizar ensayos, para carreteras se puede proceder con un ensayo sencillo como el CBR, este ensayo simula la aplicación de cargas y sus deformaciones en forma de dar una opinión imaginaria a lo que el suelo podría ser utilizado para los diferentes fines constructivos.

1.3.11 Compactación tipo Proctor

Según Pontificia Universidad Católica del Perú (2012), el ensayo de compactación tipo Proctor (tanto Estándar como Modificado), es aplicable sólo a aquellos suelos que tienen 30% o menos (en peso) de partículas retenidas en la malla de ¾" (19mm).

El suelo, con contenido de humedad seleccionado, se coloca en capas dentro de un molde de dimensiones determinadas. Cada capa es compactada por un cierto número de golpes realizados mediante el empleo de un martillo con peso y altura de caída estandarizada. Se calcula la densidad seca resultante y se repite el procedimiento con distintos contenidos de humedad, un número suficiente de veces como para establecer la correlación entre la densidad seca obtenida y la humedad del suelo. Estos datos, graficados, representan la "curva de compactación". A partir de la curva de compactación pueden obtenerse los valores de máxima densidad seca y humedad óptima.

La energía, representada por número de capas, el peso y la altura de caída del martillo definirá si se trata de un ensayo de tipo "estándar" o "modificado", mientras que el número de golpes por capa y las dimensiones del molde, definidas por el tipo de suelo a ensayar, indicarán si se trata de un ensayo tipo "A", "B" o "C".

a. Ensayo tipo Proctor Modificado

Pontificia Universidad Católica del Perú (2012), este método de ensayo se aplica sólo a aquellos suelos que tienen 30% o menos (en peso) de partículas retenidas en la malla de ¾" (19 mm).

La energía en este caso viene definida por la ejecución de la compactación en cinco capas y el uso de un martillo de 10 lbf (4.54 kg), que cae desde una altura de 18" (457 mm), proporcionando al suelo un esfuerzo total de compactación de unos 56000 ft-lbf/ft3 (275 ton-m/m3).

En la tabla 1.19. Se presentan las mismas tres alternativas de ensayo que en el caso del ensayo tipo Proctor estándar (A, B, C).

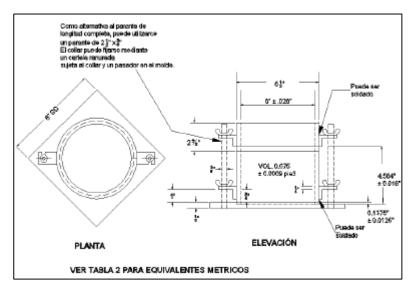


Figura 1.21 Molde cilíndrico de 6,0 pulg.

Tabla 1.19. Cuadro de resumen.

TIPO DE ENSAYO	ESTÁNDAR		MODIFICADO
PESO DEL MARTILLO	5.5 lbf(2.49 kg)		10lbf (4.54 kg)
ALTURA DE CAÍDA	12"(305 mm)		18"(457 mm)
NÚMERO DE CAPAS	3 capas		5 capas
PROCEDIMIENTO DE ENSAYO	Α	В	С
MATERIAL EMPLEADO	< #4	<3/8"	< 3/4"
DIÁMETRO DEL MOLDE	4"	4"	6"
NÚMERO DE GOLPES	25	25	56
GRADACIÓN	Hasta 20% > #4	Más de 20% > #4 y hasta 20% > 3/8"	Más de 20% > 3/8" y menos de 30% > 3/4"

Fuente: Pontificia Universidad Católica del Perú (2012). Guía de Laboratorio de Mecánica de Suelos

1.3.12 Consolidación Unidimensional

Según Pontificia Universidad Católica del Perú (2012), la prueba de consolidación unidimensional estándar consiste en comprimir verticalmente un espécimen de material, confinado en un anillo rígido, de acuerdo con una secuencia de cargas establecida de antemano. Para cada incremento de carga, el espécimen sufre una primera deformación, atribuible al proceso de expulsión de agua o aire, que se llama consolidación primaria o hidrodinámica y una segunda deformación debida a fenómenos de flujo plástico en el suelo,

cuyos efectos son más notables después de que ha terminado el proceso de consolidación primaria. Para cada carga se construirá el gráfico de Taylor como se muestra en la figura 1.22.

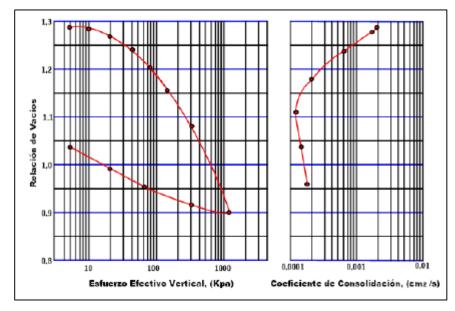


Figura 1.22 Ejemplo de Gráfico de Coeficiente de Consolidación.

Fuente: Ministerio de Transportes y Comunicaciones (2016). Manual de Ensayo de Materiales

1.3.13 Corte Directo

Según Pontificia Universidad Católica del Perú (2012), El ensayo de corte directo induce la ocurrencia de una falla a través de un plano de localización predeterminado. Sobre este plano actúan dos fuerzas (o esfuerzos) – un esfuerzo normal debido a una carga vertical *Pv* aplicada externamente y un esfuerzo cortante debido a la aplicación de una carga horizontal *Ph*. Estos esfuerzos se calculan simplemente como:

$$\sigma_n = \frac{Pv}{A}$$
 $\tau = \frac{Ph}{A}$

Donde A es el área nominal de la muestra (o de la caja de corte) y usualmente no se corrige para tener en cuenta el cambio de área por el desplazamiento lateral de la muestra.

Estos esfuerzos deberían satisfacer la ecuación de Coulomb:

$$\tau = c + \sigma_n tan$$

Como en esta ecuación existen dos cantidades desconocidas, c y ϕ se requiere obtener dos valores, como mínimo, de esfuerzo normal y esfuerzo cortante para obtener una solución.

Además, utilizando los valores de esfuerzo cortante τ y esfuerzo normal obtenidos podemos dibujar el circulo de Mohr para cada ensayo y trazar la envolvente de falla con lo que se obtiene en forma gráfica los valores de c y Para materiales no cohesivos, debería cumplirse: c=0.

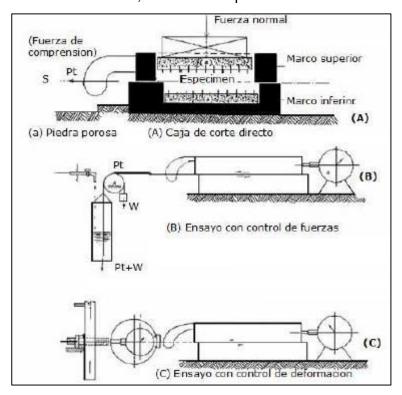


Figura 1.23 Dispositivo para el ensayo de corte directo

Fuente: Ministerio de Transportes y Comunicaciones (2016). Manual de Ensayo de Materiales

1.4 Definiciones de términos básicos

a) Compactación:

Consolidación natural del suelo por el peso de los sedimentos o compresión similar mediante el apisonado con rodillo de un árido.

b) Estabilización de suelos:

La estabilización de un suelo es un proceso que tiene como objetivo mejorar sus propiedades como su resistencia a la deformación, disminuir su sensibilidad al agua, controlar la erosión y los cambios de volumen.

c) Arcilla:

Material terroso, compuesto de silicatos alumínicos hidratados; se hace muy plástico al estar empapado de agua y se contrae y endurece por calcinación.

d) Contenido óptimo de humedad:

Contenido de agua del terreno que permite obtener una densidad máxima mediante su compactación.

d) Densidad:

Relación entre la masa y el volumen de un cuerpo.

e) Esfuerzo normal:

Esfuerzo que es perpendicular al plano sobre el que se aplica la fuerza de tracción o compresión, que es distribuido de manera uniforme por toda su superficie. También llamado esfuerzo axial.

f) Esfuerzo cortante horizontal:

Esfuerzo cortante que se desarrolla a lo largo de un elemento estructural que es sometido a cargas transversales, que es igual al esfuerzo cortante vertical en ese mismo punto. También llamado esfuerzo cortante longitudinal.

f) Esfuerzo cortante longitudinal:

Esfuerzo cortante que se desarrolla a lo largo de un elemento estructural que es sometido a cargas transversales, que es igual al esfuerzo cortante vertical en ese mismo punto. También llamado esfuerzo cortante horizontal.

q) Curva Granulométrica:

La curva granulométrica de un suelo es una representación gráfica de los resultados obtenidos en un laboratorio cuando se analiza la estructura del suelo desde el punto de vista del tamaño de las partículas que lo forman.

h) Tamiz:

Malla metálica de diferentes aberturas empleada para selección de áridos, arenas y gravas según su granulometría a fin de agregar los mismos a la mezcla para la preparación de morteros y hormigones.

i) Granulometría:

Es la propiedad más característica de un suelo relacionando a los tamaños y proporción de sus partículas en una porción de suelo, por lo cual es necesario realizar el ensayo granulométrico con el fin de conocer y evaluar características como: la porosidad, tomando en consideración una proporción de aire por unidad de volumen y esto influye en la densidad del suelo, la permeabilidad que depende de los tamaños de los huecos, ya que éstos determinan la velocidad del agua al moverse por el medio poroso, la resistencia a esfuerzos cortantes que depende del ángulo de rozamiento interno ya que éste se refiere a la capacidad de los granos de interaccionar unos con otros, para así resistir esfuerzos cortantes.

j) Resistencia:

Una de las formas más usuales para elevar la resistencia del suelo es la compactación, pero surge problemas cuando el suelo contiene importantes contenidos de materia orgánica, por lo que existen otros métodos como la precarga, drenaje, estabilización mecánica con mezclas de otros suelos, estabilización química con cemento, cal o aditivos líquidos. La resistencia de los suelos, con algunas excepciones, es en general más baja cuando mayor es su contenido de humedad.

1.5 Formulación de la Hipótesis

1.5.8 Hipótesis General

La ceniza de madera de fondo, producto de ladrilleras artesanales mejorará el comportamiento físico-mecánico del suelo arcilloso.

1.5.9 Hipótesis Específicas

La ceniza de madera de fondo disminuye la plasticidad del suelo arcilloso.

La ceniza de madera de fondo disminuye la humedad óptima del suelo arcilloso.

La ceniza de madera de fondo disminuye la deformación y aumenta el esfuerzo del suelo arcilloso.

La ceniza de madera de fondo incrementa los parámetros resistencia del suelo arcilloso.

CAPÍTULO II: METODOLOGÍA

2.1. Tipo de investigación

De acuerdo a la metodología desarrollada para demostrar la hipótesis, la presente tesis se define como un tipo de investigación Aplicada, debido a que se propone el uso de nuevas técnicas de innovación tecnológica para la estabilización de suelos arcillosos.

De igual forma se define como una investigación de enfoque Cuantitativo, ya que los resultados obtenidos en el laboratorio serán valores numéricos medibles, los cuales posteriormente podrán ser evaluados a detalle, demostrando así el eficiente uso de ceniza de fondo como un aditivo estabilizador.

2.2. Nivel de la investigación

Es de nivel Descriptivo, puesto que se detallará los procedimientos de los ensayos realizados en el laboratorio y a su vez de como la ceniza de fondo producto de las ladrilleras artesanales incide en la mejora de las propiedades físicas y mecánicas de la arcilla.

2.3. Diseño de la investigación

Para el desarrollo de la tesis se utilizó un diseño de investigación experimental, ya que se realizó diversas combinaciones de mezcla de arcillaceniza en los ensayos especificados del proyecto, con el objetivo de obtener diversos resultados y dar a conocer un diagnóstico detallado de cómo incide la ceniza de fondo en el suelo arcilloso.

Al tener en cuenta esto se puede clasificar el diseño de la presente investigación como un diseño de tipo Prospectivo, debido a que la información es captada en campo y luego analizada en el presente, mediante ensayos en laboratorio.

2.4. Variables

En el proyecto de tesis se identificó el objeto de estudio, la variable dependiente y la independiente, siendo estas también del tipo cuantitativo, ver tabla 2.1.

Tabla 2.1. Identificación del objeto de estudio y las variables.

Objeto de	Variable	Variable
estudio	Independiente (Y)	Dependiente (X)
Ceniza de Fondo	Ceniza de Madera	Estabilización de
	de Fondo	suelos arcillosos

Fuente: Elaborado por los autores

De acuerdo a la elaboración de la matriz de consistencia se procederá a explicar de cómo se midieron las variables formuladas en la hipótesis, como se indica en la tabla 2.2, para lo cual se descompusieron en indicadores susceptibles y poder medirse.

Tabla 2.2. Operacionalización de variables.

Hipótesis	Variable	Indicador	Dimensión		
·	Variable				
	Independiente (X):	Índice de plasticidad (IP)	%		
	Ceniza de Madera de	Humedad Óptima			
General	Fondo	Coeficiente de			
La ceniza de madera de fondo,		compresión	número		
productos de ladrilleras		Coeficiente Re-	numero		
artesanales mejorará el	Variable	compresión			
comportamiento físico-mecánico	Dependiente (Y):	Esfuerzo de	kPa		
del suelo arcilloso.	Estabilización de	Preconsolidación			
	suelos arcillosos	Esfuerzo a corte	kg/cm2		
		Ángulo de fricción	Ø		
		Cohesión	kg/cm2		
Secundaria 1 La ceniza de madera de fondo	Variable Independiente (X1): Ceniza de Madera de Fondo	Límite Líquido (LL)	01		
disminuye la plasticidad del suelo arcilloso.	Variable Dependiente (Y1):	Límite Plástico (LP)	%		
	Plasticidad del suelo arcilloso	Índice de plasticidad (IP)			
Secundaria 2 La ceniza de madera de fondo disminuye la humedad óptima del suelo arcilloso.	Variable Independiente (X2): Ceniza de Madera de Fondo	Humedad óptima (%)	%		
	Variable Dependiente (Y2): Humedad óptima del suelo arcilloso	Tanoda opania (70)			
	Variable Independiente (X3):	Coeficiente de compresión	número		
Secundaria 3 La ceniza de madera de fondo disminuye la deformación y	Ceniza de Madera de Fondo Variable	coeficiente Recompresión			
aumenta el esfuerzo del suelo arcilloso.	Dependiente (Y3): Deformación y esfuerzo del suelo arcilloso	Esfuezo de Preconsolidación	kpa		
Secundario 4 La ceniza de madera de fondo	Variable Independiente (X4): Ceniza de Madera de Fondo	Ángulo de fricción	Ø		
incrementa los parámetros de resistencia del suelo arcilloso.	Variable Dependiente (Y4):	Cohesión	kg/cm2		
resistericia dei suelo arcilloso.	Parámetros de resistencia del suelo arcilloso	Esfuerzo a corte			

2.5. Población y muestra

El suelo arcilloso se obtuvo en el talud del km 17, de la carretera Huamanga-Pacaicasa, correspondiente a la zona de sierra central, ubicada en la Provincia de Huamanga, Departamento de Ayacucho, ver figura 2.1. Mientras que la ceniza de fondo se trajo de las ladrilleras artesanales, ubicada en el Distrito de Pacaicasa Departamento de Ayacucho, ver figura 2.2.

Figura 2.1 Vista del Lugar de Obtención de Arcilla en km 17 de la carretera Huamanga-Pacaicasa en el Departamento de Ayacucho.

Fuente: Elaborado por los autores

Figura 2.2 Vista del lugar de obtención de ceniza de fondo en el Departamento de Ayacucho.

2.5.1. Población

Para la presente investigación, la población de estudio será el Distrito de Pacaicasa, Departamento de Ayacucho.

2.5.2. Muestra

Se considera como muestra de estudio las ladrilleras artesanales (17 hornos Evaluados) del Distrito de Pacaicasa y la arcilla en el talud del km 17 del tramo Huamanga-Pacaicasa.

2.6. Técnicas de investigación

Para la demostración de la hipótesis se realizó la siguiente secuencia para el desarrollo de actividades, ver figura 2.4.

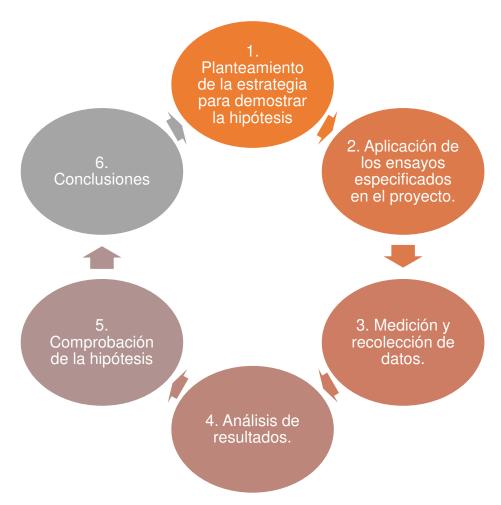


Figura 2.4. Secuencia del desarrollo de actividades.

- 1. De acuerdo a la estrategia planteada en el proyecto, se definió los ensayos de laboratorio, aplicado a distintas combinaciones de arcilla ceniza de fondo con la finalidad de poder obtener un mejor análisis con respecto a la mejora de las propiedades físicas y mecánicas del suelo; como lo es en plasticidad, peso específico, deformación, esfuerzo y parámetros de resistencia.
- 2. Como siguiente paso se aplicó los ensayos especificados en el proyecto a las diversas proporciones de arcilla- ceniza de fondo.
- Para ello mediante hojas de cálculo se fueron recolectando los datos de los ensayos realizados.
- 4. De acuerdo a los resultados obtenidos de los ensayos de laboratorio de los cuales fueron de características físicas y mecánicas, se analizó mediante gráficas y se obtuvo así un diagnóstico de cómo va influyendo la ceniza de fondo en el suelo de acuerdo al incremento de ceniza que se le va agregando, llegando así a un límite 50% lo cual hizo de que las mejoras obtenidas disminuyan.
- El análisis realizado al detalle comprobó la hipótesis planteada en el proyecto, por lo cual se pudo obtener una mejora de las propiedades suelo.
- 6. Por último, se llegó a concluir que la ceniza de fondo llega a estabilizar un suelo de baja capacidad portante como lo es el suelo arcilloso.

2.7. Instrumentos de recolección de datos

En cuanto a los materiales utilizados en la presente tesis son básicamente, suelo natural (arcilla) y ceniza de fondo, para lo cual se realizaron diversas combinaciones de los mismos en distintas proporciones lo cuales son descritas en la Tabla 2.3.

Tabla 2.3. Proporción de Mezcla y Simbología referente a cada Material.

Material / Mezcla	% suelo Arcilloso	% Ceniza de Fondo	Símbolo
Suelo	100	0	S
Mezcla 1	90	10	S90/CF10
Mezcla 2	80	20	S80/CF20
Mezcla 3	70	30	S70/CF30
Mezcla 4	60	40	S60/CF40
Mezcla 5	50	50	S50/CF50

Con respecto a los equipos utilizados para la determinación de los resultados obtenidos en el laboratorio son descritos en el capítulo anterior.

2.8. Técnicas e instrumentos de recolección de datos

Para la toma y recolección de datos se utilizó la observación experimental, ya que los datos se obtuvieron mediante la ejecución de los ensayos de laboratorio, los cuales fueron debidamente controlados.

Con respecto al instrumento de recolección, se realizó mediante hojas de registros de datos; formatos elaborados para la medición de resultados de los ensayos de características físicas y mecánicas los cuales son mencionados en el capítulo anterior.

2.9. Procesamiento y análisis estadístico de los datos

El procesamiento de los datos de estudio con respecto a la influencia que genera la ceniza de fondo en la arcilla se realizó mediante hojas de cálculo lo cual se utilizó la herramienta Office: Microsoft Excel, cuyos formatos contienen la información adecuada para cada uno de los ensayos realizados en la presente investigación.

El análisis obtenido de los resultados de laboratorio se presentó a través de gráficos de barra o histogramas, gráficos de líneas y gráficos de dispersión, también con la ayuda de Office se pudo obtener los indicadores de la presente investigación.

2.10. Cronograma de actividades

A continuación, se muestra el cronograma de actividades los cuales se realizaron para llegar a desarrollar la presente tesis, ver tabla 2.4.

Tabla 2.4. Cronograma de actividades

Cronograma de Actividades	"Estabilización de suelos arcillosos aplicando cenizas de madera, producto de las ladrilleras artesanales en el Departamento de Ayacucho"	Septiembre Octubre Noviembre	35 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17															
e Activida	ra, produc	:ucho	otiembre															
ama de	mader	le Ayac	Sep	98														
onogr	zas de	р		S2														
Crc	o ceni			S4														
	licand		Agosto	83														
	os ap		Ą	S2														
	cillos			S		4		_				"						
	"Estabilización de suelos an			Actividades	Propuesta de Tesis	Definición del titulo (Matriz de	consistencia)	Recopilación de información	y toma de muestras	Realización de ensayos	proyectados en el proyecto	Procesamiento de resultados	e interpretación	Revisión, ordenamiento de	información y levantamiento	de observaciones	Presentación del proyecto	(Sustentación)

Fuente: Elaborado por los autores

CAPÍTULO III: PRUEBAS Y RESULTADOS

3.1. Contrastación de la hipótesis

3.1.1. Hipótesis general

la ceniza de madera de fondo, producto de ladrilleras artesanales mejorará el comportamiento físico-mecánico del suelo arcilloso.

3.1.2. Hipótesis específicas

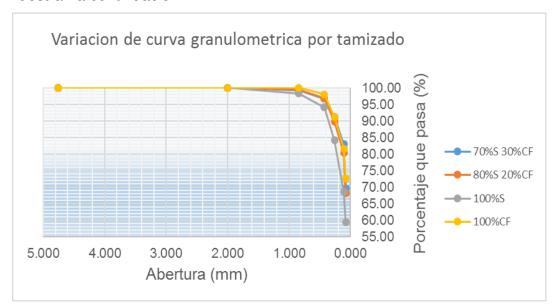
La ceniza de madera de fondo disminuye la plasticidad del suelo arcilloso.

La ceniza de madera de fondo disminuye la humedad óptima del suelo arcilloso.

La ceniza de madera de fondo disminuye la deformación y aumenta el esfuerzo del suelo arcilloso.

La ceniza de madera de fondo incrementa los parámetros de resistencia del suelo arcilloso.

3.2. Caso de Investigación


El material empleado para el desarrollo de la tesis fue obtenido de la quema de Eucalipto más carbón, producto de ladrilleras artesanales del departamento de Ayacucho, lo cual genera un residuo llamado Ceniza de fondo que para el caso de investigación vendría ser nuestro objeto de estudio. De acuerdo a la recolección de datos realizado en el lugar de trabajo se obtuvo la información técnica con respecto a los porcentajes utilizados para la fabricación de ladrillos lo cual se menciona en el capítulo I, en la Tabla 1.9. Con el fin de poder utilizarlo como un aditivo estabilizador y analizar de cómo influye con respecto a las propiedades de la arcilla de tal manera que ambos materiales sean combinados en distintas proporciones y sean sometidos a ensayos de características físicas y mecánicas, con la única finalidad de poder obtener un análisis detallado con respecto a la influencia que genera la ceniza de fondo en el suelo arcilloso.

3.3. Ensayos de Características Físicas

3.3.1. Análisis Granulométrico por tamizado ASTM D422

Con respecto al ensayo de granulometría por tamizado cuyo objetivo es determinar de forma cuantitativa la distribución de los tamaños de las partículas de suelos lo cual es mencionado en el capítulo I, con respecto al marco teórico.

De acuerdo a los procedimientos del ensayo según la norma ASTM D422 se realizó el análisis granulométrico para la fracción fina de las combinaciones de 80%S 20%CF, 70%S 30%CF, comparado con el análisis del suelo natural y la ceniza de fondo con la finalidad de poder observar de como interactúa la ceniza de fondo con respecto a la arcilla y combinaciones, lo cuales se muestran a continuación.

Figura 3.1 Análisis granulométrico por fracción fina para las combinaciones 80%S 20%CF, 70%S 30%CF comparado con el suelo y la ceniza de fondo

Fuente: Elaborado por los autores

3.3.2. Análisis Granulométrico por Sedimentación ASTM D422

El análisis granulométrico por sedimentación cuyo fin es mostrar la distribución de fracción fina pasante de la malla Nº200 que se realizó para el suelo arcillo y la ceniza de fondo con el fin de poder evaluar el comportamiento de ambos materiales, ver figura 3.2.

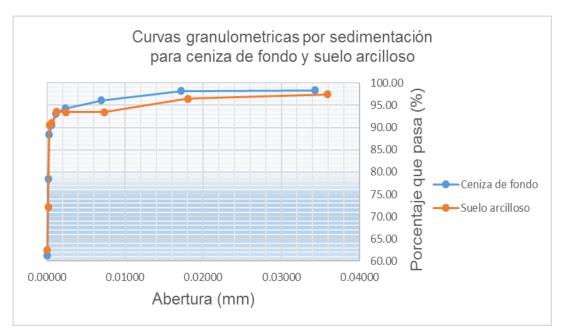


Figura 3.2 Análisis granulométrico por fracción fina del suelo arcilloso y ceniza de fondo.

3.3.3. Límites de consistencia ASTM D4318

Como lo enunciado en el capítulo I, el ensayo tiene como finalidad determinar los diferentes estados al cual se pueda encontrar un suelo dependiendo del contenido de humedad que obtenga, para lo cual mediante el presente ensayo se llegó a determinar los diversos estados al cual el suelo pueda encontrarse, siendo ellos el Límite liquido (LL), Límite plástico (LP) y el índice de plasticidad (IP).

De acuerdo al planteamiento de la presente investigación se realizó combinaciones de diversas proporciones entre de arcilla- ceniza de fondo, ver tabla 3.1.

Tabla 3.1. Proporción de mezcla de arcilla – ceniza de fondo para el ensayo de límite de Consistencia ASTM D4318.

Combinación de muestras de arcilla + ceniza fondo								
Arcilla %	Ceniza fondo %	ondo % Peso gr						
100S	-	100	-					
90S	10CF	90	10					
80S	20CF	80	20					
70S	30CF	70	30					
60S	40CF	60	40					
50S	50CF	50	50					

Con respecto a los procedimientos del ensayo los cuales fueron sometidos según la norma vigente del ASTM D4318 donde nos indica que para la obtención del Límite Líquido (LL) se deberá realizar mediante la cuchara de Casagrande, ver figura 3.3 y con respecto a Límite Plástico (LP) lo cual es el máximo contenido de agua que comienza a tener un comportamiento plástico, se determinará mediante el promedio de humedad obtenida por cada prueba realizada, ver figura 3.4.

Figura 3.3. Ensayo de Límite Líquido con la cuchara de Casagrande.

Figura 3.4. Preparación de muestra para el ensayo de Límite Plástico.

De acuerdo a los procedimientos realizados se obtuvo los siguientes resultados en las cuales se puede observar que la arcilla natural presenta una plasticidad alta con respecto a las demás combinaciones realizadas en el ensayo, Ver figura 3.5. En la figura 3.6 se observa los resultados de Limite Liquido y Limite Plástico con respecto a las proporciones de mezclas de arcilla – ceniza de fondo.

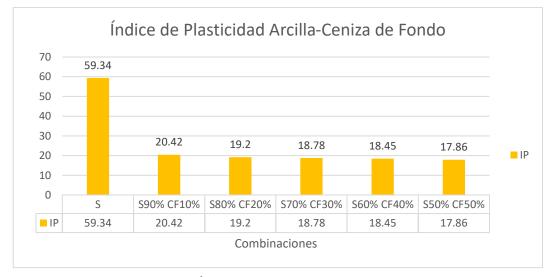


Figura 3.5. Variación de Índice de Plasticidad entre arcilla – ceniza de fondo.

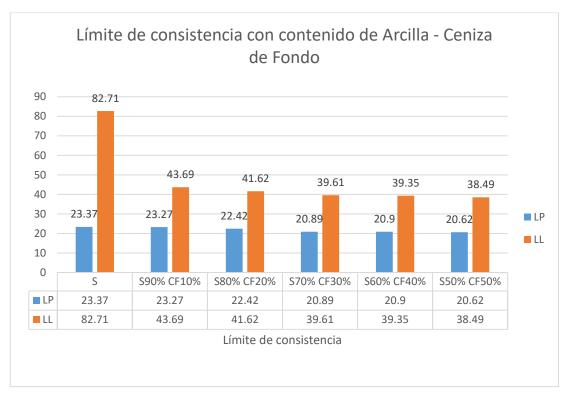


Figura 3.6. Variación de Límite de Consistencia entre arcilla – ceniza de fondo.

3.3.4. Clasificación de suelos mediante el SUCS

La clasificación de la arcilla estudiada se podrá definir según el Sistema Unificado de Clasificación de Suelos que es un material de tipo **CH**, lo cual se trata de un suelo tipo "arcilla inorgánica de alta plasticidad". En el caso de un material **CL** se denominan un material de tipo **arcillas inorgánicas de plasticidad baja** lo cual sucedió para el caso de las combinaciones realizadas, ver Tabla 3.2. De acuerdo a la aplicación de la ceniza de fondo se pudo observar que el índice de plasticidad disminuye considerablemente por lo tanto estos resultados son mostrados en el ensayo de Límite de Consistencia.

Para el caso de la ceniza fondo se clasifico como una muestra de tipo **ML** lo que significa que se trata de un suelo de tipo "Limos de baja plasticidad". Según la Clasificación de suelos mediante el SUCS se debe tener en cuenta como datos principales el porcentaje (%) pasante de la Malla Nº200 y el índice de plasticidad.

Tabla 3.2. Clasificación de suelos y Mezclas.

Matarial/Marala	Clasificación SUCS					
Material/Mezcla	Grupo	Material				
S	СН	Suelos arcillosos				
80%S 20%CF	CL	Suelos arcillosos				
70%S 30%CF	CL	Suelos arcillosos				
100%CF	ML	Suelos limosos				

3.3.5. Gravedad Específica de Sólidos NTP-339-131

De acuerdo al capítulo I el ensayo nos permitirá calcular las relaciones de fase del aire, agua y solidos de un volumen de suelo. El valor obtenido interviene mayormente en los cálculos de mecánica de suelos que serán utilizados para este proyecto con respecto a los ensayos de características mecánicas. Por ello el ensayo fue realizado de acuerdo a las normas vigentes lo cual se realizó mediante un procedimiento controlado con el propósito de poder minimizar los márgenes de error ocasionados por el mismo, dando así de esta manera los resultados de los cuales serán utilizados posteriormente en los ensayos mecánicos. Por lo tanto, las combinaciones utilizadas para la determinación de la gravedad específica con respecto al ensayo son las siguientes, ver Tabla 3.3.

Tabla 3.3. Proporción de mezcla de arcilla – ceniza de fondo para el ensayo de Gravedad específica NTP 339-131

Combinación de muestras de arcilla + ceniza fondo							
Arcilla %	Ceniza fondo % Peso						
100S	-	200	-				
90S	10CF	180	20				
80S	20CF	160	40				
70S	30CF	140	60				
60S	40CF	120	80				
50S	50CF	100	100				
-	100CF	200	-				

Habiendo obtenido la gravedad especifica de las combinaciones mencionadas en la tala 3.3 se procedió a realizar la corrección por temperatura lo cual mediante una tabla brindada por el Ministerio de Transporte y Comunicaciones del Manual de Ensayos de Materiales se procedió con las correcciones del ensayo mediante una tabla resumen se representa los resultados finales corregidos, ver tabla 3.4.

Tabla 3.4. Resultados de Gravedad Especifica Corregidos por temperatura

Factor de corrección "K" por temperatura								
COMBINACIONES	T ºC	K	Gs	Gs CORREGIDO (Gr/cm3)				
100%S	19.8	1.00040	2.71223	2.71				
90% S 10%CF	18.8	1.00024	2.71518	2.72				
80% S 20%CF	18.7	1.00026	2.71961	2.72				
70% S 30%CF	18.7	1.00026	2.72702	2.73				
60% S 40%CF	18.6	1.00028	2.73748	2.74				
50% S 50%CF	18.6	1.00028	2.75710	2.76				
Ceniza	18.1	0.99858	2.79135	2.79				

Fuente: Elaborado por los autores

3.4. Ensayos de Características Mecánicas

3.4.1 Ensayo de Proctor Modificado NTP 339.141

El ensayo como es mencionado en el capítulo I consiste en un proceso repetitivo cuyo objetivo es conseguir una densidad máxima seca para una relación optima de agua a fin de garantizar las características mecánicas necesarias del suelo arcilloso.

De acuerdo al Manual de Ensayos de Materiales del Ministerio de Transportes y comunicaciones nos brinda los procedimientos por el cual se siguió al detalle.

Por consiguiente, la proporción de muestra utilizada en el ensayo se muestra en la tabla 3.5.

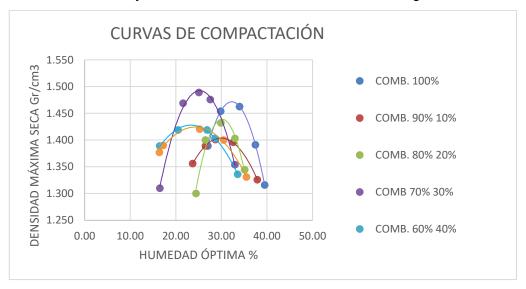
Tabla 3.5. Proporción de mezcla de arcilla – ceniza de fondo para el ensayo de Próctor Modificado NTP 339-141.

Combinación de muestras de arcilla + ceniza de fondo							
Arcilla %	Ceniza de fondo %	Pes	o Kg				
100S	-	5.00	-				
90S	10CF	4.50	0.50				
80S	20CF	4.00	1.00				
70S	30CF	3.50	1.50				
60S	40CF	3.00	2.00				
50S	50CF	2.50	2.50				

Fuente: Elaborado por los autores

Con respecto a los procedimientos realizados para la determinación de la humedad óptima se debe partir con una humedad estimada lo cual se realizó dejando saturar por un periodo de 24 horas, con el propósito de que la humedad aplicada en el suelo penetre todos los vacíos.

El ensayo fue realizado por el método C lo cual consiste en la aplicación de 5 capas de proporciones iguales de suelo aplicados a una energía de compactación de 56 golpes, ver figuras 3.7 y 3.8.


Figura 3.7. Compactación del suelo mediante el martillo manual para el ensayo de Próctor Modificado NTP 339.141.

Fuente: Elaborado por los autores

Figura 3.8. Compactación mediante 5 capas de suelo para el ensayo de Próctor Modificado NTP 339.141

Finalizado el ensayo se pueda obtener las curvas de compactación con respecto a la relación de densidad máxima seca y la humedad óptima de las combinaciones ensayadas lo cual se muestra mediante la figura 3.9.

Figura 3.9. Variación de curvas de compactación con respecto a las combinaciones de arcilla – ceniza de fondo.

Fuente: Elaborado por los autores

Para dar por concluido el ensayo de Próctor Modificado se determinó las humedades óptimas con respecto a la densidad máxima seca lo cual se realiza mediante una proyección del punto máximo de quiebre de la curva de compactación con el propósito de hacer cumplir el objetivo del ensayo, ver tabla 3.6.

Tabla 3.6. Resultados del ensayo de Proctor Modificado NTP 339.141

Ensayo de Proctor Modificado NTP 339.141									
DESCRIPCIÓN	COMBI	NACIÓN	DENSIDAD MÁXIMA SECA (Gr/cm3)	HUMEDAD ÓPTIMA (%)					
Arcilla	100%S	-	1.472	32.27					
Arcilla + Ceniza de fondo	90%S	10%CF	1.403	30.12					
Arcilla + Ceniza de fondo	80%S	20%CF	1.433	29.31					
Arcilla + Ceniza de fondo	70%S	30%CF	1.506	24.44					
Arcilla + Ceniza de fondo	60%S	40%CF	1.431	23.76					
Arcilla + Ceniza de fondo	50%S	50%CF	1.422	23.25					

3.4.2 Ensayo de Consolidación Unidimensional NTP-339.154

El ensayo de Consolidación Unidimensional como bien se lee en el capítulo I, ayuda a obtener información con respecto al cambio mecánico que sufre el suelo por cada incremento de carga, proporcionando información como el índice de vacíos y presiones aplicadas que se obtienen durante la etapa de ensayo. El objetivo de la investigación busca determinar la deformación y esfuerzo del suelo arcilloso estabilizado con ceniza de fondo.

Para lograr el objetivo, y poder demostrar la hipótesis planteada, fue necesario realizar combinaciones de Arcilla – ceniza, al 80%S 20%CF, 70%S 30%CF, para después ser comparadas con los resultados obtenidos del ensayo para 100%S.

Para poder realizar el ensayo fue necesario obtener las humedades óptimas del suelo curado a 7 días.

Al cumplirse el tiempo de cura, se procede a realizar el ensayo, como primer paso fue tomar datos de las características del cuerpo, realizar el armado de la cápsula de consolidación como se ve en la figura 3.10 y colocar al aparato de carga. En la figura 3.11 se muestra el programa de lectura de datos, que fueron a 6, 15, 30 segundos, 1, 2, 4, 8, 15, 30 minutos, 1, 2, 4, 8 y 24 horas.

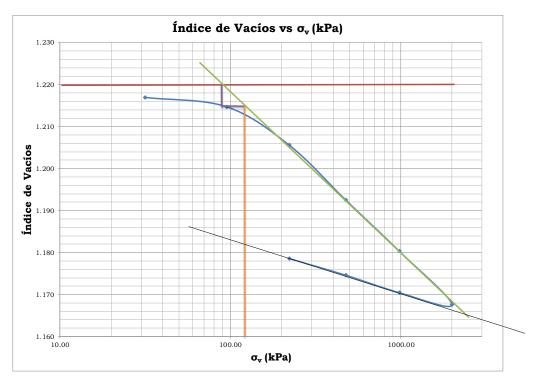
Figura 3.10. Armado del Molde para consolidación **Fuente:** Elaborado por los autores

Figura 3.11. Toma de lectura de deformación **Fuente:** Elaborado por los autores

Cumplido el tiempo de carga y descarga para cada muestra se obtuvo los siguientes resultados que muestra las tablas 3.7, 3.8 y 3,9 y las figuras 3.12, 3.13, 3.14.

Tabla 3.7. Índice de vacíos 100%S

RES	ULTADO DE ETA	PAS
Etapa de carga y descarga No.	Presión KPa	Índice de vacíos (e)
0	0.00	1.219
1	31.58	1.217
2	94.73	1.215
3	221.04	1.206
4	473.64	1.193
5	978.87	1.180
6	1989.31	1.168
1	978.87	1.170
2	473.64	1.175
3	221.04	1.179
4	94.73	1.184
5	31.58	1.186
6	0	1.186


Tabla 3.8. Índice de vacíos 80%S-20%CF

RESULTADO DE ETAPAS					
Etapa de carga y descarga No.	Presión Kpa	Índice de vacíos (e)			
0	0.00	1.242			
1	31.58	1.24			
2	94.73	1.239			
3	221.04	1.231			
4	473.64	1.220			
5	978.87	1.209			
6	1989.31	1.197			
1	978.87	1.200			
2	473.64	1.203			
3	221.04	1.206			
4	94.73	1.209			
5	31.58	1.209			
6	0	1.209			

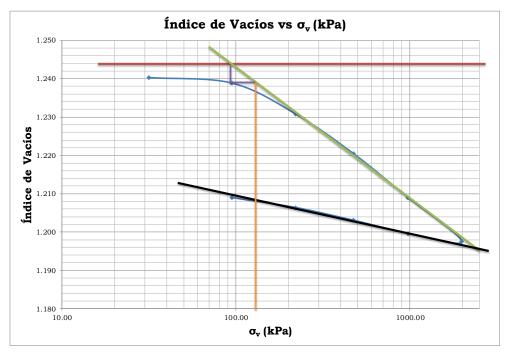

Fuente: Elaborado por los autores

Tabla 3.9. Índice de vacíos 70%S-30%CF

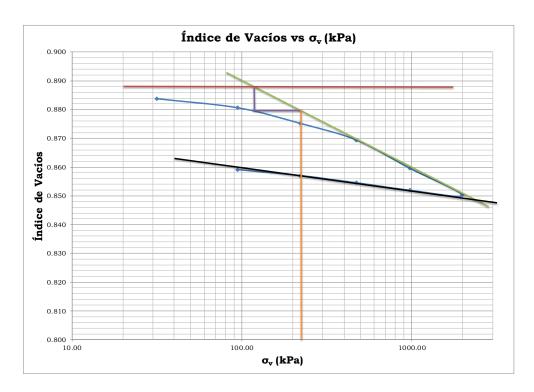

RESULTADO DE ETAPAS						
Etapa de carga y descarga No.	Presión Kpa	Índice de vacíos (e)				
0	0.00	0.886				
1	31.58	0.884				
2	94.73	0.881				
3	221.04	0.875				
4	473.64	0.869				
5	978.87	0.860				
6	1989.31	0.850				
1	978.87	0.852				
2	473.64	0.855				
3	221.04	0.857				
4	94.73	0.859				
5	31.58	0.859				
6	0	0.859				

Figura 3.12. Resultados del esfuerzo de preconsolidación = 118.58 kPa **Fuente:** Elaborado por los autores

Figura 3.13. Resultados del esfuerzo de preconsolidación = 127.643 kPa **Fuente:** Elaborado por los autores

Figura 3.14. Resultados del esfuerzo de preconsolidación = 222.3 kPa **Fuente:** Elaborado por los autores

Al obtener el gráfico índice de vacíos vs esfuerzo, se obtiene los coeficientes de compresión y recompresión para cada muestra. Como se observa en las tablas 3.10, 3.11 y 3.12.

Tabla 3.10. Coeficiente de Compresión y Recompresión 100%S

coeficente de compresión	Cc=	0.03860	mayor deformación
coeficente de recompresiór	Cr=	0.01303	menor deformación

Fuente: Elaborado por los autores

Tabla 3.11. Coeficiente de Compresión y Recompresión 80%S - 20%CF

coeficente de compresión	Cc=	0.03287	mayor deformación
coeficente de recompresiór	Cr=	0.01028	menor deformación

Fuente: Elaborado por los autores

Tabla 3.12. Coeficiente de Compresión y Recompresión 70%S - 30%CF

coeficente de compresión	Cc=	0.02853	mayor deformación
coeficente de recompresión	Cr=	0.00838	menor deformación

3.4.3 Ensayo de Corte Directo ASTM D3080

De lo mencionado en el capítulo I con respecto a el ensayo de corte directo, cuyo objetivo es determinar los parámetros de resistencia al esfuerzo cortante de una muestra sometida a un esfuerzo horizontal con respecto a una carga vertical.

Para lo cual en el ensayo se propuso realizar combinaciones de arcilla - ceniza de fondo de 80%S 20%CF, 70%S 30%CF y 50%S 50%CF con la finalidad de poder compararlos de acuerdo a los resultados obtenidos del suelo arcilloso. Con el fin de poder demostrar la hipótesis planteada en el proyecto con respecto a la mejora de las características físicas y mecánicas del suelo. De acuerdo a esto, antes de iniciar el ensayo se habilito las muestras con las humedades óptimas las cuales fueron obtenidas en el ensayo de Próctor Modificado, de tal manera de que estas muestras preparadas sean curadas a un periodo de 7 y 14 días, ver figura 3.15.

Figura 3.15. Curado de muestras a 7 y 14 días entre arcilla – ceniza de fondo para el ensavo de Corte Directo

Cumplido el tiempo de cura se procede a realizar el ensayo donde se utilizó los siguientes datos mostrados en la tabla 3.13.

Tabla 3.13. Datos utilizados para el ensayo de Corte Directo ASTM D3080.

	Datos del ens	ayo
	Esfuerzo Cortante	Esfuerzo normal
Simbología	Velocidad de corte (mm/min)	Carga Axial (kg)
osologia		0.9
S	35	1.8
S80 CF20		1.0
S70 CF30		2.6
S50 CF50		3.6

Fuente: Elaborado por los autores

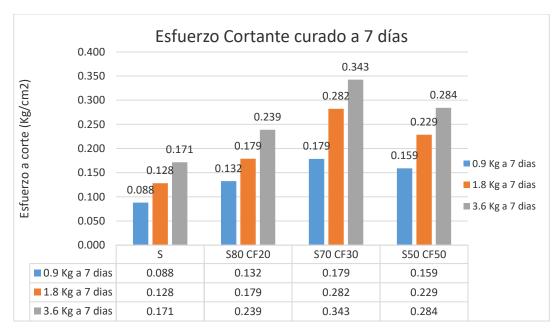
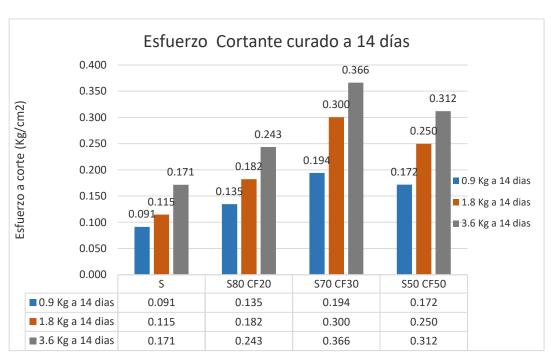
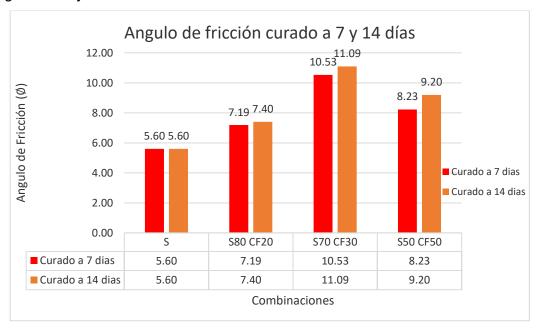

De lo indicado anteriormente se procedió a realizar el ensayo con las muestras mencionadas en la tabla 3.13. Se tomó lecturas del desplazamiento con respecto al esfuerzo horizontal aplicado a la muestra ensayada, ver figura 3.16.

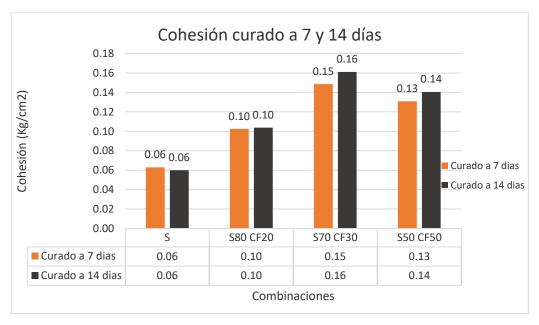
Figura 3.16. Toma de lectura del desplazamiento horizontal para el ensayo de Corte Directo


Fuente: Elaborado por los autores

Dando así los siguientes resultados respecto al tiempo de cura realizado para cada combinación, lo cual se muestra el esfuerzo a corte curado a 7 y 14 días, mediante una gráfica barra, ver figura 3.17 y 3.18


Figura 3.17. Resultados del esfuerzo a corte para las diversas combinaciones, curado a 7 días

Fuente: Elaborado por los autores


Figura 3.18. Resultados del esfuerzo a corte para las diversas combinaciones, curado a 14 días.

Obtenido los esfuerzos a corte de cada combinación curado de 7 y 14 días, se determinó los parámetros de resistencia a corte mediante la gráfica de envolvente de falla entre arcilla – ceniza de fondo de lo cual se obtuvo el ángulo de fricción y la cohesión para cada combinación ya mencionada, ver figura 3.19 y 3.20.

Figura 3.19. Resultados del ángulo de fricción para las diversas combinaciones, curado a 7 y 14 días

Fuente: Elaborado por los autores

Figura 3.20. Resultados de la cohesión para las diversas combinaciones, curado a 7 y 14 días.

CAPÍTULO IV: DISCUSIÓN Y APLICACIONES

- 1) El objetivo general de la presente tesis es determinar la incidencia que genera la ceniza de fondo en la estabilización de suelos arcillosos por lo que se evaluó el comportamiento arcilla – ceniza de fondo, para lo que se aplicaron ensayos de características físicas y mecánicas, brindando así un análisis de acuerdo a los cuatro objetivos específicos indicados.
- 2) En el ensayo de Límite de Consistencia, se pudo observar mejora de las propiedades físicas de la arcilla, debido a la adición de la ceniza de fondo, obteniéndose disminución del Índice de Plasticidad en 43% respecto al I.P. del suelo arcilloso.
- 3) De acuerdo a los ensayos de características mecánicas, el de Próctor Modificado brindo la densidad máxima y el contenido de la humedad óptima de las combinaciones realizadas, obteniéndose disminución de humedad respecto a la adición de ceniza de fondo, lo que significa que dicha ceniza incide en la disminución de agua en una relación de densidad máxima seca.
- 4) Con el ensayo de Consolidación Unidimensional, se obtuvo la deformación y esfuerzo de cada muestra, determinándose que la adición de ceniza de fondo genera que la deformación del suelo puro se reduzca y que el esfuerzo de preconsolidación se incremente, resultando mejor comportamiento mecánico del suelo.
- 5) Respecto al ensayo de Corte Directo, determinó los parámetros de resistencia del suelo; se observó incremento de 50% demostrándose el eficiente uso de la aplicación de ceniza de fondo como estabilizador mejorando las propiedades físicas y mecánicas de la arcilla.

CONCLUSIONES

En el Perú anualmente se genera 53,500 toneladas de ceniza de fondo provenientes de la quema de ladrillos artesanales, por lo que:

- Los residuos obtenidos de la quema de Madera "Eucalipto" con carbón producto de las ladrilleras artesanales no tienen un uso adecuado, por lo cual gran porcentaje de estos son utilizados para rellenos sanitarios y otros fines, contaminando el ambiente durante su traslado.
- 2) La adición de ceniza de fondo respecto al suelo arcilloso, disminuye el Índice de Plasticidad del ensayo de límites de consistencia e incrementa la gravedad específica de los sólidos, beneficiando las características físicas del suelo.
- El ensayo Próctor Modificado, disminuye la humedad óptima del suelo de acuerdo a las combinaciones arcilla-ceniza de fondo.
- 4) La combinación arcilla-ceniza de acuerdo al ensayo de Consolidación Unidimensional curado a 7 días, disminuye la deformación del suelo e incrementa el esfuerzo de preconsolidación, mejorando el asentamiento del suelo y aumentando su resistencia.
- 5) La combinación arcilla-ceniza respecto a los ensayos mecánicos de Corte Directo según la norma ASTM D3080, curado a 7 y 14 días incrementa los parámetros de resistencia al corte, tales como: esfuerzo al corte, ángulo de fricción interna y cohesión, demostrando así el eficiente uso de estos residuos.
- 6) Finalmente, la adición de ceniza de madera de fondo al suelo arcilloso estudiado mejora su comportamiento físico-mecánico. Se verifica así la hipótesis planteada.

RECOMENDACIONES

- 1) Investigar tecnologías para la captación de las emisiones de la quema de madera de eucalipto más carbón, producto de las ladrilleras artesanales.
- 2) Profundizar los estudios sobre la utilización de las cenizas de Fondo.
- 3) Realizar ensayos triaxiales y de CBR, con combinaciones de arcilla ceniza de fondo y evaluar el comportamiento de ellas.
- 4) Efectuar investigaciones respecto a la estabilización de suelos arcillosos, aplicando combinaciones de ceniza de fondo cemento.

FUENTES DE INFORMACIÓN

- Ahmaruzzaman, M. (2010). A review on the utilization of fly ash. *Progress in Energy and Combustion Science*, *2010*(36), 327-363.
- Coenen, A. R., Titi, H.H. & Elias, M. B. (2010). Resilient Characteristics of Bottom Ash and Bottom Ash-soil Mixtures. *Journal of ASTM International*, 8(9), 1-15.
- Conanma (2016). *Geotecnia*. Andalucía, España: Asociación de Laboratorios Acreditados de Andalucía. Recuperado de http://www.conanma.com/descargas/cap 12 geotecnia.pdf

Durán, G. (2016). Mejoramiento de un Suelo Arcilloso con Ceniza de Madera: agregando valor a los residuos de la industria de ladrillos artesanales en el Perú. En J. López (Presidencia), Formando líderes innovadores con tecnología identificando nuevas oportunidades de crecimiento. Simposio llevado a cabo en el XXI Congreso Internacional de Ingeniería y XIII Arquiforo "Visión 2016", Lima, Perú.

- James, A. K., Thring, R. W, Helle, S. & Ghuman, H. S. (2012). Ash Management Review Applications of Biomass Bottom Ash. *Energies*, 2012(5), 3856-3873; doi:10.3390/en5103856.
- Soriano, C. (2012). *Diagnóstico Nacional del Sector Ladrillero Artesanal*. Lima, Perú: Mercadeando S.A. Recuperado de http://www.redladrilleras.net/assets/files/08f34d2be1d32a80a13a48f26 33dd73c.pdf
- Morales, D. (2015). Valoración de las cenizas de carbón para la estabilización de suelos mediante activación alcalina y su uso en vías no pavimentadas. (Tesis para Optar el Título de Ingeniero Civil). Universidad de Medellín facultad de Ingeniería Civil, Medellín, Colombia.

- Ministerio de Transportes y Comunicaciones (2016). *Manual de Ensayo de Materiales*. Recuperado de https://www.mtc.gob.pe/transportes/caminos/normas_carreteras/documentos/manuales/Manual%20Ensayo%20de%20Materiales.pdf.
- Niyazi, U. K. & Turan, O. (2010). Effects of lightweight fly ash aggregate properties on the behavior of lightweight concretes. *Journal of Hazardous Materials*, *2010*(179), 954-965.
- Pérez, R. (2012). Estabilización de suelos arcillosos con cenizas de carbón para su uso como subrasante mejorada y/o sub base. (Tesis para Optar el Grado de Maestro en Ciencias con Mención en Ingeniería Geotecnia). Universidad Nacional de Ingeniería facultad de Ingeniería Civil sección Posgrado, Lima, Perú.
- Pontificia Universidad Católica del Perú (2012). *Guía de Laboratorio de Mecánica de Suelos*. Recuperado de https://es.scribd.com/document/314758517/MECANICA-DE-SUELOS-PUCP-pdf
- Rico, A. y Del Castillo, H. (1978). La Ingeniería de Suelos en las vías

 Terrestres Carreteras, Ferrocarriles y Autopistas. Recuperado de

 https://es.scribd.com/doc/164716790/La-ingenieri-a-de-suelos-en-las-vi-as-terrestres-pdf
- Swisscontact. (2012). Programa Eficiencia Energética en Ladrilleras Artesanales de América Latina para Mitigar el Cambio Climático (EELA). Lima, Perú: Calandria. Recuperado de http://www.redladrilleras.net/assets/files/fb27f168113ce59412e89faab27e4633.pdf
- Whitlow, R. (1994). Fundamentos de Mecánica de suelos. Recuperado de http://apuntesingenierocivil.blogspot.pe/2010/10/composicion-mineralogica-del-suelo.html

ANEXO N°1: MATRIZ DE CONSISTENCIA

			MAT RIZ DE CONSISTENCIA	ISTENCIA		
			Proyecto de Investigación Descriptivo, Experimental	scriptivo, Experimental		
	litulo: ESTABILIZACIÓN DE S	UELOS ARCILLOSOS APLICAN	IDO CENIZA DE MADERA DE FOND	'itulo: ESTABILIZACIÓN DE SUELOS ARCILLOSOS APLICANDO CENIZA DE MADERA DE FONDO, PRODUCTO DE LADRILLERAS ARTESANALES EN EL DEPARTAMENTO AYACUCHO	ESANALES EN EL DEPARTAMENT	TO AYACUCHO
PLANTEAMIENTO DEL PROBLEMA	OBJETIVOS	HIPÓTESIS	VARI	VARIABLES	INDICADORES	METODOLOGÍA
PROBLEMA GENERAL	OBJETIVO GENERAL	HIPÓTESIS GENERAL	VARIABLES INDEPENDIENTE	VARIABLES DEPENDIENTE	(%) profinition or on project	
					illuice de plasticidad (/o)	
					Humedad Óptima (%)	Es de tipo aplicada porque nos permitirá realizar una evaluacion detallada .
¿En qué medida incide la ceniza de madera de fondo, producto		ceniza de madera de fondo, La ceniza de madera de fondo, condicado de lodellacos			Coeficiente de compresión (números)	
de ladrilleras artesanales, en la estabilización del suelo arcilloso, en el departamento de	artesanales, en la estabilización del suelo	artesanales mejorará el comportamiento físico-	Ceniza de madera de fondo (x)	Estabilizacion de suelos arcillosos (y)	Coeficiente de recompresión (números)	De enfoque cuantitativo porque se tomarán
Ayacucho?	de Ayacucho.	indealined dei suelo al cilloso.			Esfuerzo preconsolidación (Kpa)	datos de campo y se evaluaran en laboratorio mediante ensayos y se harán los cálculos correspondientes.
					Esfuerzo cortante (kg/cm2), Ángulo de fricción (Ø) y cohesión (Kg/cm2)	

Fuente: Elaborado por los autores

	De nivel Descriptivo porque se detallará los procedimientos de los ensayos realizados en el laboratorio.		De diseño Experimenta l, porque se tomarán datos directos en laboratorio.			De diseño Experimental , porque se tomarán datos directos en laboratorio.			Prospectivo, porque la información es captada en campo y luego será analizada en el presente mediante ensayos de laboratorio.
	Límite líquido (%), Límite plástico (%) y Índice de plasticdad (%)	Humedad Óptima (%)		Coeficiente de compresión (números)	Coeficiente de recompresión (números)	Esfuerzo de preconsolidación (KPa)	Esfuerzo cortante (kg/cm2), Ángulo de fricción (Ø) y cohesión (Kg/cm2)		
VARIABLES DEPENDIENTE	Plasticidad del suelo arcilloso (y1)	Humedad Óptima (y2)			Deformación y esfuerzo del suelo acrilloso (y3)		Parámetros de Resistencia del suelo arcilloso (y4)		
VARIABLES INDEPENDIENTE	Ceniza de madera de fondo(x1)	Ceniza de madera de fondo (x2)		Ceniza de madera de fondo (x3)			Ceniza de madera de fondo (x4)		
HIPÓTESIS ESPECÍFICA	La ceniza de madera de fondo disminuye la plasticidad del suelo arcilloso.		La ceniza de madera de fondo disminuye la humedad óptima del suelo arcilloso.		La ceniza de madera de fondo disminuye la deformación y aumenta el estuerzo del suelo arcilloso.		La ceniza de madera de fondo Incrementa los parámetros de resistencia del suelo arcilloso.		
OBJETIVO ESPECÍFICO	Realizar el ensayo Límites de Atteberg para determinar el índice de plasticidad del suelo arcilloso estabilizado con ceniza de madera de fondo, producto de ladrilleras attesanales en el departamento de Ayacucho.	Realizar el ensayo de Proctor Modificado para determinar la humedad óptima del suelo	arcilloso estabilizado con ceniza de madera de fondo, producto de ladrilleras artesanales en el departamento de Ayacucho.	Evaluar la consolidacion unidimensional para determinar la deformación y el estabilizado con centra de madera de fondo, producto de ladrilleras artesanales en el departamento de Ayacucho.		de ladrilleras artesanales en el departamento de Ayacucho.	Realizar la prueba de corte directo para determinar los parámetros de resistencia del suelo arcilloso estabilizado con centza de madera de fondo, producto de ladrilleras artesanales en el departamento de Ayacucho.		
PROBLEMA ESPECÍFICO	¿En qué medida incide la ceniza de madera de fondo, producto de ladrillenas artesanales, en el indice de plasticidad del suelo arcilloso, en el departamento de Ayacucho?	¿En qué medida incide la ceniza	de madera de forto, producto de ladifleras artesanales, en la humedad optima del suelo arcilloso, en el departamento de Ayacucho?	¿En qué medida incide la ceniza del de madera de fondo, producto es de ladrilleras artesanales, en la deformación y esfuerzo del m suelo arcilloso, en el departamento de Ayacucho?			¿En qué medida incide la ceniza de madera de fondo, producto de ladrilleras artesanales, en los parâmetros de resistencia del suelo arcilloso, en el departamento de Ayacucho.?		

Fuente: Elaborado por los autores

ANEXO N°2: TABLAS

Tabla 1.11 Tamices

TAMICES	ABERTURA (mm)
3″	75,000
1 1/2"	38,100
3/4"	19,000
3/8″	9,500
Nº 4	4,760
Nº 8	2,360
Nº 16	1,100
Nº 30	0,590
Nº 50	0,297
N° 100	0,149
N° 200	0,075

Fuente: Ministerio de Transportes y Comunicaciones (2016). Manual de Ensayos de Materiales

Tabla 1.12 Valores de la Profundidad efectiva basados en hidrómetro y cilindro de sedimentación de dimensiones especificadas

Н	idrómetro 151	Н	Hi	drómetro 152	Н
Lectura del	Profundidad	Lectura del	Profundidad	Lectura del	Profundidad
hidrómetro	efectiva L	hidrómetro	efectiva L	hidrómetro	efectiva L
* R' + Cm	(Cm)	* R' + Cm	(cm)	* R' + Cm	(cm)
1,000	16,3	0	16,3	-	-
1,001	16,0	1	16,1	31	11,2
1,002	15,8	2	16,0	32	11,1
1,003	15,5	3	15,8	33	10,9
1,004	15,2	4	15,6	34	10,7
1,005	15,0	5	15,5	35	10,6
1,006	14,7	6	15,3	36	10,4
1,007	14,4	7	15,2	37	10,2
1,008	14,2	8	15,0	38	10,1
1,009	13,9	9	14,8	39	9,9
1,010	13,7	10	14,7	40	9,7
1,011	13,4	11	14,5	41	9,6
1,012	13,1	12	14,3	42	9,4
1,013	12,9	13	14,2	43	9,2
1,014	12,6	14	14,0	44	9,1

Tabla 1.13 Valores de la Profundidad efectiva basados en hidrómetro y cilindro de sedimentación de dimensiones especificadas.

Н	idrómetro 151	Н	Hi	idrómetro 152	Н
Lectura del	Profundidad	Lectura del	Profundidad	Lectura del	Profundidad
hidrómetro	efectiva L	hidrómetro	efectiva L	hidrómetro	efectiva L
* R' + Cm	(Cm)	* R' + Cm	(cm)	* R' + Cm	(cm)
1,015	12,3	15	13,8	45	8,9
1,016	12,1	16	13,7	46	8,8
1,017	11,8	17	13,5	47	8,6
1,018	11,5	18	13,3	48	8,4
1,019	11,3	19	13,2	49	8,3
1,020	11,0	20	13,0	50	8,1
1,021	10,8	21	12,9	51	7,9
1,022	10,5	22	12,7	52	7,8
1,023	10,2	23	12,5	53	7,6
1,024	10,0	24	12,4	54	7,4
1,025	9,7	25	12,2	55	7,3
1,026	9,4	26	12,0	56	7,1
1,027	9,2	27	11,9	57	7
1,028	8,9	28	11,7	58	6,8
1,029	8,6	29	11,5	59	6,6
1,030	1,030 8,4		11,4	60	6,5
1	031	g	3,1	*Lectura del hi	idrómetro
•	051		,, ±	corregida por I	Menisco
1,032	7,8				
1,033	7,6				
1,034	7,3				
1,035	7,0				
1,036	6,8				
1,037	6,5				
1,038	6,2				

Tabla 1.14. Valores de ct. para la corrección por temperatura de las lecturas del hidrómetro

	(it
Temp. C	Hidrómetro	graduado en
	Densidad (gr/cm³) x 10³	Concentración (gr/litro)*
10	-1,3	-2,0
11	-1,2	-1,9
12	-1,1	-1,8
13	-1,0	-1,6
14	-0,9	-1,4
15	-0,8	-1,2
16	-0,6	-1,0
17	-0,5	-0,8
18	-0,3	-0,5
19	-0,2	-0,3
20	0,0	0,0
21	0,2	0,3
22	0,4	0,6
23	0,6	0,9
24	0,8	1,3
25	1,0	1,7
26	1,3	2,0
27	1,5	2,4
28	1,8	2,9
29	2,0	3,3
30	2,3	3,7

Tabla 1.15 Valores de k para el cálculo del diámetro de partículas en el análisis hidrométrico

Tem			Peso es	specífico (de las par	tículas de	el suelo		
оC	2,45	2,50	2,55	2,60	2,65	2,70	2,75	2,80	2,85
10	0,01659	0,01631	0,01604	0,1583	0,1555	0,01532	0,01510	0,01488	0,01468
11	0,01636	0,01608	0,01582	0,01557	0,01533	0,01511	0,01489	0,01468	0,01448
12	0,01613	0,01586	0,01560	0,01535	0,01512	0,01490	0,01468	0,01448	0,01428
13	0,01591	0,01565	0,01539	0,01515	0,01492	0,01470	0,01449	0,01428	0,01409
14	0,01571	0,01544	0,01519	0,01495	0,01474	0,01451	0,01430	0,01410	0,01391
15	0,01551	0,01525	0,01500	0,01476	0,01454	0,01432	0,01412	0,01392	0,01373
16	0,01530	0,01505	0,01481	0,01457	0,01435	0,01414	0,01394	0,01374	0,01356
17	0,01521	0,01486	0,01462	0,01439	0,01417	0,01396	0,01376	0,01356	0,01338
18	0,01492	0,01467	0,01443	0,01421	0,01399	0,01378	0,01359	0,01339	0,01321
19	0,01437	0,01449	0,01425	0,01403	0,01382	0,01361	0,01342	0,01323	0,01305
20	0,01456	0,01431	0,01408	0,01386	0,01365	0,01344	0,01325	0,01307	0,01289
21	0,01438	0,01414	0,01391	0,01369	0,01348	0,01328	0,01309	0,01291	0,01273
22	0,01421	0,01397	0,01374	0,01353	0,01332	0,01312	0,01294	0,01276	0,01258
23	0,01404	0,01381	0,01358	0,01337	0,01317	0,01297	0,01279	0,01261	0,01243
24	0,01388	0,01365	0,01342	0,01321	0,01301	0,01282	0,01264	0,01246	0,01229
25	0,01372	0,01349	0,01327	0,01306	0,01286	0,01267	0,01249	0,01232	0,01215
26	0,01357	0,01334	0,01312	0,01291	0,01272	0,01253	0,01235	0,01219	0,01201
27	0,01342	0,01319	0,01297	0,01277	0,01258	0,01239	0,01221	0,01204	0,01188
28	0,01327	0,01304	0,01283	0,01264	0,01244	0,01225	0,01208	0,01191	0,01175
29	0,01312	0,01290	0,01269	0,01249	0,01230	0,01212	0,01195	0,01178	0,01162
30	0,01298	0,01276	0,01256	0,01236	0,01217	0,01199	0,01182	0,01165	0,01149

Tabla 1.16. Valores de coeficientes de corrección para distintos pesos específicos de las partículas del suelo

Peso Específico	Coeficiente "a"	Peso Específico	Coeficiente "a"	Peso Específico	Coeficiente "a"
2,45	1,05	2,60	1,01	2,75	0,98
2,50	1,03	2,65	1,00	2,80	0,97
2,55	1,02	2,70	0,99	2,85	0,96

Tabla 1.17 Densidad del agua y Coeficiente de Temperatura (k) para varias temperaturas

Tempera	Densi	Coeficien									
tura	dad	te									
(°C)	(g/mL) ^B	Tempera tura (K)									
15,0	0,99910	1,00090	16,0	0,99895	1,00074	17,0	0,99878	1,00057	18,0	0,99860	1,00039
15,1	0,99909	1,00088	16,1	0,99893	1,00072	17,1	0,99876	1,00055	18,1	0,99858	1,00037
15,2	0,99907	1,00087	16,2	0,99891	1,00071	17,2	0,99874	1,00054	18,2	0,99856	1,00035
15,3	0,99906	1,00085	16,3	0,99890	1,00069	17,3	0,99872	1,00052	18,3	0,99854	1,00034
15,4	0,99904	1,00084	16,4	0,99888	1,00067	17,4	0,99871	1,00050	18,4	0,99852	1,00032
15,5	0,99902	1,00082	16,5	0,99886	1,00066	17,5	0,99869	1,00048	18,5	0,99850	1,00030
15,6	0,99901	1,00080	16,6	0,99885	1,00064	17,6	0,99867	1,00047	18,6	0,99848	1,00028
15,7	0,99899	1,00079	16,7	0,99883	1,00062	17,7	0,99865	1,00045	18,7	0,99847	1,00026
15,8	0,99898	1,00077	16,8	0,99881	1,00061	17,8	0,99863	1,00043	18,8	0,99845	1,00024
15,9	0,99896	1,00076	16,9	0,99879	1,00059	17,9	0,99862	1,00041	18,9	0,99843	1,00022
19,0	0,99841	1,00020	20,0	0,99821	1,00000	21,0	0,99799	0,99979	22,0	0,99777	0,99957
19,1	0,99839	1,00018	20,1	0,99819	0,99998	21,1	0,99797	0,99977	22,1	0,99775	0,99954
19,2	0,99837	1,00016	20,2	0,99816	0,99996	21,2	0,99795	0,99974	22,2	0,99773	0,99952
19,3	0,99835	1,00014	20,3	0,99814	0,99994	21,3	0,99793	0,99972	22,3	0,99770	0,99950
19,4	0,99833	1,00012	20,4	0,99812	0,99992	21,4	0,99791	0,99970	22,4	0,99768	0,99947
19,5	0,99831	1,00010	20,5	0,99810	0,99990	21,5	0,99789	0,99968	22,5	0,99766	0,99945
19,6	0,99829	1,00008	20,6	0,99808	0,99987	21,6	0,99786	0,99966	22,6	0,99764	0,99943
19,7	0,99827	1,00006	20,7	0,99806	0,99985	21,7	0,99784	0,99963	22,7	0,99761	0,99940
19,8	0,99825	1,00004	20,8	0,99804	0,99983	21,8	0,99782	0,99961	22,8	0,99759	0,99938
19,9	0,99823	1,00002	20,9	0,99802	0,99981	21,9	0,99780	0,99959	22,9	0,99756	0,99936
23,0	0,99754	0,99933	24,0	0,99730	0,99909	25,0	0,99705	0,99884	26,0	0,99679	0,99858
23,1	0,99752	0,99931	24,1	0,99727	0,99907	25,1	0,99702	0,99881	26,1	0,99676	0,99855
23,2	0,99749	0,99929	24,2	0,99725	0,99904	25,2	0,99700	0,99879	26,2	0,99673	0,99852
23,3	0,99747	0,99926	24,3	0,99723	0,99902	25,3	0,99697	0,99876	26,3	0,99671	0,99850
23,4	0,99745	0,99924	24,4	0,99720	0,99899	25,4	0,99694	0,99874	26,4	0,99668	0,99847
23,5	0,99742	0,99921	24,5	0,99717	0,99897	25,5	0,99692	0,99871	26,5	0,99665	0,99844
23,6	0,99740	0,99919	24,6	0,99715	0,99894	25,6	0,99689	0,99868	26,6	0,99663	0,99842
23,7	0,99737	0,99917	24,7	0,99712	0,99892	25,7	0,99687	0,99866	26,7	0,99660	0,99839
23,8	0,99735	0,99914	24,8	0,99710	0,99889	25,8	0,99684	0,99863	26,8	0,99657	0,99836
23,9	0,99732	0,99912	24,9	0,99707	0,99887	25,9	0,99681	0,99860	26,9	0,99654	0,99833
27,0	0,99652	0,99831	28,0	0,99624	0,99803	29,0	0,99595	0,99774	30,0	0,99565	0,99744

Tabla 1.18 Clasificación de suelos

	Division	nes principales			Símbolo del grupo	Nombre clásico
	1		2		3	4
				Gravas limpias	GW	Gravas bien graduadas, mezclas de grava y arena, poco ó ningún fino.
		GRAVAS Más de la mitad de los gruesos es >		(poco ó ningún fino)	GP	Gravas pobremente graduadas, mezclas de grava y arena, poco ó ningún fino.
Suelos de grano grueso		5mm	Para clasificaci	Gravas con finos (apre-	GM	Gravas limosas, mezclas de grava, arena y limo.
Más de la mitad del			ón visual el tamiz	ciable canti- dad)	GC	Gravas arcillosas, mezclas de grava, arena y arcilla.
material es mayor que el t.			nº4 equivale	Arenas li mpias	SW	Arenas bien graduadas, arenas con grava, poco ó ningún fino.
nº200	El tamaño del	ARENAS Más de la mitad de los gruesos es < 5	a 5 mm	(poco ó ningún fino)	SP	Arenas pobremente graduadas, arenas con grava, poco ó ningún fino.
	tamiz nº200 es aproximadament	mm		Arenas con finos (apre-	SM	Arenas limosas, mezclas de arena y limo.
	e la menor partícula visible			ciable canti- dad)	SC	Arenas arcillosas, mezcla de arena y arcilla.
	a simple vista				ML	Limos inorgánicos de baja compresibilidad.
los de grano fino Más de la		Limos y arcillas.	Límite líqui que 50	do me- nor	CL	Arcillas inorgánicas de baja a media compresibilidad arcillas con gravas, arcillas arenosas, arcillas limosas
mitad del material es					OL	Limos orgánicos y arcillas limosas orgánicas de baja compresibilidad
menor que el t. nº200					МН	Limos inorgánicos de alta compresibilidad
		Limos y arcillas.	Límite líqui que 50	do ma- yor	СН	Arcillas inorgánicas de alta compresibilidad
					ОН	Arcillas y limos orgánicos de media a alta compresibilidad.
	Suelos alta	amente orgánicos			Pt	Turba y otros suelos altamente orgánicos

Fuente: Conanma (2016). Geotecnia

Tabla 1.19 Cuadro de resumen.

TIPO DE ENSAYO	ESTÁNDAR		MODIFICADO
PESO DEL MARTILLO	5.5 lbf(2.49 kg)		10lbf (4.54 kg)
ALTURA DE CAÍDA	12"(305 mm)		18"(457 mm)
NÚMERO DE CAPAS	3 capas		5 capas
PROCEDIMIENTO DE ENSAYO	Α	В	С
MATERIAL EMPLEADO	< #4	<3/8"	< 3/4"
DIÁMETRO DEL MOLDE	4"	4"	6"
NÚMERO DE GOLPES	25	25	56
GRADACIÓN	Hasta 20% > #4	Más de 20% > #4 y hasta 20% > 3/8"	Más de 20% > 3/8" y menos de 30% > 3/4"

Fuente: Pontificia Universidad Católica del Perú (2012). Guía de Laboratorio de Mecánica de Suelos

Tabla 2.2. Operacionalización de variables.

Hipótesis	Variable	Indicador	Dimensión
	Variable	Índice de plasticidad (IP)	
	Independiente (X): Ceniza de Madera de	Humedad Óptima	%
General	Fondo	Coeficiente de	
La ceniza de madera de fondo,		compresión	
productos de ladrilleras		Coeficiente Re-	número
artesanales mejorará el	Variable	compresión	
comportamiento físico-mecánico	Dependiente (Y):	Esfuerzo de	kPa
del suelo arcilloso.	Estabilización de	Preconsolidación	rra
	suelos arcillosos	Esfuerzo a corte	kg/cm2
		Ángulo de fricción	Ø
		Cohesión	kg/cm2
Secundaria 1 La ceniza de madera de fondo	Variable Independiente (X1): Ceniza de Madera de Fondo	Límite Líquido (LL)	~
disminuye la plasticidad del suelo arcilloso.	Variable Dependiente (Y1):	Límite Plástico (LP)	%
	Plasticidad del suelo arcilloso	Índice de plasticidad (IP)	
Secundaria 2 La ceniza de madera de fondo	Variable Independiente (X2): Ceniza de Madera de Fondo	Humedad óptima (%)	%
disminuye la humedad óptima del suelo arcilloso.	Variable Dependiente (Y2): Humedad óptima del suelo arcilloso	Transcad Optima (75)	~
	Variable Independiente (X3):	Coeficiente de compresión	70 (177 O VO
Secundaria 3 La ceniza de madera de fondo disminuye la deformación y	Ceniza de Madera de Fondo Variable	coeficiente Recompresión	número
aumenta el esfuerzo del suelo arcilloso.	Dependiente (Y3): Deformación y esfuerzo del suelo arcilloso	Esfuezo de Preconsolidación	kpa
Secundario 4 La ceniza de madera de fondo	Variable Independiente (X4): Ceniza de Madera de Fondo	Ángulo de fricción	Ø
incrementa los parámetros de	Variable	Cohesión	
resistencia del suelo arcilloso.	Dependiente (Y4): Parámetros de resistencia del suelo arcilloso	Esfuerzo a corte	kg/cm2

Tabla 2.3 Proporción de Mezcla y Simbología referente a cada Material

Material / Mezcla	% suelo Arcilloso	% Ceniza de Fondo	Símbolo
Suelo	100	0	S
Mezcla 1	90	10	S90/CF10
Mezcla 2	80	20	S80/CF20
Mezcla 3	70	30	S70/CF30
Mezcla 4	60	40	S60/CF40
Mezcla 5	50	50	S50/CF50

Tabla 2.4 Cronograma de actividades

				Cro	nogr	ama d	le Act	Cronograma de Actividades	es								
"Estabilización de suelos arcillosos ap	illoso	=	cando	ceniz	as de	made	ra, pr	cando cenizas de madera, producto de las ladrilleras artesanales en el Departamento	de la	s ladri	lleras	artes	anales	ene	Depa	ırtame	nto
					О	e Aya	de Ayacucho"	_									
OCTORINITO V		Ag	osto			Se	Septiembre	bre			Oct	Octubre			Novie	Noviembre	4
Acilyidades	S1	S 2	83	84	S 2	98	22	88	68	S10	S11	S11 S12 S13	S13	S14	S15	S16	S17
Propuesta de Tesis																	
Definición del titulo (Matriz de																	
consistencia)																	
Recopilación de información																	
y toma de muestras																	
Realización de ensayos																	
proyectados en el proyecto																	
Procesamiento de resultados																	
e interpretación																	
Revisión, ordenamiento de																	
información y levantamiento																	
de observaciones																	
Presentación del proyecto																	
(Sustentación)																	

Fuente: Elaborado por los autores

ANEXO N°3: ENSAYOS FÍSICOS

1. ANÁLISIS GRANULOMÉTRICO POR TAMIZADO

1.1. ARCILLA 100%

FACULTAD DE INGENIERÍA Y ARQUITECTURA LAB. DE MATERIALES Y MECÁNICA DE SUELOS

ANÀLISIS GRANULOMÈTRIA POR TAMIZADO ASTM D422

OBRA: Estabilización de suelos arcillosos aplicando cenizas de madera, producto de las ladrilleras artesanales,

en el departamento de Ayacucho

ELABORADO: Bach. Yataco Quispe, Alejandro Jesús ASESOR: Mg. lng. Gary, Duran Ramírez

Bach. Mamani Barriga, Lux Eva

UBICACION: Huamanga - Ayacucho COMB: 100%S № LAB:

Peso de muestra :	65	gr			
% Pasa № 200	59.51	%			
Tamiz		Re	etenido	Retenido Acumulado	Pasa
(mm)	(pulg)	(gr)	(%)	(%)	(%)
4.760	№ 4	0.00	0.00	0.00	100.00
2.000	Nº 10	0.00	0.00	0.00	100.00
0.840	Nº 20	1.12	1.72	1.72	98.28
0.425	Nº 40	2.72	4.18	5.91	94.09
0.260	Nº 60	6.47	9.95	15.86	84.14
0.106	Nº 140	10.15	15.62	31.48	68.52
0.075	Nº 200	5.86	9.02	40.49	59.51
Fondo		38.68	59.51	100.00	0.00
Suma		65.00			

Fuente: Elaborado por los autores

CURVA GRANULOMÉTRICA

1.2. **CENIZA 100%**

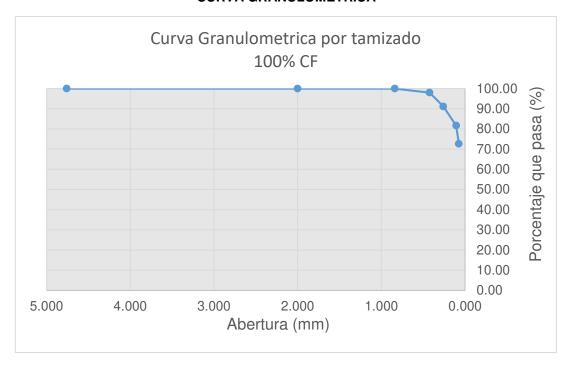
FACULTAD DE INGENIERÍA Y ARQUITECTURA LAB. DE MATERIALES Y MECÁNICA DE SUELOS

ANÀLISIS GRANULOMÈTRIA POR TAMIZADO ASTM D422

OBRA: Estabilización de suelos arcillosos aplicando cenizas de madera, producto de las ladrilleras artesanales,

en el departamento de Ayacucho

ELABORADO: Bach. Yataco Quispe, Alejandro Jesús **ASESOR:** Mg. lng. Gary, Duran Ramírez


Bach. Mamani Barriga, Lux Eva

UBICACION: Huamanga - Ayacucho COMB: 100%CF № LAB: 1

Peso de muestra :	65	gr			
% Pasa № 200	72.65	%			
Tamiz		Retenido F		Retenido Acumulado	Pasa
(mm)	(pulg)	(gr)	(%)	(%)	(%)
4.760	Nº 4	0.00	0.00	0.00	100.00
2.000	Nº 10	0.00	0.00	0.00	100.00
0.840	Nº 20	0.00	0.00	0.00	100.00
0.425	Nº 40	1.30	2.00	2.00	98.00
0.260	Nº 60	4.47	6.88	8.88	91.12
0.106	Nº 140	6.15	9.46	18.34	81.66
0.075	№ 200	5.86	9.02	27.35	72.65
Fondo		47.22	72.65	100.00	0.00
Suma	•	65.00			

Fuente: Elaborado por los autores

CURVA GRANULOMÉTRICA

COMBINACIÓN ARCILLA 80% - CENIZA 20% 1.3.

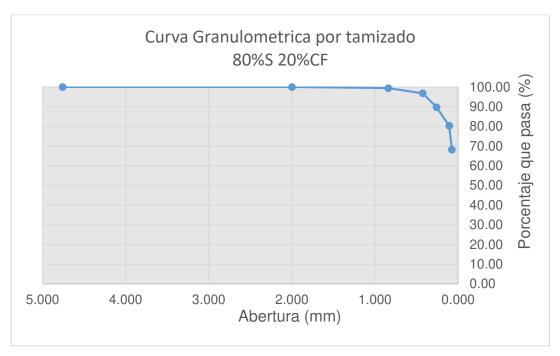
FACULTAD DE INGENIERÍA Y ARQUITECTURA LAB. DE MATERIALES Y MECÁNICA DE SUELOS

ANÀLISIS GRANULOMÈTRIA POR TAMIZADO ASTM D422

Estabilización de suelos arcillosos aplicando cenizas de madera, producto de las ladrilleras artesanales, OBRA:

en el departamento de Ayacucho

ELABORADO: Bach. Yataco Quispe, Alejandro Jesús ASESOR: Mg. Ing. Gary, Duran Ramírez


Bach. Mamani Barriga, Lux Eva

UBICACION: COMB: 80%S 20%CF Huamanga - Ayacucho Nº LAB:

Peso de muestra :	65	gr			
% Pasa № 200 :	68.22	%			
Tamiz		Retenido		Retenido Acumulado	Pasa
(mm)	(pulg)	(gr)	(%)	(%)	(%)
4.760	Nº 4	0.00	0.00	0.00	100.00
2.000	Nº 10	0.00	0.00	0.00	100.00
0.840	№ 20	0.36	0.55	0.55	99.45
0.425	Nº 40	1.72	2.65	3.20	96.80
0.260	№ 60	4.57	7.03	10.23	89.77
0.106	Nº 140	6.15	9.46	19.69	80.31
0.075	Nº 200	7.86	12.09	31.78	68.22
Fondo		44.34	68.22	100.00	0.00
Suma	•	65.00			·

Fuente: Elaborado por los autores

CURVA GRANULOMÉTRICA

1.4. COMBINACIÓN ARCILLA 70% - CENIZA 30%

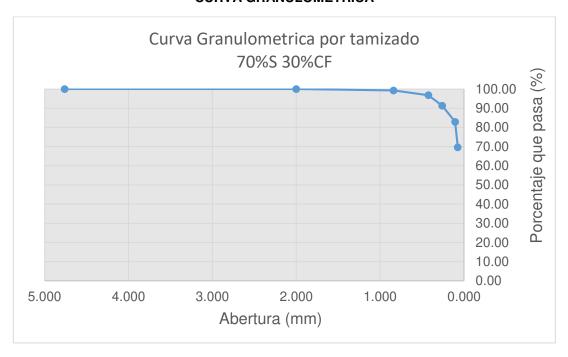
FACULTAD DE INGENIERÍA Y ARQUITECTURA LAB. DE MATERIALES Y MECÁNICA DE SUELOS

ANÀLISIS GRANULOMÈTRIA POR TAMIZADO ASTM D422

OBRA: Estabilización de suelos arcillosos aplicando cenizas de madera, producto de las ladrilleras artesanales,

en el departamento de Ayacucho

ELABORADO: Bach. Yataco Quispe, Alejandro Jesús **ASESOR:** Mg. lng. Gary, Duran Ramírez


Bach. Mamani Barriga, Lux Eva

UBICACION: Huamanga - Ayacucho COMB: 70%S 30%CF № LAB: 1

Peso de muestra :	65	gr			
% Pasa № 200 :	69.57	%			
Tamiz		Retenido		Retenido Acumulado	Pasa
(mm)	(pulg)	(gr)	(%)	(%)	(%)
4.760	Nº 4	0.00	0.00	0.00	100.00
2.000	Nº 10	0.00	0.00	0.00	100.00
0.840	Nº 20	0.48	0.74	0.74	99.26
0.425	Nº 40	1.62	2.49	3.23	96.77
0.260	Nº 60	3.57	5.49	8.72	91.28
0.106	Nº 140	5.45	8.38	17.11	82.89
0.075	№ 200	8.66	13.32	30.43	69.57
Fondo		45.22	69.57	100.00	0.00
Suma		65.00			

Fuente: Elaborado por los autores

CURVA GRANULOMÉTRICA

2. ANÁLISIS GRANULOMÉTRICO POR SEDIMENTACIÓN

2.1. ARCILLA 100%

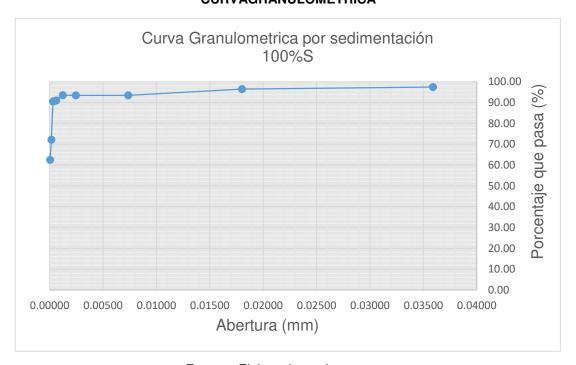
FACULTAD DE INGENIERÍA Y ARQUITECTURA LAB. DE MATERIALES Y MECÁNICA DE SUELOS

ANÀLISIS GRANULOMÈTRIA POR SEDIMENTACION ASTM D422

OBRA: Estabilización de suelos arcillosos aplicando cenizas de madera, producto de las ladrilleras

artesanales, en el departamento de Ayacucho

ELABORADO: Bach. Yataco Quispe, Alejandro Jesús **ASESOR:** Mg. lng. Gary, Duran Ramírez


Bach. Mamani Barriga, Lux Eva

 UBICACION:
 Huamanga - Ayacucho
 COMB:
 100%S
 № LAB:
 1

Ws:	50	gr		Clase Hid	lrómetro :	152 H				
Gs:	2.71	gr/cm3		а	0.988	Correcion por Gs				
Ct:	5			Cm:	0.5					
Tiempo (min)	δC	Ct	Rd	Rc	P(%)	R	L (cm)	L/Tiempo (cm/min)	Constante K	Diámetro (mm)
1	21.00	0.30	54.00	49.30	97.42	54.50	7.35	7.35	0.01324	0.03589
2	21.00	0.30	53.50	48.80	96.43	54.00	7.40	3.70	0.01324	0.01801
5	21.00	0.30	52.00	47.30	93.46	52.50	7.70	1.54	0.01324	0.00735
15	21.00	0.30	52.00	47.30	93.46	52.50	7.70	0.51	0.01324	0.00245
30	21.80	0.54	51.80	47.34	93.54	52.30	7.74	0.26	0.01312	0.00122
60	21.80	0.54	50.50	46.04	90.98	51.00	7.90	0.13	0.01312	0.00061
120	23.50	1.00	49.80	45.80	90.50	50.30	8.04	0.07	0.01285	0.00030
240	23.50	1.00	40.50	36.50	72.12	41.00	9.60	0.04	0.01285	0.00017
1140	23.50	1.00	35.60	31.60	62.44	36.10	10.38	0.01	0.01285	0.00004

Fuente: Elaborado por los autores

CURVAGRANULOMÉTRICA

2.2. CENIZA 100%

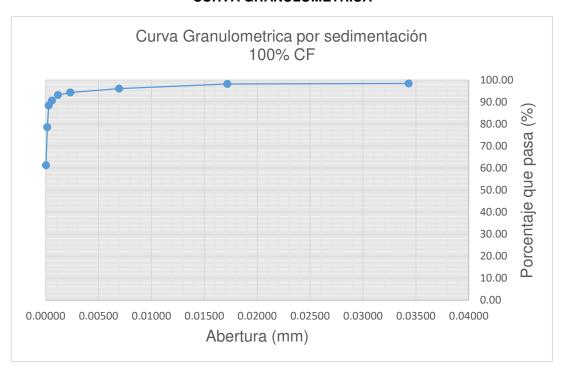
FACULTAD DE INGENIERÍA Y ARQUITECTURA LAB. DE MATERIALES Y MECÁNICA DE SUELOS

ANÀLISIS GRANULOMÈTRIA POR SEDIMENTACION ASTM D422

OBRA: Estabilización de suelos arcillosos aplicando cenizas de madera, producto de las ladrilleras

artesanales, en el departamento de Ayacucho

ELABORADO: Bach. Yataco Quispe, Alejandro Jesús ASESOR: Mg. lng. Gary, Duran Ramírez

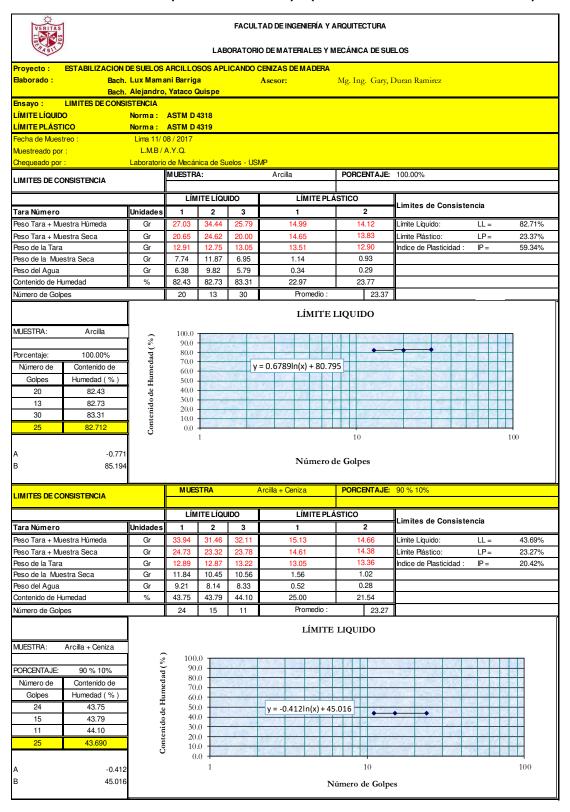

Bach. Mamani Barriga, Lux Eva

UBICACION: Huamanga - Ayacucho COMB: 100%CF № LAB: 1

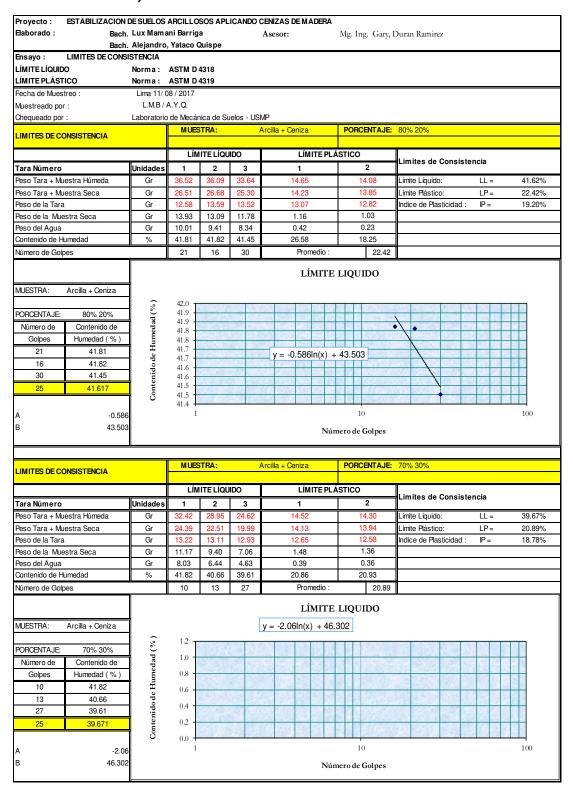
Ws:	50	gr		Clase Hid	rómetro :	152 H				
Gs:	2.79	gr/cm3		а	0.972 Correcion por Gs					
Ct:	5			Cm:	0.5					
Tiempo (min)	ōС	Ct	Rd	Rc	P(%)	R	L (cm)	L/Tiempo (cm/min)	Constante K	Diámetro (mm)
1	22.00	0.60	55.00	50.60	98.37	55.50	7.20	7.20	0.01279	0.03432
2	22.00	0.60	54.90	50.50	98.17	55.40	7.22	3.61	0.01279	0.01718
5	22.00	0.60	53.80	49.40	96.03	54.30	7.37	1.47	0.01279	0.00694
15	22.00	0.60	52.90	48.50	94.28	53.40	7.52	0.50	0.01279	0.00234
30	23.50	1.10	51.80	47.90	93.12	52.30	7.74	0.26	0.01258	0.00117
60	23.50	1.10	50.50	46.60	90.59	51.00	7.90	0.13	0.01258	0.00059
120	25.00	1.70	48.80	45.50	88.45	49.30	8.24	0.07	0.01235	0.00030
240	25.00	1.70	43.70	40.40	78.54	44.20	9.06	0.04	0.01235	0.00015
1140	25.00	1.70	34.80	31.50	61.24	35.30	10.54	0.01	0.01235	0.00004

Fuente: Elaborado por los autores

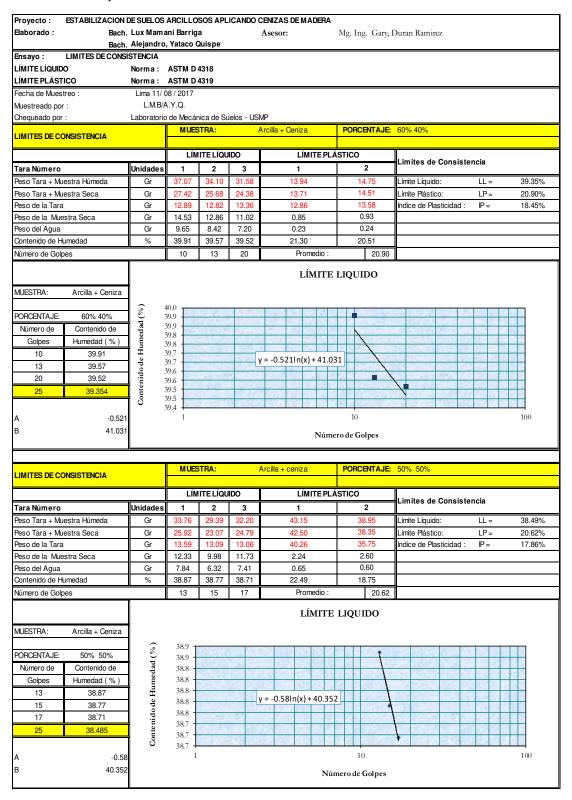
CURVA GRANULOMÉTRICA

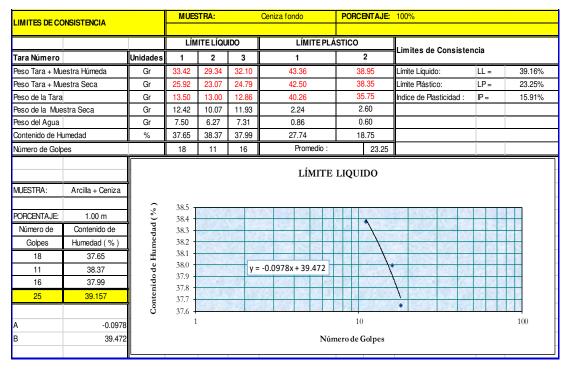


3. ENSAYO DE PESO ESPECÍFICO PARA ARCILLA PURA Y COMBINACIÓN ARCILLA - CENIZA


. 😂 .	EACH TAD D	DE INGENIERÍA Y A	POLITECTURA			
VERITAS	FACULTADE	E INGENIERIA TA	INQUITECTUNA			
L	.ABORATORIO	DE MATERIALES	S Y MECÁNICA DE SUELO)S		
Proyecto: ESTABILIZACIÓN DE SU	JELOS ARCILL	OSOS APLICANI	OO CENIZAS DE MADERA			
Elaborado: Bach.	Lux Mamani	Barriga				
	Alejandro Ya		Asesor:	Mg. lng. Gary,	Duran Ramirez	
Ubicación:	Huamanga -					
Ensayo : PESO ESPECÍFICO		Norma :	ASTM D 854			
Fecha de Muestreo :	Lima 11/08/2	2017				
Muestreado por :	L.M.B / A.Y.Q.					
Chequeado por :	Laboratorio de	Mecánica de Sue		- II		
Observaciones:		MUESTRA	Arcilla	MUESTRA	Arcilla + Ceniza	
		PORCENTAJE	100%	PORCENTAJE		
Tara Número	Unidades	I EW PE	RATURA 19.8 ºc 1	TEMPER	ATURA 18.8 ºc	
Peso del Suelo Seco		<u> </u>	200.00	1	200.00	
	Gr	-	1213.70		180.16	
Peso Franco - Agua - Suolo	Gr Gr	<u> </u>	1339.96		306.50	
Peso Frasco + Agua +Suelo Volumen de Sólidos	Gr Cm ³	-	73.74		73.66	
Peso Específico de Sólidos	Gr / Cm ³	-	2.71		2.72	
<u> </u>	Gr / Gm	<u> </u> 		1 2	2.71518	
Promedio Observaciones:		MUESTRA	2.71223 Arcilla + Ceniza	MUESTRA	Arcilla + Ceniza	
Observaciones:		PORCENTAJE	80% 20%	PORCENTAJE		
			RATURA 18.87 °c		ATURA 18.7 °c	
Tara Número	Unidades		3		4	
Peso del Suelo Seco	Gr		200.00	1 :	200.00	
Peso Frasco + Agua	Gr	1194.62		1	213.70	
Peso Frasco + Agua +Suelo	Gr	1321.08		1	340.36	
Volumen de Sólidos	Cm ³	-	73.54 73.34		73.34	
Peso Específico de Sólidos	Gr / Cm ³		2.72		2.73	
Promedio			2.71961	2.72702		
Observaciones:		MUESTRA	Arcilla + Ceniza	MUESTRA	Arcilla + Ceniza	
		PORCENTAJE	60% 40%	PORCENTAJE	50% 50%	
		TEMPE	RATURA 18.6 ºc	TEMPER	ATURA 18.6 ºc	
Tara Número	Unidades		5		6	
Peso del Suelo Seco	Gr		200.00		200.00	
Peso Frasco + Agua	Gr		1180.16	1	194.62	
Peso Frasco + Agua +Suelo	Gr		1307.10	1	322.08	
Volumen de Sólidos	Cm ³		73.06		72.54	
Peso Específico de Sólidos	Gr / Cm ³		2.74		2.76	
Promedio			2.73748	2	2.75710	
Observaciones:		MUESTRA	Arcilla			
		PORCENTAJE	100%	4		
- W	1	TEMP	ERATURA 20ºc	-		
Tara Número	Unidades	<u> </u>	7	4		
Peso del Suelo Seco	Gr		200.00	1		
Peso Frasco + Agua	Gr		1200.63	4		
Peso Frasco + Agua +Suelo	Gr		1328.98	<u> </u>		
	Cm ³	ii .	71.65	ı		
Volumen de Sólidos	-			4		
Peso Específico de Sólidos Promedio	Gr / Cm ³		2.79 2.79135	1		

4. ENSAYO DE LÍMITE DE CONSISTENCIA


4.1. COMBINACIÓN (ARCILLA 100%) -(ARCILLA 90% - CENIZA 10%)

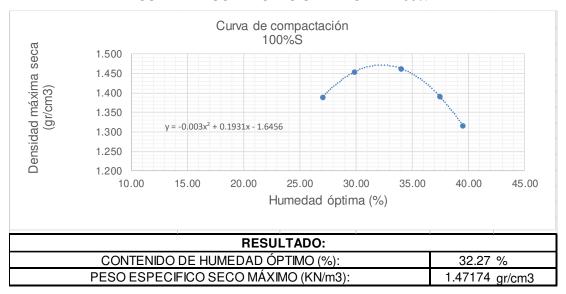

4.2. COMBINACIÓN (ARCILLA 80% - CENIZA 20%) – (ARCILLA 70% - CENIZA 30%)

4.3. COMBINACIÓN (ARCILLA 60% - CENIZA 40%) – (ARCILLA 50% - CENIZA 50%)

4.4. CENIZA 100%

Fuente: Elaborado por los autores

ANEXO N°4: ENSAYOS MECÁNICOS

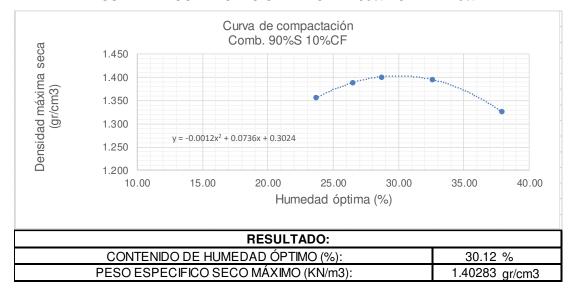

1. ENSAYO PROCTOR MODIFICADO

1.1 MATERIAL ENSAYADO - ARCILLA 100%

FACULTAD DE INGENIERÍA Y ARQUITECTURA								
THE BIT	LAB. DE M	ATERIALES Y	MECÁNICA D	E SUELOS				
	ENSAYO DE	PROCTOR M	ODIFICADO N	TP 339. 141				
OBRA:	Estabilizad	Estabilización de suelos arcillosos aplicando cenizas de madera, producto de las ladrilleras artesanales en el departamento de Ayacucho						
ELABORADO:	Bach. Yataco C	uispe, Alejandro	o Jesús	ASESOR: Mg. lng.		Gary, Duran Ramírez		
	Bach. Mamani	Barriga, Lux Eva	3					
UBICACION:	Huamanga	- Ayacucho	COMB:	100%	6S	Nº LAB :	1	
Tipo de prueba :	Proctor Modific	ado	Volumen del	molde :	2123.3	cm3		
Peso del martillo :	4545.1	gr						
Nº de capas :	5							
Altura de caida :	45	cm						
Nº de golpes :	56							

MOLDE	4-B	4-A	5-A	5-A	5-A
Peso molde (g)	6278	6433.5	6302.5	6302.5	6302.5
Volumen molde (cm3)	2123.307	2123.307	2123.307	2123.307	2123.307
Peso molde + Suelo húmedo (10286.84	10180.26	10200.79	10464.50	10363.53
Peso Suelo Húmedo	4008.84	3746.76	3898.29	4162.00	4061.03
Peso molde + Suelo seco (g)	9365.29	9382.77	9096.77	9408.47	9256.62
Peso Suelo Seco	3087.29	2949.27	2794.27	3105.97	2954.12
Densidad húmeda (g/cm3)	1.888	1.765	1.836	1.960	1.913
Densidad seca (g/cm3)	1.454	1.389	1.316	1.463	1.391
CÁPSULA	6-E	3	1	5-A	3-E
Peso cápsula (g)	29.29	30.16	28.08	28.56	29.08
Peso cápsula + Suelo húmedo	65.23	51.92	77.26	67.41	61.51
Peso cápsula + Suelo seco (g	56.97	47.29	63.33	57.55	52.67
Peso agua (g)	8.26	4.63	13.93	9.86	8.84
Peso suelo seco (g)	27.68	17.13	35.25	28.99	23.59
Humedad (%)	29.85	27.04	39.51	34.00	37.47

CURVA DE COMPACTACIÓN - ARCILLA 100%

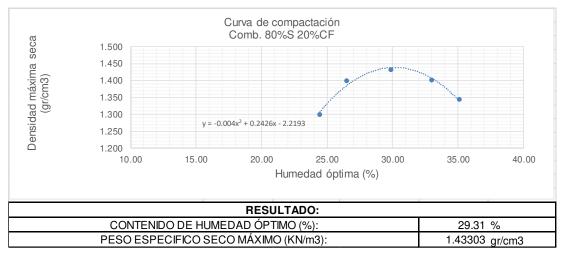


1.2 MATERIAL ENSAYADO - ARCILLA 90% - CENIZA 10%

VENITAS CONTRACTOR OF THE PROPERTY OF THE PROP	FACULTAD DE INGENIERÍA Y ARQUITECTURA LAB. DE MATERIALES Y MECÁNICA DE SUELOS								
	ENSAYO DE	PROCTOR I	MODIFICADO N	ITP 339. 141					
OBRA:	Estabiliza	Estabilización de suelos arcillosos aplicando cenizas de madera, producto de las ladrilleras artesanales en el departamento de Ayacucho							
ELABORADO:	Bach. Yatac	o Quispe, Ale	ejandro Jesús	ASESOR:	Mg. Ing.	Gary, Durar	n Ramírez		
	Bach. Mama	ani Barriga, L	ux Eva						
UBICACION:	Huamanga	- Ayacucho	COMB:	90%S 1	0%CF	Nº LAB:	1		
Tipo de prueba :	Р	roctor Modifi	cado	Volumen d	el molde :	2123.3	cm3		
Peso del martillo :	4545.1	gr							
Nº de capas :	5								
Altura de caida :	45	cm							
Nº de golpes :	56								

MOLDE	4-B	4-A	5-A	5-C	5-A
Peso molde (g)	6278	6433.5	6302.5	6278	6302.5
Volumen molde (cm3)	2123.307	2123.307	2123.307	2123.307	2123.307
Peso molde + Suelo húmedo (g)	10208.45	10315.80	9863.79	10008.83	10130.71
Peso Suelo Húmedo	3930.45	3882.30	3561.29	3730.83	3828.21
Peso molde + Suelo seco (g)	9242.14	9249.01	9181.70	9227.27	9277.25
Peso Suelo Seco	2964.14	2815.51	2879.20	2949.27	2974.75
Densidad húmeda (g/cm3)	1.851	1.828	1.677	1.757	1.803
Densidad seca (g/cm3)	1.396	1.326	1.356	1.389	1.401
CÁPSULA	6-E	3	1	6-E	4-R
Peso cápsula (g)	29.29	30.16	28.08	29.29	29.56
Peso cápsula + Suelo húmedo (g)	66.36	53.69	75.3	65.89	57.89
Peso cápsula + Suelo seco (g)	57.25	47.22	66.26	58.22	51.57
Peso agua (g)	9.11	6.47	9.04	7.67	6.32
Peso suelo seco (g)	27.96	17.06	38.18	28.93	22.01
Humedad (%)	32.60	37.89	23.69	26.50	28.69

CURVA DE COMPACTACIÓN - ARCILLA 90% - CENIZA 10%

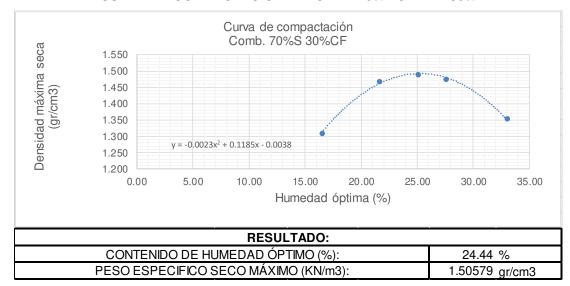


1.3 MATERIAL ENSAYADO - ARCILLA 80% - CENIZA 20%

VERITAS	FACULTAE	FACULTAD DE INGENIERÍA Y ARQUITECTURA							
VERITAS TO BIL	LAB. DE MA	TERIALES Y	MECÁNICA DE	SUELOS					
	ENSAYO DE	PROCTOR M	IODIFICADO NTE	339. 141					
OBRA:	Estabilizaci	Estabilización de suelos arcillosos aplicando cenizas de madera, producto de las ladrillera artesanales en el departamento de Ayacucho							
ELABORADO:	Bach. Yata	co Quispe, Ale	ejandro Jesús	ASESOR:	Mg. Ing.	Gary, Duran	Ramírez		
	Bach. Mamar	i Barriga, Lux	Eva			-			
UBICACION:	Huamanga	- Ayacucho	COMB:	80%S 2	0%CF	Nº LAB :	1		
Tipo de prueba :	Р	roctor Modific	ado	Volumen de	el molde :	2123.3	cm3		
Peso del martillo :	4545.1	gr							
Nº de capas :	5								
Altura de caida :	45	cm							
Nº de golpes :	56								

MOLDE	3-A	3-C	2-D	3-A	4-A
Peso molde (g)	6444	6267.5	6271.5	6444	6433.5
Volumen molde (cm3)	2123.307	2123.307	2123.307	2123.307	2123.307
Peso molde + Suelo húmedo (g)	10394	10124	10233	9879.51	10193.88
Peso Suelo Húmedo	3950	3856.5	3961.5	3435.51	3760.38
Peso molde + Suelo seco (g)	9484.95	9121.88	9250.79	9204.29	9406.13
Peso Suelo Seco	3040.95	2854.38	2979.29	2760.29	2972.63
Densidad húmeda (g/cm3)	1.860	1.816	1.866	1.618	1.771
Densidad seca (g/cm3)	1.432	1.344	1.403	1.300	1.400
CÁPSULA	6-C	3	2-A	6-E	3
Peso cápsula (g)	30.15	29.14	28.5	29.29	30.16
Peso cápsula + Suelo húmedo (g)	72.95	56.04	75.81	73.47	60.68
Peso cápsula + Suelo seco (g)	63.1	49.05	64.08	64.79	54.29
Peso agua (g)	9.85	6.99	11.73	8.68	6.39
Peso suelo seco (g)	32.95	19.91	35.58	35.5	24.13
Humedad (%)	29.89	35.11	32.97	24.45	26.50

CURVA DE COMPACTACIÓN - ARCILLA 80% - CENIZA 20%

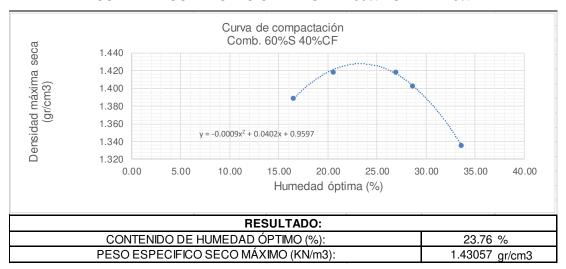


1.4 MATERIAL ENSAYADO - ARCILLA 70% - CENIZA 30%

FACULTAD DE INGENIERÍA Y ARQUITECTURA									
ABIT	LAB. DE MATERIALES Y MECÁNICA DE SUELOS								
	ENSAYO DE P	ROCTOR MO	DIFICADO N	ITP 339. 141					
OBRA:	Estabiliza	Estabilización de suelos arcillosos aplicando cenizas de madera, producto de las ladrilleras artesanales en el departamento de Ayacucho							
ELABORADO:	Bach. Yatac	Bach. Yataco Quispe, Alejandro Jesús ASESOR: Mg. lng. Gary, Duran Ram					n Ramírez		
	Bach. Mama	ıni Barriga, Lu	x Eva						
UBICACION:	Huamanga	- Ayacucho	COMB:	70%S 3	0%CF	№ LAB :	1		
Tipo de prueba :	Pr	octor Modifica	ado	Volumen d	el molde :	2123.3	cm3		
Peso del martillo :	4545.1	gr							
Nº de capas :	5								
Altura de caida :	45	cm							
Nº de golpes :	56								

MOLDE	1-A	1-A	1-A	1-A	1-A
Peso molde (g)	6444.5	6444.5	6444.5	6444.5	6444.5
Volumen molde (cm3)	2123.307	2123.307	2123.307	2123.307	2123.307
Peso molde + Suelo húmedo (g)	10234.60	10438.44	10266.45	10425.70	9684.67
Peso Suelo Húmedo	3790.10	3993.94	3821.95	3981.20	3240.17
Peso molde + Suelo seco (g)	9563.64	9606.10	9319.46	9578.50	9226.03
Peso Suelo Seco	3119.14	3161.60	2874.96	3134.00	2781.53
Densidad húmeda (g/cm3)	1.785	1.881	1.800	1.875	1.526
Densidad seca (g/cm3)	1.469	1.489	1.354	1.476	1.310
CÁPSULA	6-D	3-A	2-C	6-E	3
Peso cápsula (g)	27.98	28.91	29.24	29.29	30.16
Peso cápsula + Suelo húmedo (g)	57.61	59.63	71.94	74.38	58.27
Peso cápsula + Suelo seco (g)	52.35	53.47	61.35	64.64	54.29
Peso agua (g)	5.26	6.16	10.59	9.74	3.98
Peso suelo seco (g)	24.37	24.56	32.11	35.35	24.13
Humedad (%)	21.59	25.07	32.99	27.56	16.50

CURVA DE COMPACTACIÓN - ARCILLA 70% - CENIZA 30%

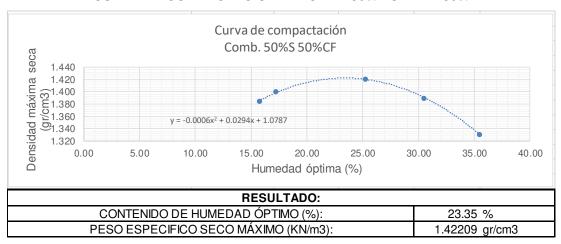


1.5 MATERIAL ENSAYADO - ARCILLA 60% - CENIZA 40%

Ů ·							
VERITAS - Marian	FACULTA	AD DE INGENI	ERÍA Y ARQUIT	ECTURA			
THE STATE OF THE S	LAB. DE N	MATERIALES Y	MECÁNICA D	E SUELOS			
	ENSAYO D	E PROCTOR M	MODIFICADO N	TP 339. 141			
OBRA:	Estabilizaci	Estabilización de suelos arcillosos aplicando cenizas de madera, producto de las ladrilleras artesanales en el departamento de Ayacucho					
ELABORADO:	Bach. Yata	co Quispe, Aleja	andro Jesús	ASESOR:	Mg. Ing.	Gary, Duran	Ramírez
	Bach. Mamar	i Barriga, Lux E	va				
UBICACION:	Huamanga	a - Ayacucho	COMB:	60%S 40	%CF	Nº LAB :	1
Tipo de prueba :	F	roctor Modifica	do	Volumen de	l molde :	2123.3	cm3
Peso del martillo :	4545.1	gr					
Nº de capas :	5						
Altura de caida :	45	cm					
Nº de golpes :	56						

MOLDE	4-B	4-A	5-A	5-C	5-A
Peso molde (g)	6278	6433.5	6302.5	6278	6302.5
Volumen molde (cm3)	2123.31	2123.31	2123.31	2123.31	2123.31
Peso molde + Suelo húmedo (g)	10108.99	10222.81	9737.81	9908.33	10125.06
Peso Suelo Húmedo	3830.99	3789.31	3435.31	3630.33	3822.56
Peso molde + Suelo seco (g)	9257.00	9270.24	9251.77	9290.97	9315.47
Peso Suelo Seco	2979.00	2836.74	2949.27	3012.97	3012.97
Densidad húmeda (g/cm3)	1.804	1.785	1.618	1.710	1.800
Densidad seca (g/cm3)	1.403	1.336	1.389	1.419	1.419
CÁPSULA	6-E	3	1	6-E	4-R
Peso cápsula (g)	29.29	30.16	28.08	29.29	29.56
Peso cápsula + Suelo húmedo (g)	56.3	59.89	64.8	65.89	57.89
Peso cápsula + Suelo seco (g)	50.29	52.42	59.60	59.67	51.89
Peso agua (g)	6.01	7.47	5.20	6.22	6.00
Peso suelo seco (g)	21.00	22.26	31.52	30.38	22.33
Humedad (%)	28.60	33.58	16.48	20.49	26.87

CURVA DE COMPACTACIÓN - ARCILLA 60% - CENIZA 40%



1.6 MATERIAL ENSAYADO - ARCILLA 50% - CENIZA 50%

VERITAS	FACULTA	FACULTAD DE INGENIERÍA Y ARQUITECTURA							
LAB. DE MATERIALES Y MECÁNICA DE SUELOS									
	ENSAYO DE	PROCTOR	MODIFICADO	NTP 339. 14	11				
OBRA:	Estabilización	Estabilización de suelos arcillosos aplicando cenizas de madera, producto de las ladrilleras artesanales en el departamento de Ayacucho							
ELABORADO:	Bach. Yataco	Quispe, Alej	andro Jesús	ASESOR:	Mg. Ing.	Gary, Duran F	Ramírez		
	Bach. Mamani	Barriga, Lux	Eva			-			
UBICACION:	Huamanga -	Ayacucho	COMB:	50%S	50%CF	Nº LAB :	1		
Tipo de prueba :	Pro	ctor Modifica	ido	Volumen	del molde :	2123.3	cm3		
Peso del martillo :	4545.1	gr							
Nº de capas :	5								
Altura de caida :	45	cm							
Nº de golpes :	56								

MOLDE	1-A	1-A	2-A	3-A	4-A
Peso molde (g)	6444.5	6445.5	6445	6444	6433.5
Volumen molde (cm3)	2123.307	2123.307	2123.307	2123.307	2123.307
Peso molde + Suelo húmedo (g)	10222.5	10275	9849	9738.22	10181.78
Peso Suelo Húmedo	3944.5	3841.5	3546.5	3460.22	3879.28
Peso molde + Suelo seco (g)	9427.03	9268.53	9349.18	9229.40	9275.13
Peso Suelo Seco	3149.03	2835.03	3046.68	2951.40	2972.63
Densidad húmeda (g/cm3)	1.858	1.809	1.670	1.630	1.827
Densidad seca (g/cm3)	1.483	1.335	1.435	1.390	1.400
CÁPSULA	3-D	6-F	2-A	6-E	3
Peso cápsula (g)	30.15	29.12	28.78	29.29	30.16
Peso cápsula + Suelo húmedo (g)	51.77	67.25	60.71	70.91	61.65
Peso cápsula + Suelo seco (g)	47.41	57.26	56.21	64.79	54.29
Peso agua (g)	4.36	9.99	4.5	6.12	7.36
Peso suelo seco (g)	17.26	28.14	27.43	35.5	24.13
Humedad (%)	25.26	35.50	16.41	17.24	30.50

CURVA DE COMPACTACIÓN - ARCILLA 50% - CENIZA 50%

2. ENSAYO DE CONSOLIDACIÓN

2.1 CARACTERÍSTICAS DEL MATERIAL ENSAYADO - ARCILLA 100%

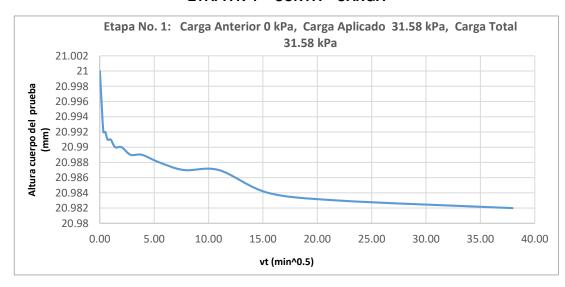
VERITAS		FACULTAD DE IN	NGENIERÍA Y ARQUITECTURA			
	LABORATORIO DE MATERIALES Y MECÁNICA DE SUELOS					
Proyecto: ESTABILIZACIÓN D	E SUELOS ARCILLO	SOS APLICANDO	O CENIZA DE MADERA			
Elaborado: Bach. Lux, Mamani	Barriga		Asesor: Mg. Ing Gary, Durán Rami	rez		
Bach. Alejandro, Yataco Quispe						
Ensayo: Consolidación Unid	imensional					
Norma: NTP 339.154						
	(Caracteristica	s del material ensayado			
Material:	Arcilla	100%				
Peso Específico da água	1	g/cm3	Fecha de ensayo:	10/10/2017		
Carateri	sticas Iniciales		Carateristica	as Finales		
Humedad Inicial (%)	32.27		Humedad Final (%)	38.42		
Peso Específico Total	1.62	g/cm ³	Peso Específico Total	48.856	g/cm ³	
Gs	2.71		Gs	2.71	g/cm ³	
ndice de Vacios Inicial (eo)	1.219		Índice de Vacios Inicial (ef)	1.186		
Grado de Saturación Inic. (%)	71.75		Grado de Saturación Final (%)	87.75		
Altura de Sólidos - Ho	0.9465	cm	Altura de Sólidos - Hs	0.9605	cm	

2.1.1 ETAPA N°1 - CARGA

Etapa No. 1: Carga Anterior 0 kPa, Carga Aplicado 31.58 kPa, Carga Total 31.58 kPa

Material Arcilla Fecha: 10-octubre-2017

Etapa No.


Carga	Presión (kPa)	Peso (gramos)
Anterior	0	0
Aplicado	31.58	1000
Total	31.58	1000

D. anillo 6.3500 cm

Unidad tiempo	Tiempo	Lectura extensómetro (0.0001)	Tiempo seg	Raiz cuadrada tiempo (min^0.5)	Altura cuerpo de prueba mm
seg	0	0	0	0.00	21.000
seg	6	31.1	6	0.32	20.992
seg	15	32.4	15	0.50	20.992
seg	30	34.5	30	0.71	20.991
min	1	35.8	60	1.00	20.991
min	2	37.9	120	1.41	20.990
min	4	39.9	240	2.00	20.990
min	8	42	480	2.83	20.989
min	15	44.3	900	3.87	20.989
min	30	46.7	1,800	5.48	20.988
hora	1.0	49.5	3,600	7.75	20.987
hora	2.0	53	7,200	10.95	20.987
hora	4.0	62.3	14,400	15.49	20.984
hora	8.0	67.6	28,800	21.91	20.983
hora	24.0	69.4	86,400	37.95	20.982

Fuente: Elaborado por los autores

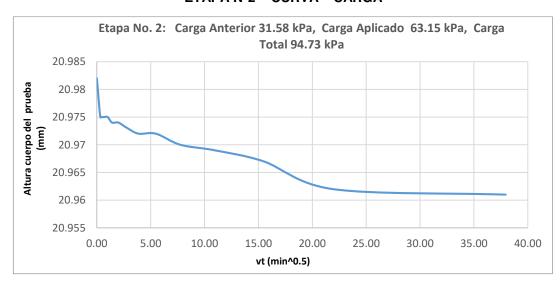
ETAPA N°1 - CURVA - CARGA

2.1.2 ETAPA N°2 - CARGA

Etapa No. 2: Carga Anterior 31.58 kPa, Carga Aplicado 63.15 kPa, Carga Total 94.73 kPa

Material Arcilla Fecha: 11-octubre-2017

Etapa No. 2


Carga	Presión (kPa)	Peso (gramos)
Anterior	31.58	1000
Aplicado	63.15	2000
Total	94.73	3000

D. anillo 6.35 cm

Unidad tiempo	Tiempo	Lectura extensómetro mm	Tiempo seg	Raiz cuadrada tempo (min^0.5)	Altura cuerpo de prueba mm
seg	0	69.4	0	0.00	20.982
seg	6	96.7	6	0.32	20.975
seg	15	97.9	15	0.50	20.975
seg	30	99.1	30	0.71	20.975
min	1	100.2	60	1.00	20.975
min	2	101.9	120	1.41	20.974
min	4	103.6	240	2.00	20.974
min	8	105.9	480	2.83	20.973
min	15	109.0	900	3.87	20.972
min	30	110.2	1,800	5.48	20.972
hora	1.0	117.0	3,600	7.75	20.970
hora	2.0	122.2	7,200	10.95	20.969
hora	4.0	128.9	14,400	15.49	20.967
hora	8.0	149.7	28,800	21.91	20.962
hora	24.0	151.9	86,400	37.95	20.961

Fuente: Elaborado por los autores

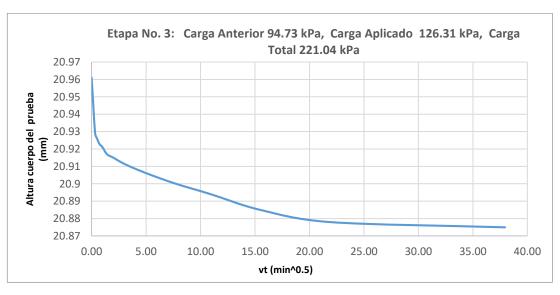
ETAPA N°2 - CURVA - CARGA

2.1.3 ETAPA N°3 - CARGA

Etapa No. 3: Carga Anterior 94.73 kPa, Carga Aplicado 126.31 kPa, Carga Total 221.04 kPa

Material Arcilla Fecha: 12-octubre-2017

Etapa No.


Carga	Presión (kPa)	Peso (gramos)	
Anterior	94.73	3000	
Aplicado	126.31	4000	
Total	221.04	7000	

D. anillo 6.35 cm

Unidad tiempo	Tiempo	Lectura extensómetro mm	Tiempo seg	Raiz cuadrada tempo (min^0.5)	Altura cuerpo de prueba mm
seg	0	151.9	0	0.00	20.961
seg	6	281.2	6	0.32	20.929
seg	15	291.4	15	0.50	20.926
seg	30	301.9	30	0.71	20.923
min	1	310.9	60	1.00	20.921
min	2	325.1	120	1.41	20.917
min	4	333.3	240	2.00	20.915
min	8	345.7	480	2.83	20.912
min	15	357.9	900	3.87	20.909
min	30	373.9	1,800	5.48	20.905
hora	1.0	393.6	3,600	7.75	20.900
hora	2.0	417.3	7,200	10.95	20.894
hora	4.0	451.4	14,400	15.49	20.885
hora	8.0	478.6	28,800	21.91	20.878
hora	24.0	492.0	86,400	37.95	20.875

Fuente: Elaborado por los autores

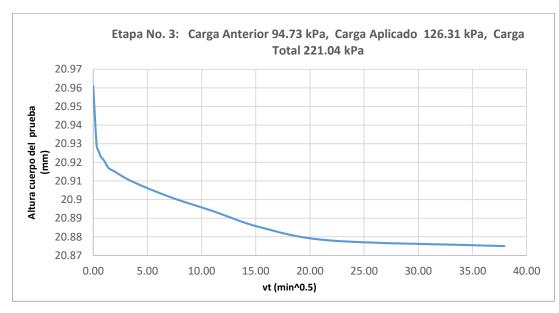
ETAPA N°3 - CURVA - CARGA

2.1.4 ETAPA N°4 – CARGA

Etapa No. 4: Carga Anterior 221.03 kPa, Carga Aplicado 252.61 kPa, Carga Total 473.64 kPa

Material Arcilla Fecha: 13-octubre-2017

Etapa No. 4


Carga	Presión (kPa)	Peso (gramos)
Anterior	221.03	7000
Aplicado	252.61	8000
		-
Total	473.64	15000

D. anillo 6.35 cm

Unidad tiempo	Tiempo	Lectura extensómetro mm	Tiempo seg	Raiz cuadrada tempo (min^0.5)	Altura cuerpo de prueba mm
seg	0	492.0	0	0.00	20.875
seg	6	638.1	6	0.32	20.838
seg	15	649.0	15	0.50	20.835
seg	30	660.0	30	0.71	20.832
min	1	672.0	60	1.00	20.829
min	2	686.0	120	1.41	20.826
min	4	700.9	240	2.00	20.822
min	8	720.0	480	2.83	20.817
min	15	741.0	900	3.87	20.812
min	30	772.1	1,800	5.48	20.804
hora	1.0	814.0	3,600	7.75	20.793
hora	2.0	863.1	7,200	10.95	20.781
hora	4.0	907.8	14,400	15.49	20.769
hora	8.0	938.5	28,800	21.91	20.762
hora	24.0	977.9	86,400	37.95	20.752

Fuente: Elaborado por los autores

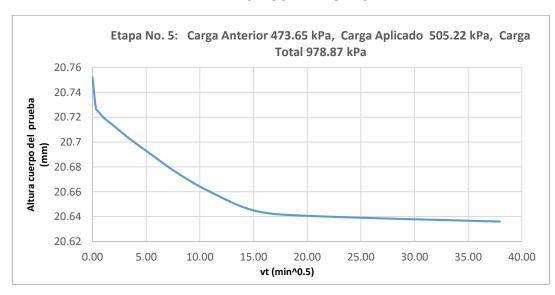
ETAPA N°4 - CURVA - CARGA

2.1.5 ETAPA N°5 - CARGA

Etapa No. 5: Carga Anterior 473.65 kPa, Carga Aplicado 505.22 kPa, Carga Total 978.87 kPa

Material Arcilla Fecha: 14-octubre-2017

Etapa No. 5


Carga	Presión (kPa)	Peso (gramos)
Anterior	473.65	15000
Aplicado	505.22	16000
Total	978.87	31000

D. anillo 6.35 cm

Unidad tiempo	Tiempo	Lectura extensómetro mm	Tiempo seg	Raiz cuadrada tempo (min^0.5)	Altura cuerpo de prueba mm
seg	0	977.9	0	0.00	20.752
seg	6	1075.6	6	0.32	20.727
seg	15	1084.2	15	0.50	20.725
seg	30	1092.1	30	0.71	20.723
min	1	1100.8	60	1.00	20.720
min	2	1113.7	120	1.41	20.717
min	4	1130.2	240	2.00	20.713
min	8	1152.2	480	2.83	20.707
min	15	1180.9	900	3.87	20.700
min	30	1220.7	1,800	5.48	20.690
hora	1.0	1273.9	3,600	7.75	20.676
hora	2.0	1339.8	7,200	10.95	20.660
hora	4.0	1402	14,400	15.49	20.644
hora	8.0	1418.6	28,800	21.91	20.640
hora	24.0	1434	86,400	37.95	20.636

Fuente: Elaborado por los autores

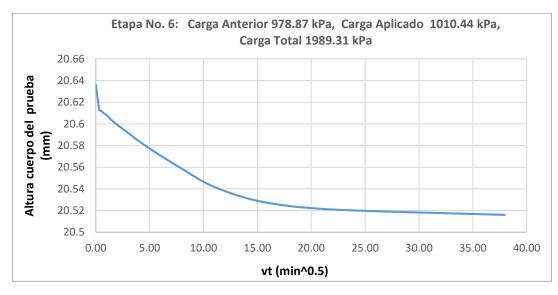
ETAPA N°5 - CURVA - CARGA

2.1.6 ETAPA N°6 - CARGA

Etapa No. 6: Carga Anterior 978.87 kPa, Carga Aplicado 1010.44 kPa, Carga Total 1989.31 kPa

Material Arcilla Fecha: 15-octubre-2017

Etapa No.


Carga	Presión (kPa)	Peso (gramos)
Anterior	978.87	31000
Aplicado	1010.44	32000
Total	1989.31	63000

D. anillo 6.35 cm

Unidad tiempo	Tiempo	Lectura extensómetro mm	Tiempo seg	Raiz cuadrada tempo (min^0.5)	Altura cuerpo de prueba mm
seg	0	1434	0	0.00	20.636
seg	6	1523	6	0.32	20.613
seg	15	1529.2	15	0.50	20.612
seg	30	1536.5	30	0.71	20.610
min	1	1545.1	60	1.00	20.608
min	2	1558.5	120	1.41	20.604
min	4	1578	240	2.00	20.599
min	8	1602	480	2.83	20.593
min	15	1632	900	3.87	20.585
min	30	1677.1	1,800	5.48	20.574
hora	1.0	1732.9	3,600	7.75	20.560
hora	2.0	1803	7,200	10.95	20.542
hora	4.0	1860	14,400	15.49	20.528
hora	8.0	1886.8	28,800	21.91	20.521
hora	24.0	1906.9	86,400	37.95	20.516

Fuente: Elaborado por los autores

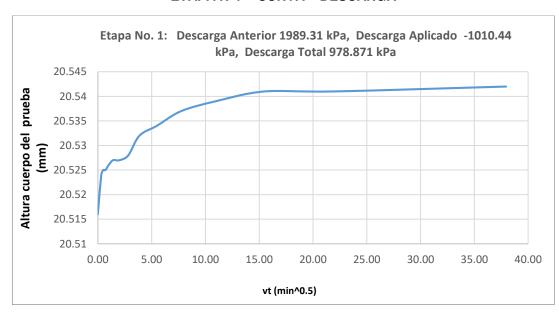
ETAPA N°6 - CURVA - CARGA

2.1.7 ETAPA N°1 – DESCARGA

Etapa No. 1: Descarga Anterior 1989.31 kPa, Descarga Aplicado -1010.44 kPa, Descarga Total 978.87 kPa

Material Arcilla Fecha: 16-octubre-2017

Etapa No.


Descarga	Presión (kPa)	Peso (gramos)
Anterior	1989.31	63000
Aplicado	-1010.44	-32000
Total	978.87	31000

D. anillo 6.3500 cm

Unidad tiempo	Tiempo	Lectura extensómetro (0.0001)	Tiempo seg	Raiz cuadrada tiempo (min^0.5)	Altura cuerpo de prueba mm
seg	0	1906.9	0	0.00	20.516
seg	6	1875.9	6	0.32	20.524
seg	15	1871.3	15	0.50	20.525
seg	30	1870.4	30	0.71	20.525
min	1	1867.7	60	1.00	20.526
min	2	1864	120	1.41	20.527
min	4	1860.9	240	2.00	20.527
min	8	1858.6	480	2.83	20.528
min	15	1843.5	900	3.87	20.532
min	30	1832.8	1,800	5.48	20.534
hora	1.0	1822.4	3,600	7.75	20.537
hora	2.0	1814.1	7,200	10.95	20.539
hora	4.0	1808	14,400	15.49	20.541
hora	8.0	1805.2	28,800	21.91	20.541
hora	24.0	1801.2	86,400	37.95	20.542

Fuente: Elaborado por los autores

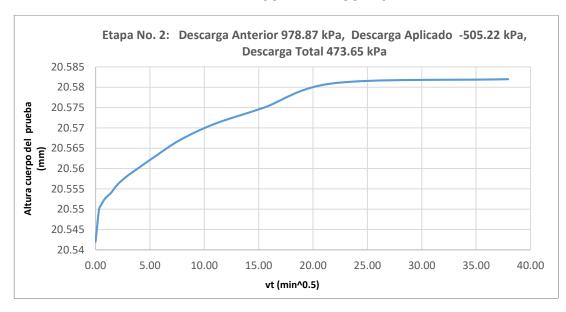
ETAPA N°1 - CURVA - DESCARGA

2.1.8 ETAPA N°2 - DESCARGA

Etapa No. 2: Descarga Anterior 978.87 kPa, Descarga Aplicado -505.22 kPa, Descarga Total 473.65 kPa

Material Arcilla Fecha: 17-octubre-2017

Etapa No. 2


Descarga	Presión (kPa)	Peso (gramos)
Anterior	978.87	31000
Aplicado	-505.22	-16000
Total	473.65	15000

D. anillo 6.35 cm

Unidad tiempo	Tiempo	Lectura extensómetro mm	Tiempo seg	Raiz cuadrada tempo (min^0.5)	Altura cuerpo de prueba mm
seg	0	1801.2	0	0.00	20.542
seg	6	1770.8	6	0.32	20.550
seg	15	1767.4	15	0.50	20.551
seg	30	1765.3	30	0.71	20.552
min	1	1761.2	60	1.00	20.553
min	2	1755.9	120	1.41	20.554
min	4	1749.7	240	2.00	20.556
min	8	1741.9	480	2.83	20.558
min	15	1734.1	900	3.87	20.560
min	30	1719.6	1,800	5.48	20.563
hora	1.0	1704.8	3,600	7.75	20.567
hora	2.0	1687.1	7,200	10.95	20.571
hora	4.0	1671.9	14,400	15.49	20.575
hora	8.0	1648.0	28,800	21.91	20.581
hora	24.0	1646.0	86,400	37.95	20.582

Fuente: Elaborado por los autores

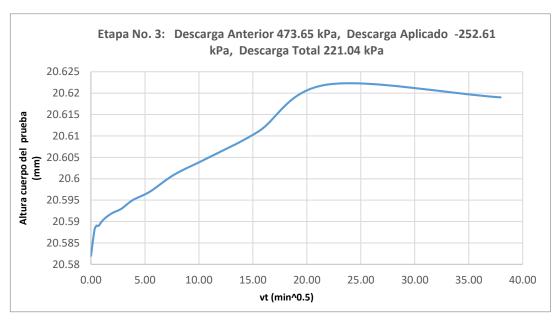
ETAPA N°2 - CURVA - DESCARGA

2.1.9 ETAPA N°3 - DESCARGA

Etapa No. 3: Descarga Anterior 473.65 kPa, Descarga Aplicado -252.61 kPa, Descarga Total 221.04 kPa

Material Arcilla Fecha: 18-octubre-2017

Etapa No. 3


Descarga	Presión (kPa)	Peso (gramos)
Anterior	473.65	15000
Aplicado	-252.61	-8000
Total	221.04	7000

 $D. \ anillo \qquad \qquad 6.35 \qquad \qquad cm$

Unidad tiempo	Tiempo	Lectura extensómetro mm	Tiempo seg	Raiz cuadrada tempo (min^0.5)	Altura cuerpo de prueba mm
seg	0	1646.0	0	0.00	20.582
seg	6	1621.4	6	0.32	20.588
seg	15	1619.8	15	0.50	20.589
seg	30	1617.8	30	0.71	20.589
min	1	1615.0	60	1.00	20.590
min	2	1611.9	120	1.41	20.591
min	4	1607.9	240	2.00	20.592
min	8	1603.1	480	2.83	20.593
min	15	1596.0	900	3.87	20.595
min	30	1586.7	1,800	5.48	20.597
hora	1.0	1572.2	3,600	7.75	20.601
hora	2.0	1553.4	7,200	10.95	20.605
hora	4.0	1533.2	14,400	15.49	20.611
hora	8.0	1487.1	28,800	21.91	20.622
hora	24.0	1498.1	86,400	37.95	20.619

Fuente: Elaborado por los autores

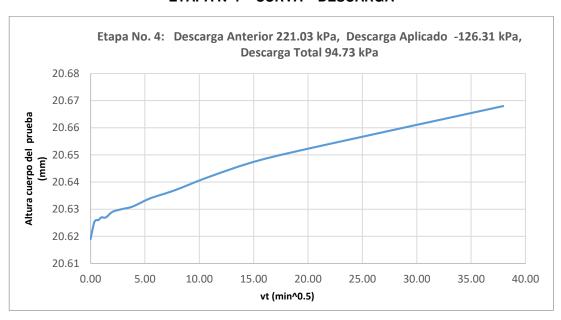
ETAPA N°3 - CURVA - DESCARGA

2.1.10 ETAPA N°4 - DESCARGA

Etapa No. 4: Descarga Anterior 221.03 kPa, Descarga Aplicado -126.31 kPa, Descarga Total 94.72 kPa

Material Arcilla Fecha: 19-octubre-2017

Etapa No. 4


Descarga	Presión (kPa)	Peso (gramos)
Anterior	221.03	7000
Aplicado	-126.31	-4000
		-
Total	94.72	3000

D. anillo 6.35 cm

Unidad tiempo	Tiempo	Lectura extensómetro mm	Tiempo seg	Raiz cuadrada tempo (min^0.5)	Altura cuerpo de prueba mm
seg	0	1498.1	0	0.00	20.619
seg	6	1476.0	6	0.32	20.625
seg	15	1473.8	15	0.50	20.626
seg	30	1471.5	30	0.71	20.626
min	1	1469.3	60	1.00	20.627
min	2	1466.9	120	1.41	20.627
min	4	1462.1	240	2.00	20.629
min	8	1457.1	480	2.83	20.630
min	15	1451.1	900	3.87	20.631
min	30	1442.5	1,800	5.48	20.634
hora	1.0	1428.9	3,600	7.75	20.637
hora	2.0	1410.0	7,200	10.95	20.642
hora	4.0	1385.9	14,400	15.49	20.648
hora	8.0	1362.6	28,800	21.91	20.654
hora	24.0	1305.5	86,400	37.95	20.668

Fuente: Elaborado por los autores

ETAPA N°4 - CURVA - DESCARGA

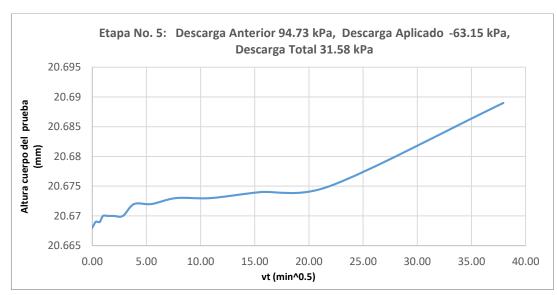
2.1.11 ETAPA N°5 - DESCARGA

Etapa No. 5: Descarga Anterior 94.73 kPa, Descarga Aplicado -63.15 kPa, Descarga Total 31.58 kPa

Material Arcilla Fecha: 20-octubre-2017

Etapa No. 5

Descarga	Presión (kPa)	Peso (gramos)
Anterior	94.73	3000
Aplicado	-63.15	-2000
Total	31.58	1000

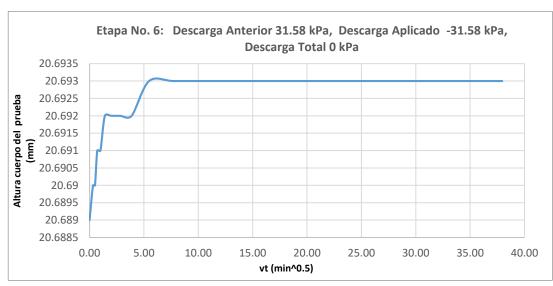

Asentamiento por consolidación primaria - Esta etapa

D. anillo 6.35 cn

Unidad tiempo	Tiempo	Lectura extensómetro mm	Tiempo seg	Raiz cuadrada tempo (min^0.5)	Altura cuerpo de prueba mm
seg	0	1305.5	0	0.00	20.668
seg	6	1302	6	0.32	20.669
seg	15	1301.9	15	0.50	20.669
seg	30	1301.3	30	0.71	20.669
min	1	1300.3	60	1.00	20.670
min	2	1300.2	120	1.41	20.670
min	4	1299.6	240	2.00	20.670
min	8	1298.2	480	2.83	20.670
min	15	1292.6	900	3.87	20.672
min	30	1291.1	1,800	5.48	20.672
hora	1.0	1288.1	3,600	7.75	20.673
hora	2.0	1286.7	7,200	10.95	20.673
hora	4.0	1284.2	14,400	15.49	20.674
hora	8.0	1279.8	28,800	21.91	20.675
hora	24.0	1225.6	86,400	37.95	20.689

Fuente: Elaborado por los autores

ETAPA N°5 - CURVA - DESCARGA

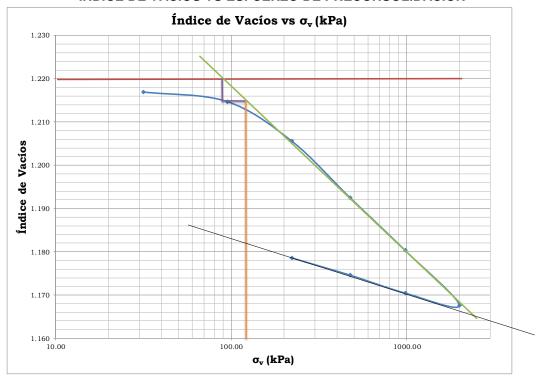


2.1.12 ETAPA N°6 - DESCARGA

Etapa No. 6: Descarga Anterior 31.58 kPa, Descarga Aplicado -31.58 kPa, Descarga Total 0 kPa Material Fecha: 21-octubre-2017 Arcilla Etapa No. 6 Descarga Presión (kPa) Peso (gramos) Anterior 31.58 1000 -31.58 -1000 Aplicado 0 Total 0 D. anillo 6.35 cm Altura cuerpo de Lectura Unidad Tiempo Raiz cuadrada prueba extensómetro Tiempo tiempo tempo (min^0.5) seg mm mm 0 1225.6 0 0.00 20.689 seg 1219.8 0.32 20.690 6 6 seg 15 1218.9 15 0.50 20.690 seg 30 1215.9 30 0.71 20.691 seg 60 20 691 1 1214.8 1.00 min 2 1211.5 120 1.41 20.692 min min 4 1211.3 240 2.00 20.692 2.83 20.692 1211.2 480 8 min 1210.8 900 3.87 20.692 15 min min 30 1210.5 1,800 5.48 20.693 1.0 1210.2 3,600 7.75 20.693 hora 2.0 1210.1 7,200 10.95 20.693 hora hora 4.0 1210.1 14,400 15.49 20.693 hora 8.0 1210.1 28,800 21.91 20.693 hora 24.0 1210.1 86,400 37.95 20.693

Fuente: Elaborado por los autores

ETAPA N°6 - CURVA - DESCARGA



RESULTADO DE ETAPAS - ARCILLA PURA

RESULTADO DE ETAPAS					
Etapa de carga No.	Presión Kpa	Índice de vacíos (e)			
0	0.00	1.219			
1	31.58	1.217			
2	94.73	1.215			
3	221.04	1.206			
4	473.64	1.193			
5	978.87	1.180			
6	1989.31	1.168			
1	978.87	1.170			
2	473.64	1.175			
3	221.04	1.179			
4	94.73	1.184			
5	31.58	1.186			
6	0	1.186			

Fuente: Elaborado por los autores

ÍNDICE DE VACÍOS VS ESFUERZO DE PRECONSOLIDACIÓN

2.2 CARACTERÍSTICAS DEL MATERIAL ENSAYADO – COMBINACIÓN ARCILLA 80% - CENIZA 20%

FACULTAD DE INGENIERÍA Y ARQUITECTURA

LABORATORIO DE MATERIALES Y MECÁNICA DE SUELOS

Proyecto: ESTABILIZACIÓN DE SUELOS ARCILLOSOS APLICANDO CENIZA DE MADERA

Elaborado: Bach. Lux, Mamani Barriga Asesor: Mg. hg Gary, Durán Ramirez

Bach. Alejandro, Yataco Quispe

Ensayo: Consolidación Unidimensional

Norma: NTP 339.154

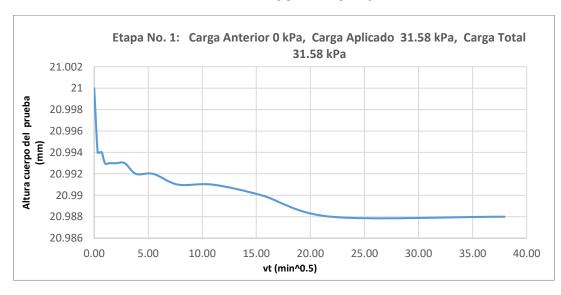
Caracteristicas del material ensayado							
Material:	Arcilla + Ceniza	80% - 20%					
Peso Específico da água	1	g/cm3	Fecha de ensayo:	10/10/2017			
Carateris	sticas Iniciales		Carateristicas Finales				
Humedad Inicial (%)	29.31		Humedad Final (%)	31.96			
Peso Específico Total	1.57	g/cm ³	Peso Específico Total	39.996	g/cm ³		
Gs	2.72		Gs	2.72	g/cm ³		
Índice de Vacios Inicial (eo)	1.242		Índice de Vacios Inicial (ef)	1.242			
Grado de Saturación Inic. (%)	64.21		Grado de Saturación Final (%)	70.02			
Altura de Sólidos - Ho	0.9368	cm	Altura de Sólidos - Hs	0.9368	cm		

2.2.1 ETAPA N°1 - CARGA

Etapa No. 1: Carga Anterior 0 kPa, Carga Aplicado 31.58 kPa, Carga Total 31.58 kPa

Material Arcilla + Ceniza Fecha: 10-octubre-2017

Etapa No.


Carga	Presión (kPa)	Peso (gramos)
Anterior	0	0
Aplicado	31.58	1000
Total	31.58	1000

D. anillo 6.3500 cm

Unidad tiempo	Tiempo	Lectura extensómetro (0.0001)	Tiempo seg	Raiz cuadrada tiempo (min^0.5)	Altura cuerpo de prueba mm
seg	0	151.1	0	0.00	21.000
seg	6	173.1	6	0.32	20.994
seg	15	174.6	15	0.50	20.994
seg	30	175.4	30	0.71	20.994
min	1	176.9	60	1.00	20.993
min	2	177.2	120	1.41	20.993
min	4	178.2	240	2.00	20.993
min	8	179.3	480	2.83	20.993
min	15	180.9	900	3.87	20.992
min	30	183	1,800	5.48	20.992
hora	1.0	184.6	3,600	7.75	20.991
hora	2.0	187.1	7,200	10.95	20.991
hora	4.0	190.1	14,400	15.49	20.990
hora	8.0	196.8	28,800	21.91	20.988
hora	24.0	200	86,400	37.95	20.988

Fuente: Elaborado por los autores

ETAPA Nº 1 - CURVA - CARGA

2.2.2 ETAPA N°2 - CARGA

Etapa No. 2: Carga Anterior 31.58 kPa, Carga Aplicado 63.15 kPa, Carga Total 94.73 kPa

Material Arcilla + Ceniza Fecha: 11-octubre-2017

Etapa No. 2


Carga	Presión (kPa)	Peso (gramos)
Anterior	31.58	1000
Aplicado	63.15	2000
Total	94.73	3000

D. anillo 6.35 cm

Unidad tiempo	Tiempo	Lectura extensómetro mm	Tiempo seg	Raiz cuadrada tempo (min^0.5)	Altura cuerpo de prueba mm
seg	0	200.0	0	0.00	20.988
seg	6	219.8	6	0.32	20.983
seg	15	220.2	15	0.50	20.982
seg	30	220.9	30	0.71	20.982
min	1	222.2	60	1.00	20.982
min	2	223.4	120	1.41	20.982
min	4	224.8	240	2.00	20.981
min	8	226.4	480	2.83	20.981
min	15	228.5	900	3.87	20.980
min	30	232.9	1,800	5.48	20.979
hora	1.0	235.2	3,600	7.75	20.979
hora	2.0	237.9	7,200	10.95	20.978
hora	4.0	244.0	14,400	15.49	20.976
hora	8.0	246.5	28,800	21.91	20.976
hora	24.0	253.2	86,400	37.95	20.974

Fuente: Elaborado por los autores

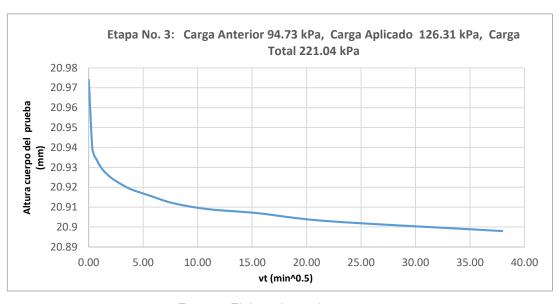
ETAPA N° 2 - CURVA - CARGA

2.2.3 ETAPA N°3 - CARGA

Etapa No. 3: Carga Anterior 94.73 kPa, Carga Aplicado 126.31 kPa, Carga Total 221.04 kPa

Material Arcilla + Ceniza Fecha: 12-octubre-2017

Etapa No. 3


Carga	Presión (kPa)	Peso (gramos)
Anterior	94.73	3000
Aplicado	126.31	4000
Total	221.04	7000

D. anillo 6.35 cm

Unidad tiempo	Tiempo	Lectura extensómetro mm	Tiempo seg	Raiz cuadrada tempo (min^0.5)	Altura cuerpo de prueba mm
seg	0	253.2	0	0.00	20.974
seg	6	388.8	6	0.32	20.940
seg	15	402.1	15	0.50	20.936
seg	30	411.3	30	0.71	20.934
min	1	423.2	60	1.00	20.931
min	2	435.1	120	1.41	20.928
min	4	448.1	240	2.00	20.925
min	8	459.2	480	2.83	20.922
min	15	470.8	900	3.87	20.919
min	30	483.4	1,800	5.48	20.916
hora	1.0	496.8	3,600	7.75	20.912
hora	2.0	508.7	7,200	10.95	20.909
hora	4.0	518.5	14,400	15.49	20.907
hora	8.0	534.8	28,800	21.91	20.903
hora	24.0	552.2	86,400	37.95	20.898

Fuente: Elaborado por los autores

ETAPA Nº 3 - CURVA - CARGA

2.2.4 ETAPA N°4 - CARGA

Etapa No. 4: Carga Anterior 221.03 kPa, Carga Aplicado 252.61 kPa, Carga Total 473.64 kPa

Material Arcilla + Ceniza Fecha: 13-octubre-2017

Etapa No.


Carga	Presión (kPa)	Peso (gramos)
Anterior	221.03	7000
Aplicado	252.61	8000
		-
Total	473.64	15000

D. anillo 6.35 cm

Unidad tiempo	Tiempo	Lectura extensómetro mm	Tiempo seg	Raiz cuadrada tempo (min^0.5)	Altura cuerpo de prueba mm
seg	0	552.2	0	0.00	20.898
seg	6	686.8	6	0.32	20.864
seg	15	702.2	15	0.50	20.860
seg	30	715.8	30	0.71	20.857
min	1	730.8	60	1.00	20.853
min	2	750.0	120	1.41	20.848
min	4	763.0	240	2.00	20.845
min	8	788.0	480	2.83	20.838
min	15	810.1	900	3.87	20.833
min	30	836.9	1,800	5.48	20.826
hora	1.0	861.9	3,600	7.75	20.819
hora	2.0	886.2	7,200	10.95	20.813
hora	4.0	905.9	14,400	15.49	20.808
hora	8.0	915.7	28,800	21.91	20.806
hora	24.0	932.1	86,400	37.95	20.802

Fuente: Elaborado por los autores

ETAPA Nº 4 - CURVA - CARGA

2.2.5 ETAPA N°5 - CARGA

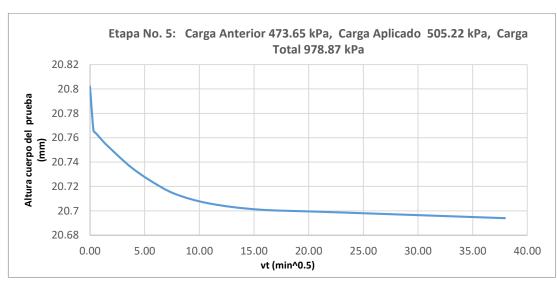
Etapa No. 5: Carga Anterior 473.65 kPa, Carga Aplicado 505.22 kPa, Carga Total 978.87 kPa

Material Arcilla + Ceniza

5

Fecha: 14-octubre-2017

Etapa No.


Carga	Presión (kPa)	Peso (gramos)
Anterior	473.65	15000
Aplicado	505.22	16000
Total	978.87	31000

D. anillo 6.35 cm

Unidad tiempo	Tiempo	Lectura extensómetro mm	Tiempo seg	Raiz cuadrada tempo (min^0.5)	Altura cuerpo de prueba mm
seg	0	932.1	0	0.00	20.802
seg	6	1071.1	6	0.32	20.766
seg	15	1079.1	15	0.50	20.764
seg	30	1087.1	30	0.71	20.762
min	1	1099.1	60	1.00	20.759
min	2	1114.5	120	1.41	20.755
min	4	1135	240	2.00	20.750
min	8	1162.3	480	2.83	20.743
min	15	1193.1	900	3.87	20.735
min	30	1232.5	1,800	5.48	20.725
hora	1.0	1275.5	3,600	7.75	20.714
hora	2.0	1309.1	7,200	10.95	20.706
hora	4.0	1329.7	14,400	15.49	20.701
hora	8.0	1336.8	28,800	21.91	20.699
hora	24.0	1356.2	86,400	37.95	20.694

Fuente: Elaborado por los autores

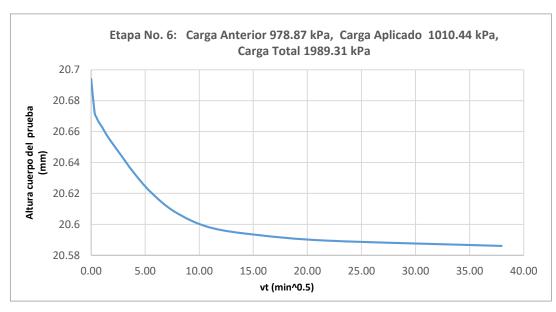
ETAPA N° 5 - CURVA - CARGA

2.2.6 ETAPA N°6 - CARGA

Etapa No. 6: Carga Anterior 978.87 kPa, Carga Aplicado 1010.44 kPa, Carga Total 1989.31 kPa

Material Arcilla + Ceniza Fecha: 15-octubre-2017

Etapa No.


Carga	Presión (kPa)	Peso (gramos)
Anterior	978.87	31000
Aplicado	1010.44	32000
Total	1989.31	63000

D. anillo 6.35 cm

Unidad tiempo	Tiempo	Lectura extensómetro mm	Tiempo seg	Raiz cuadrada tempo (min^0.5)	Altura cuerpo de prueba mm
seg	0	1356.2	0	0.00	20.694
seg	6	1443.3	6	0.32	20.672
seg	15	1454.8	15	0.50	20.669
seg	30	1465.8	30	0.71	20.666
min	1	1479.4	60	1.00	20.663
min	2	1497.2	120	1.41	20.658
min	4	1520.8	240	2.00	20.652
min	8	1553.7	480	2.83	20.644
min	15	1591.8	900	3.87	20.634
min	30	1641.9	1,800	5.48	20.621
hora	1.0	1696.1	3,600	7.75	20.608
hora	2.0	1733.1	7,200	10.95	20.598
hora	4.0	1754.5	14,400	15.49	20.593
hora	8.0	17.628	28,800	21.91	21.034
hora	24.0	1779.1	86,400	37.95	20.586

Fuente: Elaborado por los autores

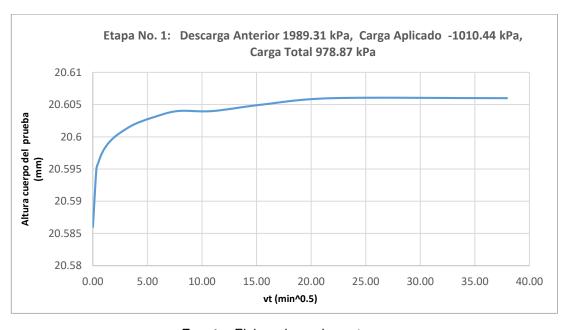
ETAPA Nº 6 - CURVA - CARGA

2.2.7 ETAPA N°1 - DESCARGA

Etapa No. 1: Descarga Anterior 1989.31 kPa, Descarga Aplicado -1010.44 kPa, Descarga Total 978.87 kPa

Material Arcilla + Ceniza Fecha: 16-octubre-2017

Etapa No.


Descarga	Presión (kPa)	Peso (gramos)
Anterior	1989.31	63000
Aplicado	-1010.44	-32000
Total	978.87	31000

D. anillo 6.3500 cm

Unidad tiempo	Tiempo	Lectura extensómetro (0.0001)	Tiempo seg	Raiz cuadrada tiempo (min^0.5)	Altura cuerpo de prueba mm
seg	0	1779.1	0	0.00	20.586
seg	6	1744	6	0.32	20.595
seg	15	1740.8	15	0.50	20.596
seg	30	1738	30	0.71	20.597
min	1	1735	60	1.00	20.598
min	2	1731.7	120	1.41	20.599
min	4	1727.5	240	2.00	20.600
min	8	1723	480	2.83	20.601
min	15	1718.3	900	3.87	20.602
min	30	1713.5	1,800	5.48	20.603
hora	1.0	1710.8	3,600	7.75	20.604
hora	2.0	1709.6	7,200	10.95	20.604
hora	4.0	1705	14,400	15.49	20.605
hora	8.0	1703.4	28,800	21.91	20.606
hora	24.0	1701.1	86,400	37.95	20.606

Fuente: Elaborado por los autores

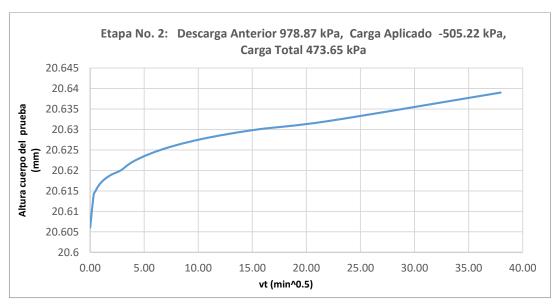
ETAPA N°1 - CURVA - DESCARGA

2.2.8 ETAPA N°2 - DESCARGA

Etapa No. 2: Descarga Anterior 978.87 kPa, Descarga Aplicado -505.22 kPa, Descarga Total 473.65 kPa

Material Arcilla + Ceniza Fecha: 17-octubre-2017

Etapa No.


Descarga	Presión (kPa)	Peso (gramos)
Anterior	978.87	31000
Aplicado	-505.22	-16000
Total	473.65	15000

D. anillo 6.35 cm

Unidad tiempo	Tiempo	Lectura extensómetro mm	Tiempo seg	Raiz cuadrada tempo (min^0.5)	Altura cuerpo de prueba mm
seg	0	1701.1	0	0.00	20.606
seg	6	1670.4	6	0.32	20.614
seg	15	1667.2	15	0.50	20.615
seg	30	1664.6	30	0.71	20.616
min	1	1660.2	60	1.00	20.617
min	2	1655.9	120	1.41	20.618
min	4	1651.3	240	2.00	20.619
min	8	1645.2	480	2.83	20.620
min	15	1637.8	900	3.87	20.622
min	30	1630.5	1,800	5.48	20.624
hora	1.0	1622.8	3,600	7.75	20.626
hora	2.0	1614.3	7,200	10.95	20.628
hora	4.0	1607.0	14,400	15.49	20.630
hora	8.0	1598.3	28,800	21.91	20.632
hora	24.0	1573.9	86,400	37.95	20.639

Fuente: Elaborado por los autores

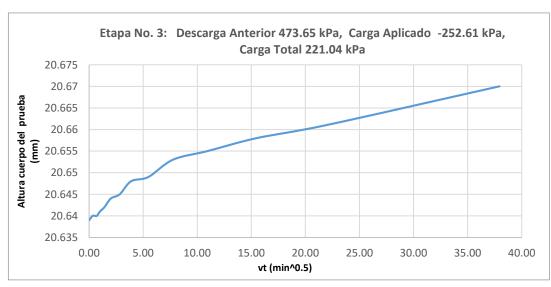
ETAPA N°2 - CURVA - DESCARGA

2.2.9 ETAPA N°3 – DESCARGA

Etapa No. 3: Descarga Anterior 473.65 kPa, Descarga Aplicado -252.61 kPa, Descarga Total 221.04 kPa

Material Arcilla + Ceniza Fecha: 18-octubre-2017

Etapa No. 3


Descarga	Presión (kPa)	Peso (gramos)	
Anterior	473.65	15000	
Aplicado	-252.61	-8000	
Total	221.04	7000	

D. anillo 6.35 cm

Unidad tiempo	Tiempo	Lectura extensómetro mm	Tiempo seg	Raiz cuadrada tempo (min^0.5)	Altura cuerpo de prueba mm
seg	0	1573.9	0	0.00	20.639
seg	6	1570.2	6	0.32	20.640
seg	15	1569.3	15	0.50	20.640
seg	30	1566.8	30	0.71	20.640
min	1	1563.0	60	1.00	20.641
min	2	1558.8	120	1.41	20.642
min	4	1552.9	240	2.00	20.644
min	8	1547.2	480	2.83	20.645
min	15	1538.3	900	3.87	20.648
min	30	1532.0	1,800	5.48	20.649
hora	1.0	1519.2	3,600	7.75	20.653
hora	2.0	1509.0	7,200	10.95	20.655
hora	4.0	1495.9	14,400	15.49	20.658
hora	8.0	1487.1	28,800	21.91	20.661
hora	24.0	1451.9	86,400	37.95	20.670

Fuente: Elaborado por los autores

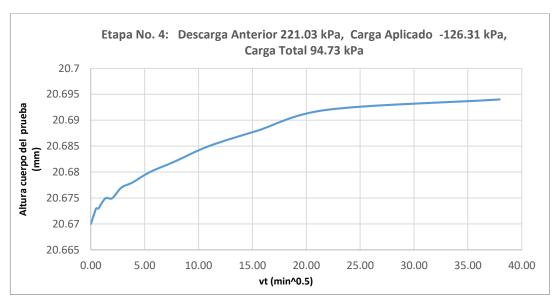
ETAPA N°3 - CURVA - DESCARGA

2.2.10 ETAPA N°4 - DESCARGA

Etapa No. 4: Descarga Anterior 221.03 kPa, Descarga Aplicado -126.31 kPa, Descarga Total 94.72 kPa

Material Arcilla + Ceniza Fecha: 19-octubre-2017

Etapa No.


Descarga	Presión (kPa)	Peso (gramos)
Anterior	221.03	7000
Aplicado	-126.31	-4000
		-
Total	94.72	3000

D. anillo 6.35 cm

Unidad tiempo	Tiempo	Lectura extensómetro mm	Tiempo seg	Raiz cuadrada tempo (min^0.5)	Altura cuerpo de prueba mm
seg	0	1451.9	0	0.00	20.670
seg	6	1443.1	6	0.32	20.672
seg	15	1440.2	15	0.50	20.673
seg	30	1437.9	30	0.71	20.673
min	1	1435.2	60	1.00	20.674
min	2	1432.1	120	1.41	20.675
min	4	1430.1	240	2.00	20.675
min	8	1423.6	480	2.83	20.677
min	15	1417.5	900	3.87	20.678
min	30	1410.6	1,800	5.48	20.680
hora	1.0	1401.7	3,600	7.75	20.682
hora	2.0	1392.2	7,200	10.95	20.685
hora	4.0	1379.1	14,400	15.49	20.688
hora	8.0	1362.6	28,800	21.91	20.692
hora	24.0	1356.0	86,400	37.95	20.694

Fuente: Elaborado por los autores

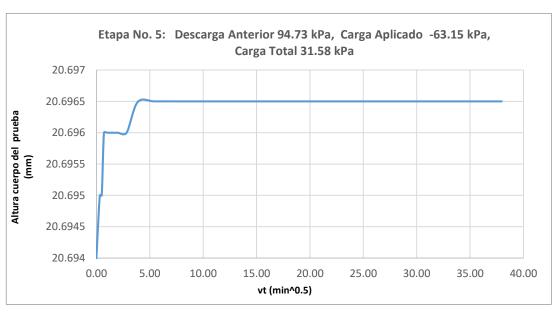
ETAPA N°4 - CURVA - DESCARGA

2.2.11 ETAPA N°5 - DESCARGA

Etapa No. 5: Descarga Anterior 94.73 kPa, Descarga Aplicado -63.15 kPa, Descarga Total 31.58 kPa

Material Arcilla + Ceniza Fecha: 20-octubre-2017

Etapa No. 5


Descarga	Presión (kPa)	Peso (gramos)
Anterior	94.73	3000
Aplicado	-63.15	-2000
Total	31.58	1000

D. anillo 6.35 cm

Unidad tiempo	Tiempo	Lectura extensómetro mm	Tiempo seg	Raiz cuadrada tempo (min^0.5)	Altura cuerpo de prueba mm
seg	0	1356.0	0	0.00	20.694
seg	6	1352.9	6	0.32	20.695
seg	15	1351.9	15	0.50	20.695
seg	30	1349.8	30	0.71	20.696
min	1	1349.2	60	1.00	20.696
min	2	1348.5	120	1.41	20.696
min	4	1347.7	240	2.00	20.696
min	8	1346.9	480	2.83	20.696
min	15	1346.13	900	3.87	20.696
min	30	1345.5	1,800	5.48	20.697
hora	1.0	1345.09	3,600	7.75	20.697
hora	2.0	1344.7	7,200	10.95	20.697
hora	4.0	1344.12	14,400	15.49	20.697
hora	8.0	1343.8	28,800	21.91	20.697
hora	24.0	1343.07	86,400	37.95	20.697

Fuente: Elaborado por los autores

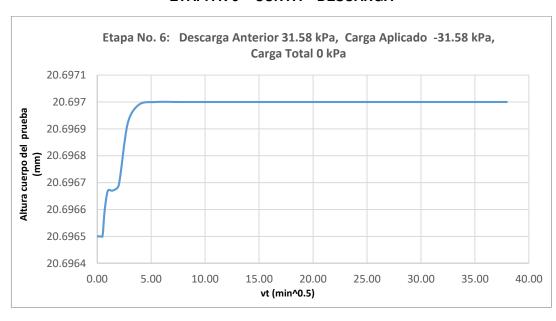
ETAPA N°5 - CURVA - DESCARGA

2.2.12 ETAPA N°6 - DESCARGA

Etapa No. 6: Descarga Anterior 31.58 kPa, Descarga Aplicado -31.58 kPa, Descarga Total 0 kPa

Material Arcilla + Ceniza Fecha: 2

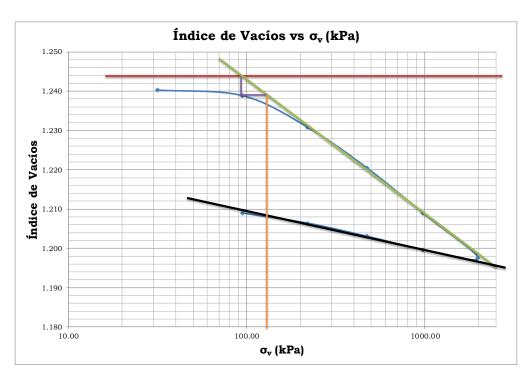
Etapa No. 6


Descarga	Presión (kPa)	Peso (gramos)
Anterior	31.58	1000
Aplicado	-31.58	-1000
Total	0	0

D. anillo 6.35 cm

Unidad tiempo	Tiempo	Lectura extensómetro mm	Tiempo seg	Raiz cuadrada tempo (min^0.5)	Altura cuerpo de prueba mm
seg	0	1343.07	0	0.00	20.697
seg	6	1343.02	6	0.32	20.697
seg	15	1343.01	15	0.50	20.697
seg	30	1342.9	30	0.71	20.697
min	1	1342.7	60	1.00	20.697
min	2	1342.67	120	1.41	20.697
min	4	1342.5	240	2.00	20.697
min	8	1342.5	480	2.83	20.697
min	15	1342.5	900	3.87	20.697
min	30	1342.5	1,800	5.48	20.697
hora	1.0	1342.5	3,600	7.75	20.697
hora	2.0	1342.5	7,200	10.95	20.697
hora	4.0	1342.5	14,400	15.49	20.697
hora	8.0	1342.5	28,800	21.91	20.697
hora	24.0	1342.5	86,400	37.95	20.697

Fuente: Elaborado por los autores


ETAPA N 6 - CURVA - DESCARGA

RESULTADO DE ETAPAS - ARCILLA PURA

RESULTADO DE ETAPAS				
Etapa de carga No.	Presión Kpa	Índice de vacíos (e)		
0	0.00	1.242		
1	31.58	1.24		
2	94.73	1.239		
3	221.04	1.231		
4	473.64	1.220		
5	978.87	1.209		
6	1989.31	1.197		
1	978.87	1.200		
2	473.64	1.203		
3	221.04	1.206		
4	94.73	1.209		
5	31.58	1.209		
6	0	1.209		

ÍNDICE DE VACÍOS VS ESFUERZO DE PRECONSOLIDACIÓN

2.3 CARACTERÍSTICAS DEL MATERIAL ENSAYADO – COMBINACIÓN ARCILLA 70% - CENIZA 30%

FACULTAD DE INGENIERÍA Y ARQUITECTURA LABORATORIO DE MATERIALES Y MECÁNICA DE SUELOS Proyecto: ESTABILIZACIÓN DE SUELOS ARCILLOSOS APLICANDO CENIZA DE MADERA Elaborado: Bach. Lux, Mamani Barriga Mg. Ing Gary, Durán Ramirez Bach. Alejandro, Yataco Quispe Consolidación Unidimensional Norma : NTP 339.154 Caracteristicas del material ensayado Material: Arcilla + Ceniza Porcentaje 70% - 30% Peso Específico da água g/cm3 Fecha de ensayo: 10/10/2017 Carateristicas Iniciales Carateristicas Finales Humedad Inicial (%) Humedad Final (%) 24.44 26.32 Peso Específico Total 1.80 Peso Específico Total g/cm^3 39.542 g/cm³ Gs 2.73 2.73 g/cm³ Índice de Vacios Inicial (eo) 0.886 Índice de Vacios Inicial (ef) 0.886 Grado de Saturación Inic. (%) Grado de Saturación Final (%) 75.31 81.09

Fuente: Elaborado por los autores

cm

Altura de Sólidos - Hs

1.1135

cm

Altura de Sólidos - Ho

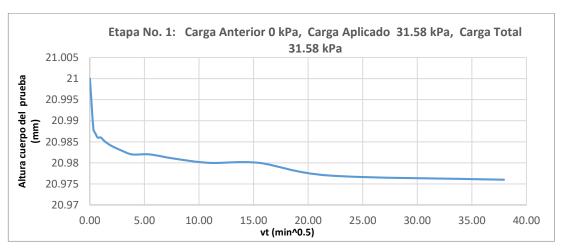
1.1135

2.3.1 ETAPA N°1 - CARGA

Etapa No. 1: Carga Anterior 0 kPa, Carga Aplicado 31.58 kPa, Carga Total 31.58 kPa

Material Arcilla + Ceniza Fecha: 10-octubre-2017

Etapa No. 1


Carga	Presión (kPa)	Peso (gramos)
Anterior	0	0
Aplicado	31.58	1000
Total	31.58	1000

D. anillo 6.3500 cm

Unidad tiempo	Tiempo	Lectura extensómetro (0.0001)	Tiempo seg	Raiz cuadrada tiempo (min^0.5)	Altura cuerpo de prueba mm
seg	0	0	0	0.00	21.000
seg	6	48	6	0.32	20.988
seg	15	52.1	15	0.50	20.987
seg	30	53.7	30	0.71	20.986
min	1	56.5	60	1.00	20.986
min	2	59.1	120	1.41	20.985
min	4	63	240	2.00	20.984
min	8	66.1	480	2.83	20.983
min	15	68.9	900	3.87	20.982
min	30	71.8	1,800	5.48	20.982
hora	1.0	74.1	3,600	7.75	20.981
hora	2.0	77.5	7,200	10.95	20.980
hora	4.0	80.1	14,400	15.49	20.980
hora	8.0	90.6	28,800	21.91	20.977
hora	24.0	94.1	86,400	37.95	20.976

Fuente: Elaborado por los autores

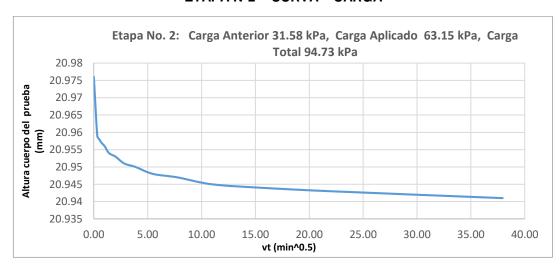
ETAPA N°1 - CURVA - CARGA

2.3.2 ETAPA N°2 - CARGA

Etapa No. 2: Carga Anterior 31.58 kPa, Carga Aplicado 63.15 kPa, Carga Total 94.73 kPa

Material Arcilla + Ceniza Fecha: 11-octubre-2017

Etapa No. 2


Carga	Presión (kPa)	Peso (gramos)
Anterior	31.58	1000
Aplicado	63.15	2000
Total	94.73	3000

D. anillo 6.35 cm

Unidad tiempo	Tiempo	Lectura extensómetro mm	Tiempo seg	Raiz cuadrada tempo (min^0.5)	Altura cuerpo de prueba mm
seg	0	94.1	0	0.00	20.976
seg	6	160.2	6	0.32	20.959
seg	15	164.6	15	0.50	20.958
seg	30	169.0	30	0.71	20.957
min	1	174.7	60	1.00	20.956
min	2	179.8	120	1.41	20.954
min	4	185.9	240	2.00	20.953
min	8	192.0	480	2.83	20.951
min	15	197.1	900	3.87	20.950
min	30	202.9	1,800	5.48	20.948
hora	1.0	210.1	3,600	7.75	20.947
hora	2.0	214.9	7,200	10.95	20.945
hora	4.0	219.9	14,400	15.49	20.944
hora	8.0	225.7	28,800	21.91	20.943
hora	24.0	232.2	86,400	37.95	20.941

Fuente: Elaborado por los autores

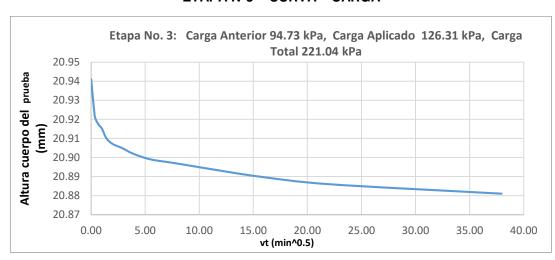
ETAPA N°2 - CURVA - CARGA

2.3.3 ETAPA N°3 - CARGA

Etapa No. 3: Carga Anterior 94.73 kPa, Carga Aplicado 126.31 kPa, Carga Total 221.04 kPa

Material Arcilla + Ceniza Fecha: 12-octubre-2017

Etapa No. 3


Carga	Presión (kPa)	Peso (gramos)
Anterior	94.73	3000
Aplicado	126.31	4000
Total	221.04	7000

D. anillo 6.35 cm

Unidad tiempo	Tiempo	Lectura extensómetro mm	Tiempo seg	Raiz cuadrada tempo (min^0.5)	Altura cuerpo de prueba mm
seg	0	232.2	0	0.00	20.941
seg	6	307.4	6	0.32	20.922
seg	15	318.8	15	0.50	20.919
seg	30	326.3	30	0.71	20.917
min	1	336.2	60	1.00	20.915
min	2	355.1	120	1.41	20.910
min	4	364.9	240	2.00	20.907
min	8	375.7	480	2.83	20.905
min	15	386.1	900	3.87	20.902
min	30	396.3	1,800	5.48	20.899
hora	1.0	405.9	3,600	7.75	20.897
hora	2.0	417.2	7,200	10.95	20.894
hora	4.0	433.8	14,400	15.49	20.890
hora	8.0	449.7	28,800	21.91	20.886
hora	24.0	470.3	86,400	37.95	20.881

Fuente: Elaborado por los autores

ETAPA N°3 - CURVA - CARGA

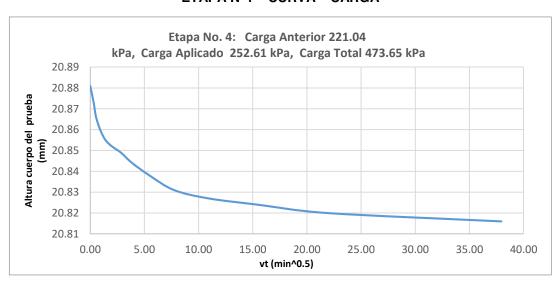
2.3.4 ETAPA N°4 - CARGA

Etapa No. 4: Carga Anterior 221.03 kPa, Carga Aplicado 252.61 kPa, Carga Total 473.64 kPa

Material Arcilla + Ceniza

Fecha: 13-octubre-2017

Etapa No.


Carga	Presión (kPa)	Peso (gramos)
Anterior	221.03	7000
Aplicado	252.61	8000
		-
Total	473.64	15000

D. anillo 6.35 cm

Unidad tiempo	Tiempo	Lectura extensómetro mm	Tiempo seg	Raiz cuadrada tempo (min^0.5)	Altura cuerpo de prueba mm
seg	0	470.3	0	0.00	20.881
seg	6	499.2	6	0.32	20.873
seg	15	522.3	15	0.50	20.867
seg	30	540.2	30	0.71	20.863
min	1	554.3	60	1.00	20.859
min	2	569.3	120	1.41	20.855
min	4	582.1	240	2.00	20.852
min	8	595.1	480	2.83	20.849
min	15	615.1	900	3.87	20.844
min	30	636.1	1,800	5.48	20.838
hora	1.0	665.1	3,600	7.75	20.831
hora	2.0	680.1	7,200	10.95	20.827
hora	4.0	694.0	14,400	15.49	20.824
hora	8.0	709.5	28,800	21.91	20.820
hora	24.0	724.3	86,400	37.95	20.816

Fuente: Elaborado por los autores

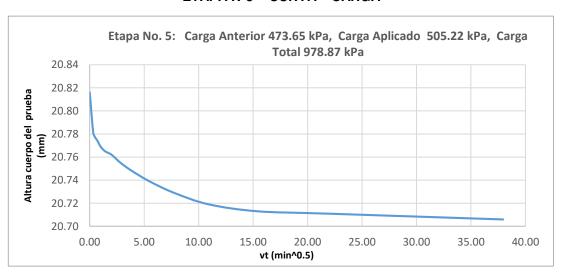
ETAPA N°4 - CURVA - CARGA

2.3.5 ETAPA N°5 - CARGA

Etapa No. 5: Carga Anterior 473.65 kPa, Carga Aplicado 505.22 kPa, Carga Total 978.87 kPa

Material Arcilla + Ceniza Fecha: 14-octubre-2017

Etapa No.


Carga	Presión (kPa)	Peso (gramos)
Anterior	473.65	15000
Aplicado	505.22	16000
Total	978.87	31000

D. anillo 6.35 cm

Unidad tiempo	Tiempo	Lectura extensómetro mm	Tiempo seg	Raiz cuadrada tempo (min^0.5)	Altura cuerpo de prueba mm
seg	0	724.3	0	0.00	20.816
seg	6	863.3	6	0.32	20.781
seg	15	878.3	15	0.50	20.777
seg	30	888.6	30	0.71	20.774
min	1	908.2	60	1.00	20.769
min	2	923.3	120	1.41	20.765
min	4	938.7	240	2.00	20.762
min	8	963.4	480	2.83	20.755
min	15	990.2	900	3.87	20.748
min	30	1029.3	1,800	5.48	20.739
hora	1.0	1068.4	3,600	7.75	20.729
hora	2.0	1108.2	7,200	10.95	20.719
hora	4.0	1128.8	14,400	15.49	20.713
hora	8.0	1137.3	28,800	21.91	20.711
hora	24.0	1156.2	86,400	37.95	20.706

Fuente: Elaborado por los autores

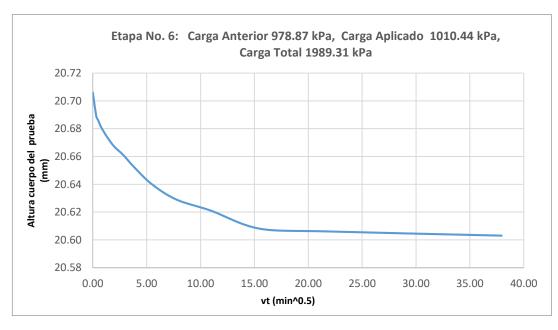
ETAPA N°5 - CURVA - CARGA

2.3.6 ETAPA N°6 - CARGA

Etapa No. 6: Carga Anterior 978.87 kPa, Carga Aplicado 1010.44 kPa, Carga Total 1989.31 kPa

Material Arcilla + Ceniza Fecha: 15-octubre-2017

Etapa No. 6


Carga	Presión (kPa)	Peso (gramos)
Anterior	978.87	31000
Aplicado	1010.44	32000
Total	1989.31	63000

D. anillo 6.35 cm

Unidad tiempo	Tiempo	Lectura extensómetro mm	Tiempo seg	Raiz cuadrada tempo (min^0.5)	Altura cuerpo de prueba mm
seg	0	1156.2	0	0.00	20.706
seg	6	1226.2	6	0.32	20.689
seg	15	1236.2	15	0.50	20.686
seg	30	1251.4	30	0.71	20.682
min	1	1266.2	60	1.00	20.678
min	2	1286.5	120	1.41	20.673
min	4	1309.2	240	2.00	20.667
min	8	1336.2	480	2.83	20.661
min	15	1371.5	900	3.87	20.652
min	30	1416.2	1,800	5.48	20.640
hora	1.0	1461	3,600	7.75	20.629
hora	2.0	1491.2	7,200	10.95	20.621
hora	4.0	1541.6	14,400	15.49	20.608
hora	8.0	1550.7	28,800	21.91	20.606
hora	24.0	1564.2	86,400	37.95	20.603

Fuente: Elaborado por los autores

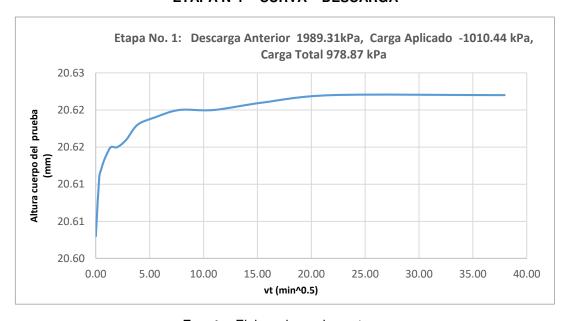
ETAPA N°6 - CURVA - CARGA

2.3.7 ETAPA N°1 - DESCARGA

Etapa No. 1: Descarga Anterior 1989.31 kPa, Descarga Aplicado -1010.44 kPa, Descarga Total 978.87 kPa

Material Arcilla + Ceniza Fecha: 16-octubre-2017

Etapa No.


Descarga	Presión (kPa)	Peso (gramos)
Anterior	1989.31	63000
Aplicado	-1010.44	-32000
Total	978.87	31000

D. anillo 6.3500 cm

Unidad tiempo	Tiempo	Lectura extensómetro (0.0001)	Tiempo seg	Raiz cuadrada tiempo (min^0.5)	Altura cuerpo de prueba mm
seg	0	1564.2	0	0.00	20.603
seg	6	1530.3	6	0.32	20.611
seg	15	1526.4	15	0.50	20.612
seg	30	1524	30	0.71	20.613
min	1	1521.2	60	1.00	20.614
min	2	1517.1	120	1.41	20.615
min	4	1514.1	240	2.00	20.615
min	8	1510	480	2.83	20.616
min	15	1505.4	900	3.87	20.618
min	30	1500.2	1,800	5.48	20.619
hora	1.0	1497.1	3,600	7.75	20.620
hora	2.0	1496.4	7,200	10.95	20.620
hora	4.0	1492.5	14,400	15.49	20.621
hora	8.0	1490.1	28,800	21.91	20.622
hora	24.0	1488.1	86,400	37.95	20.622

Fuente: Elaborado por los autores

ETAPA Nº1 - CURVA - DESCARGA

2.3.8 ETAPA N°2 - DESCARGA

Etapa No. 2: Descarga Anterior 978.87 kPa, Descarga Aplicado -505.22 kPa, Descarga Total 473.65 kPa

Material Arcilla + Ceniza Fecha: 17-octubre-2017

Etapa No.


Descarga	Presión (kPa)	Peso (gramos)
Anterior	978.87	31000
Aplicado	-505.22	-16000
Total	473.65	15000

D. anillo 6.35 cm

Unidad tiempo	Tiempo	Lectura extensómetro mm	Tiempo seg	Raiz cuadrada tempo (min^0.5)	Altura cuerpo de prueba mm
seg	0	1488.1	0	0.00	20.622
seg	6	1458.4	6	0.32	20.630
seg	15	1455.4	15	0.50	20.630
seg	30	1451.3	30	0.71	20.631
min	1	1448.2	60	1.00	20.632
min	2	1443.8	120	1.41	20.633
min	4	1439.5	240	2.00	20.634
min	8	1433.2	480	2.83	20.636
min	15	1426.4	900	3.87	20.638
min	30	1418.2	1,800	5.48	20.640
hora	1.0	1412.4	3,600	7.75	20.641
hora	2.0	1405.2	7,200	10.95	20.643
hora	4.0	1398.8	14,400	15.49	20.645
hora	8.0	1389.3	28,800	21.91	20.647
hora	24.0	1374.1	86,400	37.95	20.651

Fuente: Elaborado por los autores

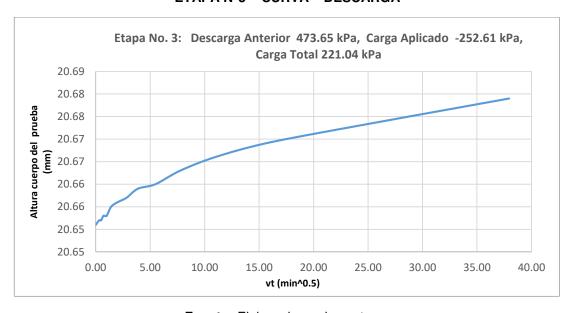
ETAPA N°2 - CURVA - DESCARGA

2.3.9 ETAPA N°3 - DESCARGA

Etapa No. 3: Descarga Anterior 473.65 kPa, Descarga Aplicado -252.61 kPa, Descarga Total 221.04 kPa

Material Arcilla + Ceniza Fecha: 18-octubre-2017

Etapa No.


Descarga	Presión (kPa)	Peso (gramos)
Anterior	473.65	15000
Aplicado	-252.61	-8000
Total	221.04	7000

D. anillo 6.35 cm

Unidad tiempo	Tiempo	Lectura extensómetro mm	Tiempo seg	Raiz cuadrada tempo (min^0.5)	Altura cuerpo de prueba mm
seg	0	1374.1	0	0.00	20.651
seg	6	1371.2	6	0.32	20.652
seg	15	1370.2	15	0.50	20.652
seg	30	1367.0	30	0.71	20.653
min	1	1364.2	60	1.00	20.653
min	2	1360.2	120	1.41	20.655
min	4	1355.1	240	2.00	20.656
min	8	1351.0	480	2.83	20.657
min	15	1343.2	900	3.87	20.659
min	30	1337.1	1,800	5.48	20.660
hora	1.0	1325.1	3,600	7.75	20.663
hora	2.0	1315.0	7,200	10.95	20.666
hora	4.0	1302.1	14,400	15.49	20.669
hora	8.0	1293.1	28,800	21.91	20.672
hora	24.0	1264.1	86,400	37.95	20.679

Fuente: Elaborado por los autores

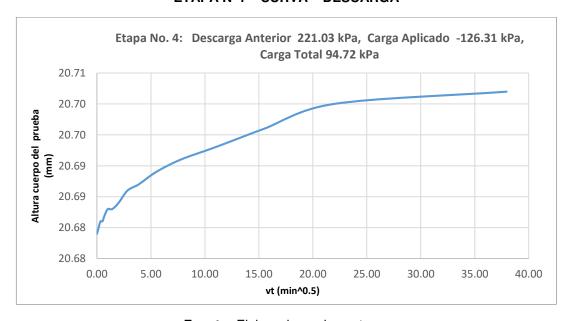
ETAPA N°3 - CURVA - DESCARGA

2.3.10 ETAPA N°4 - DESCARGA

Etapa No. 4: Descarga Anterior 221.03 kPa, Descarga Aplicado -126.31 kPa, Descarga Total 94.72 kPa

Material Arcilla + Ceniza Fecha: 19-octubre-2017

Etapa No.


Descarga	Presión (kPa)	Peso (gramos)
Anterior	221.03	7000
Aplicado	-126.31	-4000
		-
Total	94.72	3000

D. anillo 6.35 cm

Unidad tiempo	Tiempo	Lectura extensómetro mm	Tiempo seg	Raiz cuadrada tempo (min^0.5)	Altura cuerpo de prueba mm
seg	0	1264.1	0	0.00	20.679
seg	6	1257.0	6	0.32	20.681
seg	15	1254.1	15	0.50	20.681
seg	30	1251.3	30	0.71	20.682
min	1	1249.1	60	1.00	20.683
min	2	1246.3	120	1.41	20.683
min	4	1244.4	240	2.00	20.684
min	8	1236.5	480	2.83	20.686
min	15	1231.1	900	3.87	20.687
min	30	1224.0	1,800	5.48	20.689
hora	1.0	1215.6	3,600	7.75	20.691
hora	2.0	1207.6	7,200	10.95	20.693
hora	4.0	1195.2	14,400	15.49	20.696
hora	8.0	1180.0	28,800	21.91	20.700
hora	24.0	1174.3	86,400	37.95	20.702

Fuente: Elaborado por los autores

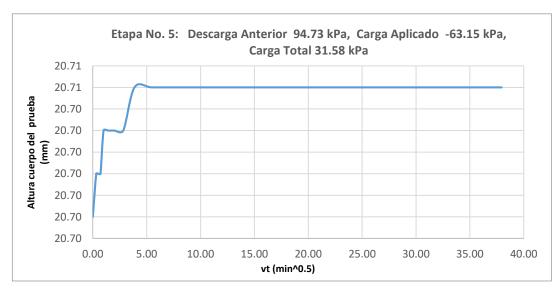
ETAPA N°4 - CURVA - DESCARGA

2.3.11 ETAPA N°5 - DESCARGA

Etapa No. 5: Descarga Anterior 94.73 kPa, Descarga Aplicado -63.15 kPa, Descarga Total 31.58 kPa

Material Arcilla + Ceniza Fecha: 20-octubre-2017

Etapa No. 5


Descarga	Presión (kPa)	Peso (gramos)		
Anterior	94.73	3000		
Aplicado	-63.15	-2000		
Total	31.58	1000		

D. anillo 6.35 cm

Unidad tiempo	Tiempo	Lectura extensómetro mm	Tiempo seg	Raiz cuadrada tempo (min^0.5)	Altura cuerpo de prueba mm
seg	0	1174.3	0	0.00	20.702
seg	6	1170.1	6	0.32	20.703
seg	15	1169.4	15	0.50	20.703
seg	30	1167.4	30	0.71	20.703
min	1	1166.6	60	1.00	20.704
min	2	1165.8	120	1.41	20.704
min	4	1164.6	240	2.00	20.704
min	8	1163.8	480	2.83	20.704
min	15	1163	900	3.87	20.705
min	30	1162.3	1,800	5.48	20.705
hora	1.0	1162.2	3,600	7.75	20.705
hora	2.0	1162.08	7,200	10.95	20.705
hora	4.0	1162.03	14,400	15.49	20.705
hora	8.0	1161.8	28,800	21.91	20.705
hora	24.0	1161.1	86,400	37.95	20.705

Fuente: Elaborado por los autores

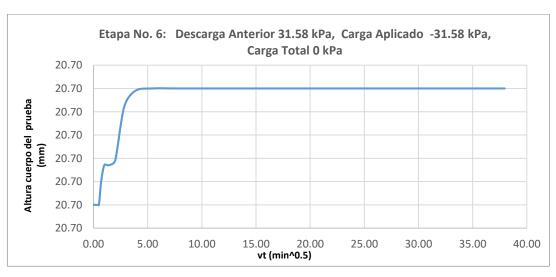
ETAPA N°5 - CURVA - DESCARGA

2.3.12 ETAPA N°6 - DESCARGA

Etapa No. 6: Descarga Anterior 31.58 kPa, Descarga Aplicado -31.58 kPa, Descarga Total 0 kPa

Material Arcilla + Ceniza Fecha: 21-octubre-2017

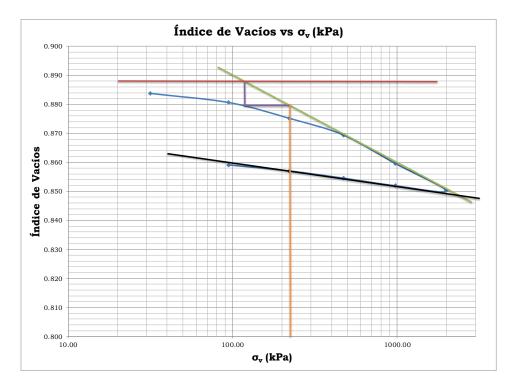
Etapa No.


Descarga	Presión (kPa)	Peso (gramos)
Descarga	riesion (kra)	reso (grainos)
Anterior	31.58	1000
Aplicado	-31.58	-1000
Total	0	0

D. anillo 6.35 cm

Unidad tiempo	Tiempo	Lectura extensómetro mm	Tiempo seg	Raiz cuadrada tempo (min^0.5)	Altura cuerpo de prueba mm	
seg	0	1161.1	0	0.00	20.705	
seg	6	1161.08	6	0.32	20.705	
seg	15	1161.05	15	0.50	20.705	
seg	30	1161.02	30	0.71	20.705	
min	1	1161.01	60	1.00	20.705	
min	2	1161	120	1.41	20.705	
min	4	1161	240	2.00	20.705	
min	8	1161	480	2.83	20.705	
min	15	1161	900	3.87	20.705	
min	30	1161	1,800	5.48	20.705	
hora	1.0	1161	3,600	7.75	20.705	
hora	2.0	1161	7,200	10.95	20.705	
hora	4.0	1161	14,400	15.49	20.705	
hora	8.0	1161	28,800	21.91	20.705	
hora	24.0	1161	86,400	37.95	20.705	

Fuente: Elaborado por los autores

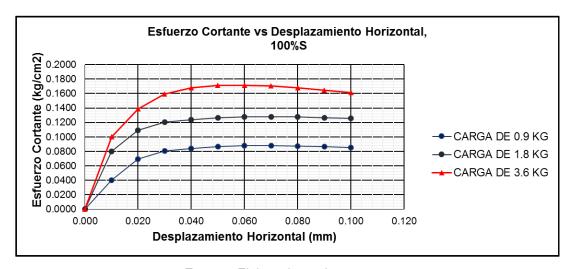

ETAPA Nº6 - CURVA - DESCARGA

RESULTADO DE ETAPAS - ARCILLA PURA

RESU	RESULTADO DE ETAPAS									
Etapa de carga No.	Presión Kpa	Índice de vacíos (e)								
0	0.00	0.886								
1	31.58	0.884								
2	94.73	0.881								
3	221.04	0.875								
4	473.64	0.869								
5	978.87	0.860								
6	1989.31	0.850								
1	978.87	0.852								
2	473.64	0.855								
3	221.04	0.857								
4	94.73	0.859								
5	31.58	0.859								
6	0	0.859								

ÍNDICE DE VACÍOS VS ESFUERZO DE PRECONSOLIDACIÓN

3. ENSAYO DE CORTE DIRECTO

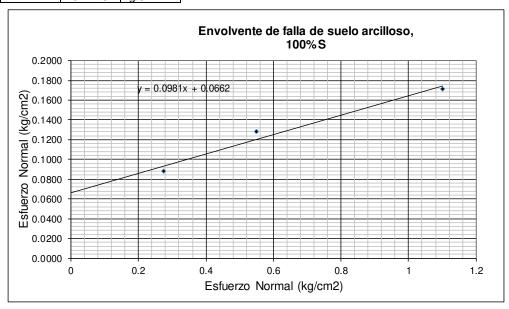

3.1 CURADO A 7 DÍAS

3.1.1 MATERIAL ENSAYADO - ARCILLA 100%

	FACULTAD DE INGENIERÍA Y ARQUITECTURA											
E S S												
TO BIT		LAB. DE MATERIALES Y MECÁNICA DE SUELOS										
	ENSAYO DE CORTE DIRECTO ASTM D3080											
OBRA :	: Estabilización de suelos arcillosos aplicando cenizas de madera, producto de las ladrilleras artesanales, en el departamento de Ayacucho											
ELABORADO:	Bach. Yatao	co Quispe, Al	ejandro Jesús	ASESOR:	Mg. Ing.	Gary, Duran	Ramírez					
	Bach. Mam	ani Barriga, L	.ux Eva			•						
UBICACIÓN:	Huamanga	- Ayacucho			COMB:	100%S		№ LAB:	1			
CAJA DE CORTE N°	:	62-64-81			LONG:	6	cm	C	ARGA AXIA	L		
ANCHO:	6	cm			ALTURA:	4	cm		9.9			
AREA:	36	cm2			VOLUMEN:	144	cm3		19.8			
Gs:	2.71				%W:	32.27	%		39.6			
VELOCIDAD:	35	mm/min		FAC	CTOR DE CALI	BRACION:	11					
Wm:	119.17	gr										
				σ1	0.275	Kg/cm2	σ2	0.55	Kg/cm2	σ3	1.1	Kg/cm2
L	D.H	Lc	Área Corregio	L.D (un)	F.C. Ka.	T (((= (= == 0)	L.D (un)	F.C.	T (((= (= = 0)	L.D (un)	F.C.	T (V = (a = 0))
mm	cm	6.000	AC=6*Lc (cn	0.0000		(Kg/cm2)	0.0000	Kg. 0.000	(Kg/cm2) 0.0000	0.0000	Kg. 0.000	(Kg/cm2) 0.0000
0.00	0.000	5.990	36.000 35.940	0.0000 1.4400	0.0000 1.4400	0.0000 0.0401	0.0000 2.8680	2.868	0.0000	0.0000 3.5950	3.595	0.1000
0.10	0.010	5.980	35.880	2.5000	2.5000	0.0401	3.9280	3.928	0.0796	4.9880	4.988	0.1000
0.30	0.020	5.970	35.820	2.8890	2.8890	0.0807	4.3170	4.317	0.1095	5.6960	5.696	0.1590
0.40	0.040	5.960	35.760	2.9910	2.9910	0.0836	4.4190	4.419	0.1236	6.0020	6.002	0.1678
0.50	0.050	5.950	35.700	3.0940	3.0940	0.0867	4.5220	4.522	0.1267	6.1130	6.113	0.1712
0.60	0.060	5.940	35.640	3.1300	3.1300	0.0878	4.5580	4.558	0.1279	6.1120	6.112	0.1715
0.70	0.070	5.930	35.580	3.1290	3.1290	0.0879	4.5570	4.557	0.1281	6.0630	6.063	0.1704
0.80	0.080	5.920	35.520	3.1090	3.1090	0.0875	4.5370	4.537	0.1277	5.9660	5.966	0.1680
0.90	0.090	5.910	35.460	3.0660	3.0660	0.0865	4.4940	4.494	0.1267	5.8470	5.847	0.1649
1.00	0.100	5.900	35.400	3.0170	3.0170	0.0852	4.4450	4.445	0.1256	5.7200	5.720	0.1616
1.10	0.110	5.890	35.340									
1.20	0.120	5.880	35.280									
1.30	0.130	5.870	35.220									
1.40	0.140	5.860	35.160									
1.50	0.150	5.850	35.100									
1.60	0.160	5.840	35.040									
1.70	0.170	5.830	34.980									
1.80	0.180	5.820	34.920									
1.90	0.190	5.810	34.860									
2.00	0.200	5.800	34.800									

Fuente: Elaborado por los autores

ARCILLA 100% - ESFUERZO CORTANTE - DESPLAZAMIENTO H.

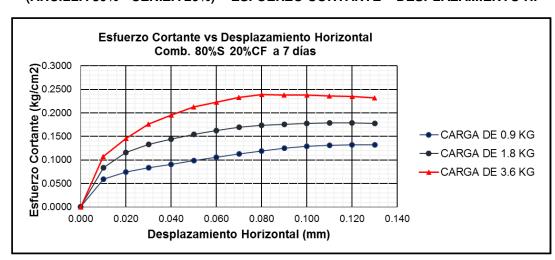


Fuente: Elaborado por los autores

•

ARCILLA 100% - FALLA

σ	T	
0.275	0.0879	kg/cm2
0.55	0.1281	kg/cm2
1.1	0.1715	ka/cm2



3.1.2 MATERIAL ENSAYADO – COMBINACIÓN ARCILLA 80% - CENIZA 20%

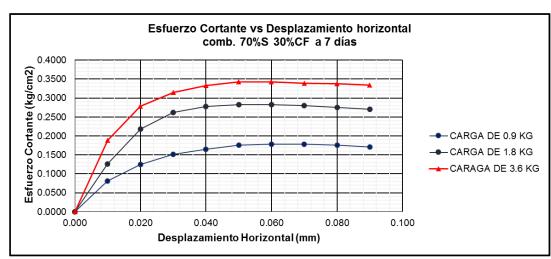
VERITAS VERITAS	FACULTAD DE INGENIERÍA Y ARQUITECTURA LAB. DE MATERIALES Y MECÁNICA DE SUELOS											
~			LAD.									
	ENSAYO DE CORTE DIRECTO ASTM D3080 Estabilización de suelos arcillosos aplicando cenizas de madera, producto de las ladrilleras artesanales en el departamento de Ayacucho											
OBRA:	Es	stabilizacion c	le suelos arcillo	osos aplicando	cenizas de ma	dera, product	o de las ladrille	eras artesana	ales en el de	partamento	de Ayacuo	:ho
ELABORADO:			ejandro Jesús				ASESOR:	Mg. Ing. (Gary, Duran	Ramírez		
		nani Barriga, L										
UBICACION:	Huamanga	a - Ayacucho	COMB:	80%S 20%	CF a 7 días			Nº LAB :	1			
CAJA DE CORTE N°	:	62-64-81		LONG:		6	cm	C	ARGA AXIA	L		
ANCHO:	6	cm		ALTURA:		4	cm		9.9			
AREA:	36	cm2		VOLUMEN:		144	cm3		19.8			
Gs:	2.73			%W:		29.31	%		39.6			
VELOCIDAD:	35	mm/min		FACTOR	R DE CALIBRA	ACION :	11					
Wm:	122.71	gr										
				σ1	0.275	Kg/cm2	σ2	0.55	Kg/cm2	σ3	1.1	Kg/cm2
L	D.H	Lc	Área Corregi	L.D (un)	F.C.	T	L.D (un)	F.C.	T	L.D (un)	F.C.	T
mm	cm		AC=6*Lc (cn	` '	Kg.	(Kg/cm2)	` '	Kg.	(Kg/cm2)	. ,	Kg.	(Kg/cm2)
0.00	0.000	6.000	36.000	0.0000	0.0000	0.0000	0.000	0.000	0.0000	0.000	0.000	0.0000
0.10	0.010	5.990	35.940	2.1150	2.1150	0.0588	3.006	3.006	0.0836	3.853	3.853	0.1072
0.20	0.020	5.980	35.880	2.6720	2.6720	0.0745	4.145	4.145	0.1155	5.248	5.248	0.1463
0.30	0.030	5.970	35.820	2.9920	2.9920	0.0835	4.758	4.758	0.1328	6.328	6.328	0.1767
0.40	0.040	5.960	35.760	3.2420	3.2420	0.0907	5.162	5.162	0.1444	6.991	6.991	0.1955
0.50	0.050	5.950	35.700	3.5070	3.5070	0.0982	5.502	5.502	0.1541	7.604	7.604	0.2130
0.60 0.70	0.060	5.940 5.930	35.640 35.580	3.7650	3.7650	0.1056	5.803 6.017	5.803 6.017	0.1628 0.1691	7.941 8.293	7.941 8.293	0.2228
0.70	0.070	5.930	35.520	4.0150 4.2370	4.0150 4.2370	0.1128	6.154	6.154	0.1691	8.487	8.487	0.2389
0.80	0.080	5.920	35.460	4.4220	4.4220	0.1193	6.245	6.245	0.1761	8.456	8.456	0.2385
1.00	0.100	5.900	35.400	4.4220	4.5540	0.1247	6.297	6.297	0.1761	8.413	8.413	0.2377
1.10	0.110	5.890	35.340	4.6370	4.6370	0.1200	6.320	6.320	0.1779	8.353	8.353	0.2364
1.20	0.120	5.880	35.280	4.6710	4.6710	0.1324	6.310	6.310	0.179	8.293	8.293	0.2351
1.30	0.130	5.870	35.220	4.6550	4.6550	0.1322	6.275	6.275	0.178	8.173	8.173	0.2321
1.40	0.140	5.860	35.160									
1.50	0.150	5.850	35.100									
1.60	0.160	5.840	35.040									
1.70	0.170	5.830	34.980									
1.80	0.180	5.820	34.920					,				
1.90	0.190	5.810	34.860									
2.00	0.200	5.800	34.800									

Fuente: Elaborado por los autores

(ARCILLA 80% - CENIZA 20%) - ESFUERZO CORTANTE - DESPLAZAMIENTO H.

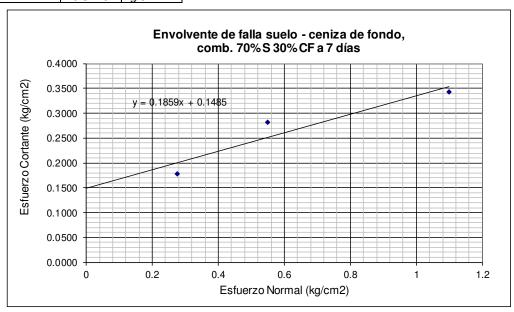
(ARCILLA 80% - CENIZA 20%)- FALLA

σ	T	
0.275	0.1324	kg/cm2
0.55	0.1789	kg/cm2
1.1	0.2389	ka/cm2



3.1.3 MATERIAL ENSAYADO – COMBINACIÓN ARCILLA 70% - CENIZA 30%

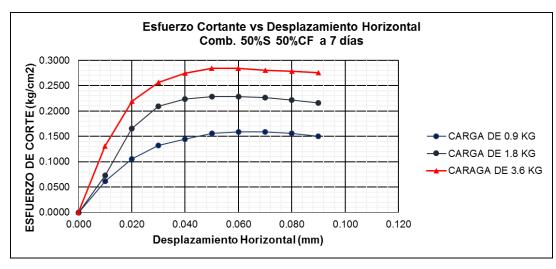
VERITAS COMPANY					GENIERÍA Y LES Y MECA			1				
	ENSAYO DE CORTE DIRECTO ASTM D3080											
OBRA:	Estab	ilización de su	elos arcillosos aplic artesanales en e			cto de las la	drilleras					
ELABORADO:		o Quispe, Alej ani Barriga, Lu	andro Jesús	ASESOR		Gary, Duran F	Ramírez					
UBICACION:		a- Ayacucho	COMB:	70%S 30%	%CF a 7 días	Nº LAB:	1					
CAJA DE CORTE N°	:	62-64-81			LONG:	6	cm	С	ARGA AXI	٩L		
ANCHO:	6	cm			ALTURA:	4	cm		9.9			
AREA:	36	cm2			VOLUMEN:	144	cm3		19.8			
Gs:	2.73				%W:	24.44	%		39.6			
VELOCIDAD:	35	mm/min		F/	ACTOR DE CALI	BRACION:	11					
Wm:	133.62	gr			T							
	.00.02	13.	1	σ1	0.275	Kg/cm2	σ2	0.55	Kg/cm2	σ3	1.1	Kg/cm2
L	D.H		Área Corregida		F.C.	T		F.C.	T		F.C.	T
mm	cm	Lc	AC=6*Lc (cm2)	L.D (un)	Ka.	(Ka/cm2)	L.D (un)	Ka.	(Ka/cm2)	L.D (un)	Ka.	(Ka/cm2)
0.00	0.000	6.000	36.000	0.0000	0.0000	0.0000	0.000	0.000	0.0000	0.000	0.000	0.0000
0.10	0.010	5.990	35.940	2.9150	2.9150	0.0811	4.547	4.547	0.1265	6.760	6.760	0.1881
0.20	0.020	5.980	35.880	4.4920	4.4920	0.1252	7.838	7.838	0.2185	9.960	9.960	0.2776
0.30	0.030	5.970	35.820	5.4370	5.4370	0.1518	9.397	9.397	0.2623	11.256	11.256	0.3142
0.40	0.040	5.960	35.760	5.8720	5.8720	0.1642	9.915	9.915	0.2773	11.894	11.894	0.3326
0.50	0.050	5.950	35.700	6.2770	6.2770	0.1758	10.073	10.073	0.2822	12.228	12.228	0.3425
0.60	0.060	5.940	35.640	6.3680	6.3680	0.1787	10.055	10.055	0.2821	12.193	12.193	0.3421
0.70	0.070	5.930	35.580	6.3490	6.3490	0.1784	9.955	9.955	0.2798	12.053	12.053	0.3388
0.80	0.080	5.920	35.520	6.2310	6.2310	0.1754	9.791	9.791	0.2756	11.982	11.982	0.3373
0.90	0.090	5.910	35.460	6.0370	6.0370	0.1702	9.577	9.577	0.2701	11.855	11.855	0.3343
1.00	0.100	5.900	35.400									
1.10	0.110	5.890	35.340									
1.20	0.120	5.880	35.280									
1.30	0.130	5.870	35.220									
1.40	0.140	5.860	35.160									
1.50	0.150	5.850	35.100		1							<u> </u>
1.60	0.160	5.840	35.040		1							<u> </u>
1.70	0.170	5.830	34.980		1							
1.80	0.180	5.820	34.920		1							
1.90	0.190	5.810	34.860		_							↓
2.00	0.200	5.800	34.800									


Fuente: Elaborado por los autores

(ARCILLA 70% - CENIZA 30%) ESFUERZO CORTANTE – DESPLAZAMIENTO H.

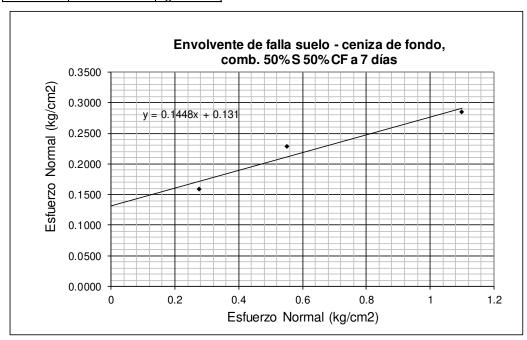
(ARCILLA 70% - CENIZA 30%)- FALLA

σ	T	
0.275	0.1787	kg/cm2
0.55	0.2822	kg/cm2
1.1	0.3425	kg/cm2



3.1.4 MATERIAL ENSAYADO – COMBINACIÓN ARCILLA 50% - CENIZA 50%

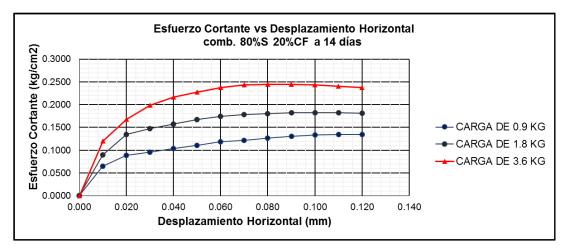
VERITAS EPPS							UITECTURA						
94811			LAB.	DE MATE	RIALES Y	MECANICA	A DE SUELO	S					
				ENSAYO	DE CORTE DI	RECTO ASTM	D3080						
OBRA:	Estabilización de suelos arcillosos aplicando cenizas de madera, producto de las ladrilleras artesanales, en el departamento de Ayacucho												
ELABORADO:			e, Alejandro Jesú ga, Lux Eva	s			ASESOR	3ary, Dura	n Ramírez				
UBICACION:		a - Ayacuc	• /	СОМВ	50%	6S 50% CF a 7	7dias Nº LAB: 1						
CAJA DE CORTE N°		62-64-81			LONG:	6	cm	С	ARGA AXI	AL.			
ANCHO:	6	cm			ALTURA:	4	cm		9.9				
AREA:	36	cm2			VOLUMEN:	144	cm3		19.8				
Gs:	2.71				%W:	23.25	%		39.6				
VELOCIDAD:	35	mm/min		FACTO	OR DE CALIBE	RACION:	11						
Wm:	128.68	gr											
				σ1	0.275	Kg/cm2	σ2	0.55	Kg/cm2	σ3	1.1	Kg/cm2	
L	D.H	Lc	Área Corregida	L.D (un)	F.C.	T	L.D (un)	F.C.	T	L.D (un)	F.C.	T	
mm	cm		AC=6*Lc (cm2)	(- /	Kg.	(Kg/cm2)	L.D (un)	Kg.	(Kg/cm2)	(- /	Kg.	(Kg/cm2)	
0.00	0.000	6.000	36.000	0.000	0.000	0.0000	0.000	0.000	0.0000	0.000	0.000	0.0000	
0.10	0.010	5.990	35.940	2.208	2.208	0.0614	2.639	2.639	0.0734	4.682	4.682	0.1303	
0.20	0.020	5.980	35.880	3.785	3.785	0.1055	5.930	5.930	0.1653	7.882	7.882	0.2197	
0.30	0.030	5.970	35.820	4.730	4.730	0.1320	7.489	7.489	0.2091	9.178	9.178	0.2562	
0.40	0.040	5.960	35.760	5.165	5.165	0.1444	8.007	8.007	0.2239	9.816	9.816	0.2745	
0.50	0.050	5.950	35.700	5.570	5.570	0.1560	8.165	8.165	0.2287	10.150	10.150	0.2843	
0.60	0.060	5.940	35.640	5.661	5.661	0.1588	8.147	8.147	0.2286	10.115	10.115	0.2838	
0.70	0.070	5.930	35.580	5.642	5.642	0.1586	8.047	8.047	0.2262	9.975	9.975	0.2804	
0.80	0.080	5.920	35.520	5.524	5.524	0.1555	7.883	7.883	0.2219	9.904	9.904	0.2788	
0.90	0.090	5.910	35.460	5.330	5.330	0.1503	7.669	7.669	0.2163	9.777	9.777	0.2757	
1.00	0.100	5.900	35.400		+		+					1	
1.10	0.110	5.890	35.340		1		1					1	
1.20	0.120	5.880	35.280				 		-			-	
1.30 1.40	0.130	5.870 5.860	35.220 35.160		+		1						
1.50	0.140	5.850	35.100				1						
1.60	0.150	5.850	35.100		+		+					1	
1.60	0.160	5.840	35.040				+					1	
1.80		5.830	34.980		1		+					1	
1.80	0.180	5.820	34.920		+		+					1	
2.00	0.190	5.810	34.860					1					


Fuente: Elaborado por los autores

(ARCILLA 50% - CENIZA 50%) ESFUERZO CORTANTE - DESPLAZAMIENTO H.

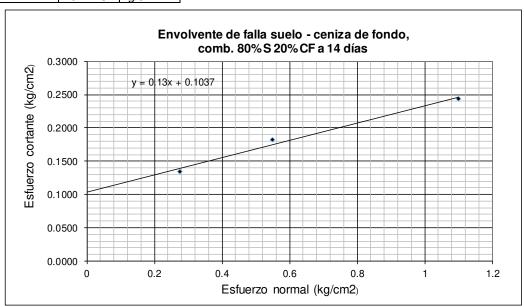
(ARCILLA 50% - CENIZA 50%)- FALLA

σ	Т	
0.275	0.1588	kg/cm2
0.55	0.2287	kg/cm2
1.1	0.2843	kg/cm2


3.2 CURADO A 14 DÍAS

3.2.1 MATERIAL ENSAYADO – COMBINACIÓN ARCILLA 80% - CENIZA 20%

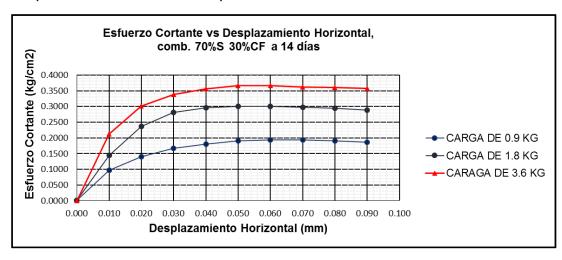
VERITAS VERITAS VARIENTE			LAB. DE	MATERIA	IGENIERÍA ALES Y MEC	CÁNICA D	E SUELO					
ENSAYO DE CORTE DIRECTO ASTM D3080												
OBRA:		Estabilización de suelos arcillosos aplicando cenizas de madera, producto de las ladrilleras artesanales en el departamento de Ayacucho										
ELABORADO: UBICACION:	Bach. Yataco Quispe, Alejandro Jesús ASESOR: Mg. Ing. Gary, Duran Ramírez Bach. Mamani Barriga, Lux Eva Huamanga - Ayacucho COMB: 80%S 20%CF a 14 días № LAB: 1											
CAJA DE CORTE N° :		62-64-81			LONG:	6	cm	C	ARGA AXIA	ı		
ANCHO:	6	cm			ALTURA:	4	cm	<u> </u>	9.9	_	33 1.1 Kg/cm2 D (un) F.C. T (Kg/cm2) 0.000 0.000 0.0000 1.323 4.323 0.1203 1.014 6.014 0.1676 0.99 7.099 0.1982 7.742 7.742 0.2165 1.121 8.121 0.2275 1.475 8.475 0.2378 1.662 8.662 0.2435 1.676 8.676 0.2442 1.599 8.599 0.2442 1.599 8.599 0.2442 1.490 8.490 0.2402	
AREA:	36	cm2			VOLUMEN :	144	cm3		19.8			
Gs:	2.72	1			%W:	29.31	%		39.6			
VELOCIDAD :	35	mm/min		FACTO	R DE CALIBRA	CION:	11					
Wm:	123.54	gr										
	1	10		σ1	0.275	Kg/cm2	σ2	0.55	Kg/cm2	σ3	1.1	Kg/cm2
L	D.H	La	Área Corregida	L D (100)	F.C.	T	LD (un)	F.C.	Т	L D (um)	F.C.	Т
mm	cm	Lc	AC=6*Lc (cm2)	L.D (un)	Kg.	(Kg/cm2)	L.D (un)	Kg.	(Kg/cm2)	L.D (un)	Kg.	(Kg/cm2)
0.00	0.000	6.000	36.000	0	0.0000	0.0000	0.0000	0.000	0.0000	0.000	0.000	0.0000
0.10	0.010	5.990	35.940	2.3471	2.3471	0.0653	3.2201	3.220	0.0896	4.323	4.323	0.1203
0.20	0.020	5.980	35.880	3.1780	3.1780	0.0886	4.8440	4.844	0.1350	6.014	6.014	0.1676
0.30	0.030	5.970	35.820	3.4280	3.4280	0.0957	5.2701	5.270	0.1471	7.099		
0.40	0.040	5.960	35.760	3.6930	3.6930	0.1033	5.6401	5.640	0.1577	7.742	7.742	
0.50	0.050	5.950	35.700	3.9510	3.9510	0.1107	5.9830	5.983	0.1676	8.121	8.121	
0.60	0.060	5.940	35.640	4.2110	4.2110	0.1182	6.2141	6.214	0.1744	8.475	8.475	0.2378
0.70	0.070	5.930	35.580	4.3230	4.3230	0.1215	6.3393	6.339	0.1782	8.662		
0.80	0.080	5.920	35.520	4.5080	4.5080	0.1269	6.3950	6.395	0.1800	8.676		
0.90	0.090	5.910	35.460	4.6400	4.6400	0.1309	6.4620	6.462	0.1822	8.658	8.658	0.2442
1.00	0.100	5.900	35.400	4.7230	4.7230	0.1334	6.4562	6.456	0.1824	8.599		
1.10	0.110	5.890	35.340	4.7570	4.7570	0.1346	6.4372	6.437	0.182	8.490	8.490	
1.20	0.120	5.880	35.280	4.7410	4.7410	0.1344	6.4111	6.411	0.182	8.389	8.389	0.2378
1.30	0.130	5.870	35.220									
1.40	0.140	5.860	35.160									
1.50	0.150	5.850	35.100									
1.60	0.160	5.840	35.040									
1.70	0.170	5.830	34.980									
1.80	0.180	5.820	34.920									
1.90	0.190	5.810	34.860									
2.00	0.200	5.800	34.800									


Fuente: Elaborado por los autores

(ARCILLA 80% - CENIZA 20%) ESFUERZO CORTANTE - DESPLAZAMIENTO H.

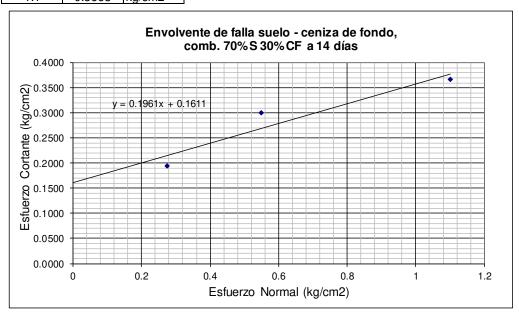
(ARCILLA 80% - CENIZA 20%)- FALLA

σ	T	
0.275	0.1346	kg/cm2
0.55	0.1824	kg/cm2
1.1	0.2443	kg/cm2



3.2.2 MATERIAL ENSAYADO – COMBINACIÓN ARCILLA 70% - CENIZA 30%

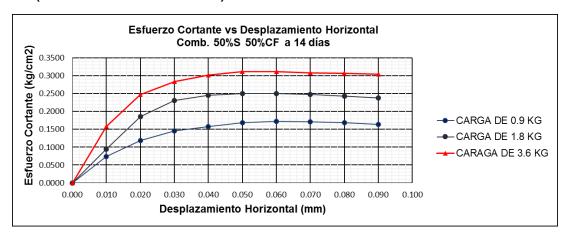
VERITAS VERITAS	FACULTAD DE INGENIERÍA Y ARQUITECTURA LAB. DE MATERIALES Y MECÁNICA DE SUELOS												
	ENSAYO DE CORTE DIRECTO ASTM D3080												
OBRA:		Estabilización de suelos arcillosos aplicando cenizas de madera, producto de las ladrilleras artesanales en el departamento de Ayacucho											
ELABORADO:		co Quispe, Alej ani Barriga, Lu			ASESOR: Gary, Duran Ramírez								
UBICACION:		a - Ayacucho	COMB:	70%S 30%	GCF a 14 días	Nº LAB :	1						
CAJA DE CORT	E N°:	62-64-81			LONG:	6	cm	С	ARGA AXIA	AL			
ANCHO:	6	cm			ALTURA:	4	cm		9.9				
AREA:	36	cm2			VOLUMEN:	144	cm3		19.8				
Gs:	2.73				%W:	24.44	%		39.6				
VELOCIDAD:	35	mm/min		F.A	CTOR DE CAL	BRACION:	11						
Wm:	134.45	gr											
			•	σ1	0.275	Kg/cm2	σ2	0.55	Kg/cm2	σ3	1.1	Kg/cm2	
L	D.H		Área Corregida	15()	F.C.	Т	1.0()	F.C.	T	1.5()	F.C.	Т	
mm	cm	Lc	AC=6*Lc (cm2)	L.D (un)	Kg.	(Kg/cm2)	L.D (un)	Kg.	(Kg/cm2)	L.D (un)	Kg.	(Kg/cm2)	
0.00	0.000	6.000	36.000	0.0000	0.0000	0.0000	0.000	0.000	0.0000	0.000	0.000	0.0000	
0.10	0.010	5.990	35.940	3.4650	3.4650	0.0964	5.197	5.197	0.1446	7.610	7.610	0.2117	
0.20	0.020	5.980	35.880	5.0420	5.0420	0.1405	8.488	8.488	0.2366	10.810	10.810	0.3013	
0.30	0.030	5.970	35.820	5.9870	5.9870	0.1671	10.047	10.047	0.2805	12.106	12.106	0.3380	
0.40	0.040	5.960	35.760	6.4220	6.4220	0.1796	10.565	10.565	0.2954	12.744	12.744	0.3564	
0.50	0.050	5.950	35.700	6.8270	6.8270	0.1912	10.723	10.723	0.3004	13.078	13.078	0.3663	
0.60	0.060	5.940	35.640	6.9180	6.9180	0.1941	10.705	10.705	0.3004	13.043	13.043	0.3660	
0.70	0.070	5.930	35.580	6.8990	6.8990	0.1939	10.605	10.605	0.2981	12.903	12.903	0.3626	
0.80	0.080	5.920	35.520	6.7810	6.7810	0.1909	10.441	10.441	0.2939	12.832	12.832	0.3613	
0.90	0.090	5.910	35.460	6.5870	6.5870	0.1858	10.227	10.227	0.2884	12.705	12.705	0.3583	
1.00	0.100	5.900	35.400										
1.10	0.110	5.890	35.340										
1.20	0.120	5.880	35.280										
1.30	0.130	5.870	35.220		ļ								
1.40	0.140	5.860	35.160										
1.50	0.150	5.850	35.100									<u> </u>	
1.60	0.160	5.840	35.040		1	ļ						 	
1.70	0.170	5.830	34.980									_	
1.80	0.180	5.820	34.920		1	ļ						 	
1.90	0.190	5.810	34.860		-	 	1				-	 	
2.00	0.200	5.800	34.800		1	1	1	l	1	1		1	


Fuente: Elaborado por los autores

(ARCILLA 70% - CENIZA 30%) ESFUERZO CORTANTE - DESPLAZAMIENTO H.

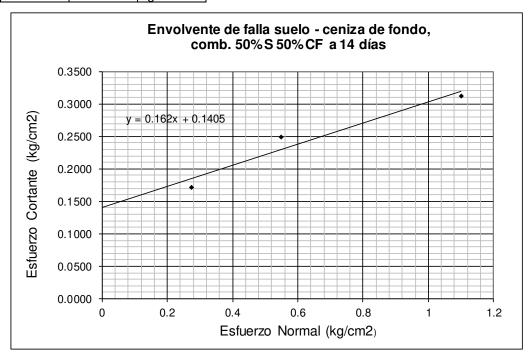
(ARCILLA 70% - CENIZA 30%)- FALLA

σ	T	
0.275	0.1941	kg/cm2
0.55	0.3004	kg/cm2
1.1	0.3663	ka/cm2



3.2.3 MATERIAL ENSAYADO – COMBINACIÓN ARCILLA 50% - CENIZA 50%

VENTAS VENTAS	FACULTAD DE INGENIERÍA Y ARQUITECTURA LAB. DE MATERIALES Y MECÁNICA DE SUELOS											
~				ENSAYO	DE CORTE DIRE	CTO ASTM D308	0					
ODNA:		Estabilización de suelos arcillosos aplicando cenizas de madera, producto de las ladrilleras artesanales en el departamento de Ayacucho										
ELABORADO:		aco Quispe, Ale		ASESOR:	Mg. l	ng. Gary, Duran Ra	amírez					
l		mani Barriga, Lu										
UBICACION:	Huaman	ga - Ayacucho	COMB:	50% S 50	%CF a 14 días	Nº LAB:	: 1					
CAJA DE CORTE N°:	T	62-64-81			LONG:	6	cm	l c	ARGA AXI	AL		
ANCHO:	6	cm			ALTURA:	4	cm		9.9			
AREA:	36	cm2			VOLUMEN:	144	cm3		19.8			
Gs:	2.76				%W:	23.25	%		39.6			
VELOCIDAD:	35	mm/min		FAC	TOR DE CALIB	RACION:	11					
Wm:	130.78	gr										
				σ1	0.275	Kg/cm2	σ2	0.55	Kg/cm2	σ3	1.1	Kg/cm2
L	D.H	Lc	Área Corregida	L.D (un)	F.C.	Т	L.D (un)	F.C.	T	L.D (un)	F.C.	T
mm	cm	LC	AC=6*Lc (cm2)	L.D (un)	Kg.	(Kg/cm2)	L.D (uri)	Kg.	(Kg/cm2)	L.D (un)	Kg.	(Kg/cm2)
0.00	0.000	6.000	36.000	0.000	0.000	0.0000	0.000	0.000	0.0000	0.000	0.000	0.0000
0.10	0.010	5.990	35.940	2.665	2.665	0.0742	3.386	3.386	0.0942	5.669	5.669	0.1577
0.20	0.020	5.980	35.880	4.242	4.242	0.1182	6.677	6.677	0.1861	8.869	8.869	0.2472
0.30	0.030	5.970	35.820	5.187	5.187	0.1448	8.236	8.236	0.2299	10.165	10.165	0.2838
0.40	0.040	5.960	35.760	5.622	5.622	0.1572	8.754	8.754	0.2448	10.803	10.803	0.3021
0.50	0.050	5.950	35.700	6.027	6.027	0.1688	8.912	8.912	0.2496	11.137	11.137	0.3120
0.60	0.060	5.940	35.640	6.118	6.118	0.1717	8.894	8.894	0.2496	11.102	11.102	0.3115
0.70 0.80	0.070	5.930 5.920	35.580 35.520	6.099 5.981	6.099 5.981	0.1714 0.1684	8.794 8.630	8.794 8.630	0.2472	10.962	10.962	0.3081
0.80	0.080	5.920	35.520 35.460	5.981	5.981	0.1684	8.630	8.630	0.2430	10.891	10.891	0.3066
1.00	0.100	5.900	35.400	5.707	5.767	0.1032	0.410	0.410	0.23/3	10./64	10./04	0.3036
1.10	0.110	5.890	35.340									+
1.20	0.110	5.880	35.280		<u> </u>	†						
1.30	0.130	5.870	35.220									1
1.40	0.140	5.860	35.160									
1.50	0.150	5.850	35.100									
1.60	0.160	5.840	35.040									
1.70	0.170	5.830	34.980									
1.80	0.180	5.820	34.920									
1.90	0.190	5.810	34.860									
2.00	0.200	5.800	34.800									


Fuente: Elaborado por los autores

(ARCILLA 50% - CENIZA 50%) ESFUERZO CORTANTE - DESPLAZAMIENTO H.

(ARCILLA 50% - CENIZA 50%)- FALLA

σ	T	
0.275	0.1717	kg/cm2
0.55	0.2496	kg/cm2
1.1	0.3120	kg/cm2

Fuente: Elaborado por los autores

ANEXO N°5: PANEL FOTOGRÁFICO

1. RECOLECCIÓN DE MUESTRAS

[Fotografía de Lux Mamani]. (Huamanga - Pacaicasa. 2017). Verificación de la Arcilla en el km 17 de la carretera Huamanga - Pacaicasa, Ayacucho, Pacaicasa.

[Fotografía de Lux Mamani]. (Huamanga - Pacaicasa. 2017). Recolección de Arcilla en el km 17 de la carretera Huamanga - Pacaicasa, Ayacucho, Pacaicasa.

[Fotografía de Alejandro Yataco]. (Huamanga - Pacaicasa. 2017). Vista del horno en Pacaicasa, de donde se obtendrá la ceniza, Ayacucho, Pacaicasa.

[Fotografía de Lux Mamani]. (Huamanga - Pacaicasa. 2017). Vista de la ceniza que fue retirada para someterse a los ensayos, Ayacucho, Pacaicasa.

2. TRABAJO EN LABORATORIO

2.1 Ensayo de granulometría por tamizado

[Fotografía de Lux Mamani]. (Lab. de Mecánica de suelos de la USMP. 2017). Vista de la Arcilla, Lima, La molina.

[Fotografía de Lux Mamani]. (Lab. de Mecánica de suelos de la USMP. 2017). Vista de la Ceniza, Lima, La molina.



[Fotografía de Alejandro Yataco]. (Lab. de Mecánica de suelos de la USMP. 2017). Vista de la ceniza que pasó por los tamices, Lima, La molina.

[Fotografía de Alejandro Yataco]. (Lab. de Mecánica de suelos de la USMP. 2017). Vista de las muestras tamizadas y separadas, Lima, La molina.

2.2 Ensayo de Gravedad Específica.

[Fotografía de Lux Mamani]. (Lab. de Mecánica de suelos de la USMP. 2017). Muestra del peso de Arcilla que será sometida al ensayo, Lima, La molina.

[Fotografía de Alejandro Yataco]. (Lab. de Mecánica de suelos de la USMP. 2017). Utilización de la Bomba de vacíos para la extracción de aire del agua, Lima, La molina.

[Fotografía de Lux Mamani]. (Lab. de Mecánica de suelos de la USMP. 2017). Muestra ingresada al Picnómetro, Lima, La molina.

[Fotografía de Lux Mamani]. (Lab. de Mecánica de suelos de la USMP. 2017). Se retira el aire de la muestra + agua, Lima, La molina.

2.3 Ensayo de Limites de Atterberg.

[Fotografía de Lux Mamani]. (Lab. de Mecánica de suelos de la USMP. 2017). Peso de combinación Arcilla - Ceniza, Lima, La molina.

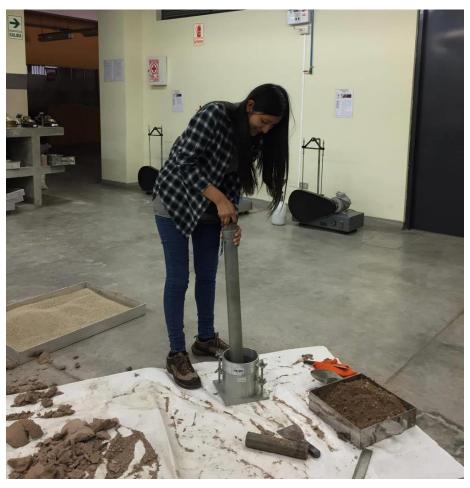
[Fotografía de Alejandro Yataco]. (Lab. de Mecánica de suelos de la USMP. 2017). Preparación de la mezcla con agua, Lima, La molina.

[Fotografía de Alejandro Yataco]. (Lab. de Mecánica de suelos de la USMP. 2017). Corte que se realizó con el ranurador, Lima, La molina.

[Fotografía de Lux Mamani]. (Lab. de Mecánica de suelos de la USMP. 2017). Amasado de la mezcla arcillosa, Lima, La molina.

[Fotografía de Lux Mamani]. (Lab. de Mecánica de suelos de la USMP. 2017). Rollos que determinaran el Límite Plástico, Lima, La molina.

[Fotografía de Alejandro Yataco]. (Lab. de Mecánica de suelos de la USMP. 2017). Muestras puestas al horno, Lima, La molina.


2.4 Ensayo de Próctor Modificado

[Fotografía de Alejandro Yataco]. (Lab. de Mecánica de suelos de la USMP. 2017). Muestra que se tomará para el ensayo, Lima, La molina.

[Fotografía de Lux Mamani]. (Lab. de Mecánica de suelos de la USMP. 2017). Muestra ingresada al molde, Lima, La molina.

[Fotografía de Alejandro Yataco]. (Lab. de Mecánica de suelos de la USMP. 2017). Compactación de la muestra, Lima, La molina.

[Fotografía de Lux Mamani]. (Lab. de Mecánica de suelos de la USMP. 2017). Toma de espécimen, Lima, La molina.

2.5 Ensayo de Consolidación Unidimensional.

[Fotografía de Alejandro Yataco]. (Lab. de Mecánica de suelos de la USMP. 2017). Muestra curada a 7 días que se utilizará para el ensayo, Lima, La molina.

[Fotografía de Alejandro Yataco]. (Lab. de Mecánica de suelos de la USMP. 2017). Tallado de muestra arcillosa curada a 7 días, Lima, La molina.

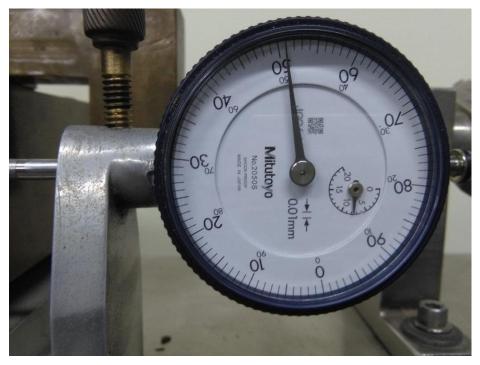
[Fotografía de Lux Mamani]. (Lab. de Mecánica de suelos de la USMP. 2017). Armado del molde para el ensayo de Consolidación unidimensional, Lima, La molina.

[Fotografía de Lux Mamani]. (Lab. de Mecánica de suelos de la USMP. 2017). Moldes de consolidación colocados en el consolidómetro, Lima, La molina.

[Fotografía de Lux Mamani]. (Lab. de Mecánica de suelos de la USMP. 2017). Toma de muestra del Dial de deformación aplicado a la muestra, Lima, La molina.

[Fotografía de Alejandro Yataco]. (Lab. de Mecánica de suelos de la USMP. 2017). Toma de datos, Lima, La molina.

2.6 Ensayo de Corte Directo.


[Fotografía de Alejandro Yataco]. (Lab. de Mecánica de suelos de la USMP. 2017). Muestras curadas a 7 y 14 días, Lima, La molina.

[Fotografía de Lux Mamani]. (Lab. de Mecánica de suelos de la USMP. 2017). Tallado de la Muestra, Lima, La molina.

[Fotografía de Alejandro Yataco]. (Lab. de Mecánica de suelos de la USMP. 2017). Muestra que será colocada en la caja de corte, Lima, La molina.

[Fotografía de Alejandro Yataco]. (Lab. de Mecánica de suelos de la USMP. 2017). Colocación del dial, Lima, La molina.

[Fotografía de Alejandro Yataco]. (Lab. de Mecánica de suelos de la USMP. 2017). Toma de datos, Lima, La molina.

[Fotografía de Alejandro Yataco]. (Lab. de Mecánica de suelos de la USMP. 2017). Muestra resultante al finalizar el ensayo de Corte, Lima, La molina.